
Package: oce (via r-universe)
November 5, 2024

Title Analysis of Oceanographic Data

Version 1.8-4

Maintainer Dan Kelley <Dan.Kelley@Dal.Ca>

Depends R (>= 4.1.0), gsw, methods, utils

Suggests automap, curl, DBI, foreign, interp, jsonlite, knitr,
lubridate, ncdf4, ocedata, rmarkdown, RSQLite, R.utils, sf,
terra, testthat (>= 3.0.0), tiff, XML

BugReports https://github.com/dankelley/oce/issues

Description Supports the analysis of Oceanographic data, including
'ADCP' measurements, measurements made with 'argo' floats,
'CTD' measurements, sectional data, sea-level time series,
coastline and topographic data, etc. Provides specialized
functions for calculating seawater properties such as potential
temperature in either the 'UNESCO' or 'TEOS-10' equation of
state. Produces graphical displays that conform to the
conventions of the Oceanographic literature. This package is
discussed extensively by Kelley (2018) ``Oceanographic Analysis
with R'' <doi:10.1007/978-1-4939-8844-0>.

License GPL (>= 2)

Encoding UTF-8

URL https://dankelley.github.io/oce/

LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

BuildVignettes true

VignetteBuilder knitr

NeedsCompilation yes

LinkingTo Rcpp

Imports Rcpp

Config/testthat/edition 3

1

https://github.com/dankelley/oce/issues
https://doi.org/10.1007/978-1-4939-8844-0
https://dankelley.github.io/oce/

2 Contents

Repository https://dankelley.r-universe.dev

RemoteUrl https://github.com/dankelley/oce

RemoteRef HEAD

RemoteSha 454cd50a5c6878bfcec5b7c13921a03a707929b7

Contents
abbreviateTimeLabels . 14
ad2cpCodeToName . 15
ad2cpHeaderValue . 16
addSpine . 17
adp . 18
adp-class . 19
adpAd2cpFileTrim . 24
adpConvertRawToNumeric . 25
adpEnsembleAverage . 26
adpFlagPastBoundary . 28
adpRdiFileTrim . 29
adp_rdi.000 . 30
adv . 31
adv-class . 32
advSontekAdrFileTrim . 33
airRho . 34
amsr . 35
amsr-class . 36
angle2hms . 38
angleRemap . 39
applyMagneticDeclination . 40
applyMagneticDeclination,adp-method . 41
applyMagneticDeclination,adv-method . 42
applyMagneticDeclination,cm-method . 44
applyMagneticDeclination,oce-method . 45
approx3d . 46
argo . 47
argo-class . 48
argoGrid . 50
argoJuldToTime . 51
argoNames2oceNames . 52
argShow . 54
as.adp . 55
as.argo . 56
as.cm . 57
as.coastline . 59
as.ctd . 60
as.echosounder . 64
as.gps . 65
as.ladp . 66

Contents 3

as.lisst . 67
as.lobo . 68
as.met . 69
as.oce . 70
as.rsk . 71
as.sealevel . 72
as.section . 74
as.tidem . 76
as.topo . 79
as.unit . 80
as.windrose . 81
as.xbt . 82
bcdToInteger . 83
beamName . 84
beamToXyz . 85
beamToXyzAdp . 86
beamToXyzAdpAD2CP . 87
beamToXyzAdv . 88
beamUnspreadAdp . 89
bilinearInterp . 91
binApply1D . 91
binApply2D . 92
binAverage . 93
binCount1D . 95
binCount2D . 96
binmapAdp . 97
binMean1D . 98
binMean2D . 99
bodcNames2oceNames . 101
bound125 . 103
bremen-class . 103
byteToBinary . 104
cm . 105
cm-class . 106
cnvName2oceName . 107
coastline-class . 112
coastlineBest . 113
coastlineCut . 114
coastlineWorld . 115
colormap . 115
colormapGMT . 120
composite . 121
composite,amsr-method . 122
composite,list-method . 123
computableWaterProperties . 123
concatenate . 124
concatenate,adp-method . 125
concatenate,list-method . 126

4 Contents

concatenate,oce-method . 127
coriolis . 128
ctd . 129
ctd-class . 130
ctd.cnv.gz . 132
ctdDecimate . 133
ctdFindProfiles . 136
ctdFindProfilesRBR . 139
ctdRaw . 140
ctdRepair . 141
ctdTrim . 142
ctd_aml_type1.csv.gz . 145
ctd_aml_type3.csv.gz . 146
CTD_BCD2014666_008_1_DN.ODF.gz . 147
ctimeToSeconds . 147
curl . 148
d200321-001.ctd.gz . 150
d201211_0011.cnv.gz . 151
dataLabel . 151
decimate . 152
decodeHeaderNortek . 153
decodeTime . 154
defaultFlags . 156
despike . 157
detrend . 159
download.amsr . 160
download.coastline . 162
download.met . 164
download.topo . 166
drawDirectionField . 168
drawIsopycnals . 170
drawPalette . 172
echosounder . 175
echosounder-class . 176
eclipticalToEquatorial . 177
enuToOther . 178
enuToOtherAdp . 179
enuToOtherAdv . 181
equatorialToLocalHorizontal . 182
errorbars . 183
fillGap . 184
fillGapMatrix . 185
findBottom . 186
firstFinite . 187
formatCI . 187
formatPosition . 189
fullFilename . 190
g1sst-class . 191

Contents 5

gappyIndex . 192
geodDist . 193
geodGc . 195
geodXy . 196
geodXyInverse . 198
GMTOffsetFromTz . 199
gps-class . 200
grad . 201
gravity . 202
handleFlags . 203
handleFlags,adp-method . 205
handleFlags,argo-method . 207
handleFlags,ctd-method . 209
handleFlags,oce-method . 212
handleFlags,section-method . 213
handleFlags,vector-method . 215
handleFlagsInternal . 216
head.oce . 217
imagep . 218
initialize,ctd-method . 223
initializeFlags . 225
initializeFlags,adp-method . 226
initializeFlags,oce-method . 227
initializeFlagScheme . 228
initializeFlagScheme,ctd-method . 231
initializeFlagScheme,oce-method . 233
initializeFlagScheme,section-method . 236
initializeFlagSchemeInternal . 239
initializeFlagsInternal . 241
integerToAscii . 242
integrateTrapezoid . 243
interpBarnes . 244
is.ad2cp . 246
julianCenturyAnomaly . 247
julianDay . 248
labelWithUnit . 250
ladp-class . 251
landsat . 252
landsat-class . 253
landsatAdd . 256
landsatTrim . 257
latFormat . 258
latlonFormat . 259
lisst . 259
lisst-class . 260
lobo . 261
lobo-class . 262
locationForGsw . 263

6 Contents

lon360 . 264
lonFormat . 264
longitudeTighten . 265
lonlat2map . 266
lonlat2utm . 267
lookWithin . 268
lowpass . 269
magneticField . 270
makeFilter . 273
map2lonlat . 275
mapArrows . 276
mapAxis . 278
mapContour . 280
mapCoordinateSystem . 282
mapDirectionField . 283
mapGrid . 286
mapImage . 288
mapLines . 291
mapLocator . 292
mapLongitudeLatitudeXY . 293
mapPlot . 294
mapPoints . 303
mapPolygon . 304
mapScalebar . 306
mapText . 307
mapTissot . 308
matchBytes . 309
matrixShiftLongitude . 310
matrixSmooth . 311
met . 312
met-class . 313
metNames2oceNames . 314
moonAngle . 315
netcdfTOC . 317
numberAsHMS . 318
numberAsPOSIXct . 319
oce-class . 322
oce-deprecated . 322
oce.as.raw . 324
oce.axis.POSIXct . 324
oce.contour . 327
oce.grid . 328
oce.plot.ts . 329
oce.write.table . 333
oceApprox . 334
oceAxis . 335
ocecolors . 336
oceColors9B . 338

Contents 7

oceColorsCDOM . 339
oceColorsChlorophyll . 340
oceColorsClosure . 342
oceColorsDensity . 343
oceColorsFreesurface . 344
oceColorsGebco . 346
oceColorsJet . 347
oceColorsOxygen . 348
oceColorsPalette . 350
oceColorsPAR . 351
oceColorsPhase . 352
oceColorsSalinity . 354
oceColorsTemperature . 355
oceColorsTurbidity . 357
oceColorsTurbo . 359
oceColorsTwo . 360
oceColorsVelocity . 361
oceColorsViridis . 362
oceColorsVorticity . 364
oceConvolve . 366
oceCRS . 367
oceDebug . 368
oceDeleteData . 369
oceDeleteMetadata . 369
oceEdit . 370
oceFileTrim . 372
oceFilter . 373
oceGetData . 374
oceGetMetadata . 375
oceMagic . 375
oceNames2whpNames . 376
ocePmatch . 377
oceProject . 378
oceRenameData . 379
oceRenameMetadata . 380
oceSetData . 381
oceSetMetadata . 382
oceSmooth . 383
oceSpectrum . 384
oceUnits2whpUnits . 385
odf-class . 386
ODF2oce . 387
ODFListFromHeader . 388
ODFNames2oceNames . 389
parseLatLon . 393
plot,adp-method . 394
plot,adv-method . 401
plot,amsr-method . 404

8 Contents

plot,argo-method . 407
plot,bremen-method . 409
plot,cm-method . 410
plot,coastline-method . 412
plot,ctd-method . 416
plot,echosounder-method . 423
plot,gps-method . 426
plot,ladp-method . 428
plot,landsat-method . 429
plot,lisst-method . 431
plot,lobo-method . 433
plot,met-method . 434
plot,oce-method . 436
plot,odf-method . 436
plot,rsk-method . 437
plot,satellite-method . 440
plot,sealevel-method . 440
plot,section-method . 442
plot,tidem-method . 449
plot,topo-method . 450
plot,windrose-method . 453
plot,xbt-method . 454
plotInset . 456
plotPolar . 457
plotProfile . 458
plotScan . 462
plotSticks . 464
plotTaylor . 466
plotTS . 467
predict.tidem . 472
preferAdjusted . 473
presentTime . 475
prettyPosition . 476
processingLog<- . 476
processingLogAppend . 477
processingLogItem . 478
processingLogShow . 478
pwelch . 479
rangeExtended . 481
rangeLimit . 482
read.adp . 483
read.adp.ad2cp . 485
read.adp.nortek . 489
read.adp.rdi . 492
read.adp.sontek . 499
read.adp.sontek.serial . 502
read.adv . 504
read.adv.nortek . 510

Contents 9

read.adv.sontek.adr . 515
read.adv.sontek.serial . 521
read.adv.sontek.text . 526
read.amsr . 532
read.aquadopp . 532
read.aquadoppHR . 535
read.aquadoppProfiler . 538
read.argo . 540
read.argo.copernicus . 544
read.bremen . 545
read.cm . 546
read.coastline . 549
read.coastline.openstreetmap . 550
read.coastline.shapefile . 551
read.ctd . 552
read.ctd.aml . 554
read.ctd.itp . 556
read.ctd.odf . 559
read.ctd.odv . 562
read.ctd.saiv . 564
read.ctd.sbe . 566
read.ctd.ssda . 570
read.ctd.woce . 572
read.ctd.woce.other . 574
read.echosounder . 576
read.g1sst . 577
read.gps . 579
read.index . 580
read.landsat . 581
read.lisst . 583
read.lobo . 584
read.met . 586
read.netcdf . 588
read.oce . 591
read.odf . 592
read.rsk . 595
read.sealevel . 598
read.section . 599
read.topo . 601
read.woa . 602
read.xbt . 603
read.xbt.edf . 605
read.xbt.noaa1 . 606
rescale . 607
resizableLabel . 608
retime . 610
rotateAboutZ . 611
rsk . 612

10 Contents

rsk-class . 613
rsk2ctd . 614
rskPatm . 616
rskToc . 617
runlm . 618
satellite-class . 619
sealevel . 620
sealevel-class . 621
sealevelTuktoyaktuk . 622
secondsToCtime . 623
section . 624
section-class . 625
sectionAddStation . 626
sectionGrid . 628
sectionSmooth . 629
sectionSort . 633
setFlags . 634
setFlags,adp-method . 635
setFlags,ctd-method . 637
setFlags,oce-method . 640
shiftLongitude . 641
showMetadataItem . 642
siderealTime . 643
snakeToCamel . 644
standardDepths . 645
standardizeLongitude . 646
subset,adp-method . 646
subset,adv-method . 647
subset,amsr-method . 648
subset,argo-method . 649
subset,cm-method . 651
subset,coastline-method . 652
subset,ctd-method . 653
subset,echosounder-method . 655
subset,lobo-method . 656
subset,met-method . 657
subset,oce-method . 658
subset,odf-method . 659
subset,rsk-method . 660
subset,sealevel-method . 661
subset,section-method . 662
subset,topo-method . 664
subset,xbt-method . 665
subtractBottomVelocity . 666
summary,adp-method . 667
summary,adv-method . 668
summary,amsr-method . 668
summary,argo-method . 669

Contents 11

summary,bremen-method . 670
summary,cm-method . 670
summary,coastline-method . 671
summary,ctd-method . 672
summary,echosounder-method . 673
summary,gps-method . 673
summary,ladp-method . 674
summary,landsat-method . 675
summary,lisst-method . 675
summary,lobo-method . 676
summary,met-method . 677
summary,oce-method . 677
summary,odf-method . 678
summary,rsk-method . 679
summary,satellite-method . 679
summary,sealevel-method . 680
summary,section-method . 681
summary,tidem-method . 682
summary,topo-method . 683
summary,windrose-method . 684
summary,xbt-method . 684
sunAngle . 685
sunDeclinationRightAscension . 687
swAbsoluteSalinity . 688
swAlpha . 689
swAlphaOverBeta . 690
swBeta . 692
swConservativeTemperature . 693
swCSTp . 694
swDepth . 696
swDynamicHeight . 698
swLapseRate . 700
swN2 . 701
swPressure . 703
swRho . 705
swRrho . 707
swSCTp . 708
swSigma . 710
swSigma0 . 712
swSigma1 . 713
swSigma2 . 714
swSigma3 . 716
swSigma4 . 717
swSigmaT . 718
swSigmaTheta . 720
swSoundAbsorption . 722
swSoundSpeed . 723
swSpecificHeat . 725

12 Contents

swSpice . 726
swSpiciness0 . 728
swSpiciness1 . 729
swSpiciness2 . 730
swSR . 731
swSstar . 732
swSTrho . 733
swTFreeze . 735
swThermalConductivity . 737
swTheta . 738
swTSrho . 740
swViscosity . 742
swZ . 743
T68fromT90 . 744
T90fromT48 . 745
T90fromT68 . 746
tail.oce . 747
threenum . 748
tidalCurrent . 749
tidedata . 750
tidem . 751
tidem-class . 756
tidemAstron . 757
tidemConstituentNameFix . 758
tidemVuf . 759
timeToArgoJuld . 760
titleCase . 761
toEnu . 761
toEnuAdp . 762
toEnuAdv . 763
topo-class . 764
topoInterpolate . 765
topoWorld . 766
unabbreviateYear . 767
undriftTime . 768
unduplicateNames . 769
ungrid . 769
unitFromString . 770
unitFromStringRsk . 771
unwrapAngle . 772
useHeading . 773
usrLonLat . 773
utm2lonlat . 774
vectorShow . 776
velocityStatistics . 777
webtide . 778
wind . 781
window.oce . 781

Contents 13

windrose-class . 783
woceNames2oceNames . 784
woceUnit2oceUnit . 785
write.ctd . 786
xbt . 787
xbt-class . 788
xbt.edf . 789
xyzToEnu . 790
xyzToEnuAdp . 791
xyzToEnuAdpAD2CP . 793
xyzToEnuAdv . 794
[[,adp-method . 796
[[,adv-method . 798
[[,amsr-method . 801
[[,argo-method . 803
[[,bremen-method . 806
[[,cm-method . 807
[[,coastline-method . 809
[[,ctd-method . 811
[[,echosounder-method . 815
[[,g1sst-method . 817
[[,gps-method . 819
[[,ladp-method . 821
[[,landsat-method . 823
[[,lisst-method . 825
[[,lobo-method . 827
[[,met-method . 829
[[,oce-method . 831
[[,odf-method . 832
[[,rsk-method . 834
[[,sealevel-method . 836
[[,section-method . 838
[[,tidem-method . 840
[[,topo-method . 842
[[,windrose-method . 844
[[,xbt-method . 846
[[<-,adp-method . 848
[[<-,adv-method . 849
[[<-,amsr-method . 851
[[<-,argo-method . 852
[[<-,bremen-method . 853
[[<-,cm-method . 855
[[<-,coastline-method . 856
[[<-,ctd-method . 857
[[<-,echosounder-method . 859
[[<-,g1sst-method . 860
[[<-,gps-method . 861
[[<-,ladp-method . 862

14 abbreviateTimeLabels

[[<-,landsat-method . 863
[[<-,lisst-method . 865
[[<-,lobo-method . 866
[[<-,met-method . 867
[[<-,oce-method . 868
[[<-,odf-method . 869
[[<-,rsk-method . 871
[[<-,sealevel-method . 872
[[<-,section-method . 873
[[<-,tidem-method . 874
[[<-,topo-method . 876
[[<-,windrose-method . 877
[[<-,xbt-method . 878

Index 880

abbreviateTimeLabels Abbreviate a Vector of Times by Removing Commonalities

Description

Abbreviate a vector of times by removing commonalities (e.g. year)

Usage

abbreviateTimeLabels(t, ...)

Arguments

t vector of times.

... optional arguments passed to the format(), e.g. format.

Value

None.

Author(s)

Dan Kelley, with help from Clark Richards

See Also

This is used by various functions that draw time labels on axes, e.g. plot,adp-method().

ad2cpCodeToName 15

ad2cpCodeToName Map AD2CP ID Code to oce Name

Description

As explained in Nortek (2022, section 6.1, page 80), AD2CP files use a hexadecimal (in R, "raw")
code to indicate the nature of each data chunk, and read.adp.ad2cp() uses the present function as
it analyses AD2CP files.

Usage

ad2cpCodeToName(code = NULL, prefix = TRUE)

Arguments

code a raw (or corresponding integer) vector indicating the IDs of interest, or NULL
to get a summary of possible values.

prefix logical value indicating whether to show the raw value as a prefix (e.g. "0x1c=echosounder"
as opposed to "echosounder").

Details

The mapping from code (hex or decimal) to oce name is as follows.

code (raw) code (integer) oce name
———- ————– —————–

0x15 21 burst
0x16 22 average
0x17 23 bottomTrack
0x18 24 interleavedBurst
0x1a 26 burstAltimeterRaw
0x1b 27 DVLBottomTrack
0x1c 28 echosounder
0x1d 29 DVLWaterTrack
0x1e 30 altimeter
0x1f 31 averageAltimeter
0x23 35 echosounderRaw
0xa0 160 text

Value

An indication of the mapping. If code is NULL, this is a data frame. Otherwise, it is a character
vector with the relevant mappings, with the raw form of the code linked with the name, as in the
example.

16 ad2cpHeaderValue

Author(s)

Dan Kelley

References

Nortek AS. “Signature Integration 55|250|500|1000kHz.” Nortek AS, March 31, 2022.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpHeaderValue(), adp,
adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(), adpFlagPastBoundary(),
adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(), beamName(),
beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to ad2cp data: ad2cpHeaderValue(), adpAd2cpFileTrim(), is.ad2cp(),
read.adp.ad2cp()

Examples

stopifnot(ad2cpCodeToName(0x15) == "0x15=burst")

ad2cpHeaderValue Infer an Item From a Nortek AD2CP File Header

Description

Infer an Item From a Nortek AD2CP File Header

Usage

ad2cpHeaderValue(x, key, item, numeric = TRUE, default)

Arguments

x an adp object that holds AD2CP data.

key Character value that identifies a particular line in the file header.

item Character value indicating the name of the item sought.

numeric Logical value indicating whether to convert the return value from a string to a
numerical value.

default Optional value to be used if the item is not found in the header, or if the header
is NULL (as in the case of a split-up file that lacks the initial header information)

addSpine 17

Value

String or number interpreted from the x[["text"]], or NULL, if the desired item is not found there,
or if x is not of the required class and variety.

Sample of Usage

if (file.exists("a.ad2cp")) {
d <- read.oce("a.ad2cp")
The examples start with the line in x[["text"]][[1]]; note that in the second
example, it would be insuficient to use a key of "BEAMCFGLIST", because that will
yield 4 lines, and the function is not designed to handle that.

ID,STR=\"Signature1000\",SN=123456
type <- ad2cpHeaderValue(d, "ID", "STR", numeric=FALSE)
serialNumber <- ad2cpHeaderValue(d, "ID", "SN")

BEAMCFGLIST,BEAM=1,THETA=25.00,PHI=0.00,FREQ=1000,BW=25,BRD=1,HWBEAM=1,ZNOM=60.00
beam1Angle <- ad2cpHeaderValue(d, "BEAMCFGLIST,BEAM=1", "THETA")
frequency <- ad2cpHeaderValue(d, "BEAMCFGLIST,BEAM=1", "FREQ", default=NA)

}

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), adp,
adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(), adpFlagPastBoundary(),
adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(), beamName(),
beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to ad2cp data: ad2cpCodeToName(), adpAd2cpFileTrim(), is.ad2cp(),
read.adp.ad2cp()

addSpine Add a Spine to a section Object

Description

The purpose of this is to permit plotting with xtype="spine", so that the section plot will display
the distance of stations projected onto the spine.

18 adp

Usage

addSpine(section, spine, debug = getOption("oceDebug"))

Arguments

section a section object.

spine either a list or a data frame, containing numeric items named longitude and
latitude, defining a path along the spine.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

A section object with a spine added.

Author(s)

Dan Kelley

Examples

library(oce)
data(section)
eastern <- subset(section, longitude < (-65))
spine <- list(

longitude = c(-74.5, -69.2, -55),
latitude = c(38.6, 36.25, 36.25)

)
easternWithSpine <- addSpine(eastern, spine)
plot(easternWithSpine, which="map")
plot(easternWithSpine, xtype="distance", which="temperature")
plot(easternWithSpine, xtype="spine", which="temperature")

adp Sample adp Data

Description

This is degraded subsample of measurements that were made with an upward-pointing, moored,
ADP manufactured by Teledyne-RDI, as part of the St Lawrence Internal Wave Experiment (SLEI-
WEX).

adp-class 19

Usage

data(adp)

Source

This file came from the SLEIWEX-2008 experiment.

See Also

Other datasets provided with oce: adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw, echosounder,
landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(), adpFlagPastBoundary(),
adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(), beamName(),
beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

library(oce)
data(adp)

Velocity components. (Note: we should probably trim some bins at top.)
plot(adp)

Note that tides have moved the mooring.
plot(adp, which = 15:18)

adp-class Class to Store Acoustic-Doppler Profiler Data

Description

This class stores data from acoustic Doppler profilers. Some manufacturers call these ADCPs, while
others call them ADPs; here the shorter form is used by analogy to ADVs.

20 adp-class

Slots

data As with all oce objects, the data slot for adp objects is a list containing the main data for
the object. The key items stored in this slot include time, distance, and v, along with angles
heading, pitch and roll.

metadata As with all oce objects, the metadata slot for adp objects is a list containing informa-
tion about the data or about the object itself. Examples that are of common interest include
oceCoordinate, orientation, frequency, and beamAngle.

processingLog As with all oce objects, the processingLog slot for adp objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of adp objects (see [[<-,adp-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a adp object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,adp-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,adp-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Reading/creating adp objects

The metadata slot contains various items relating to the dataset, including source file name, sam-
pling rate, velocity resolution, velocity maximum value, and so on. Some of these are particular to
particular instrument types, and prudent researchers will take a moment to examine the whole con-
tents of the metadata, either in summary form (with str(adp[["metadata"]])) or in detail (with
adp[["metadata"]]). Perhaps the most useful general properties are adp[["bin1Distance"]]
(the distance, in metres, from the sensor to the bottom of the first bin), adp[["cellSize"]] (the
cell height, in metres, in the vertical direction, not along the beam), and adp[["beamAngle"]] (the
angle, in degrees, between beams and an imaginary centre line that bisects all beam pairs).

adp-class 21

The diagram provided below indicates the coordinate-axis and beam-numbering conventions for
three- and four-beam ADP devices, viewed as though the reader were looking towards the beams
being emitted from the transducers.

The bin geometry of a four-beam profiler is illustrated below, for adp[["beamAngle"]] equal to
20 degrees, adp[["bin1Distance"]] equal to 2m, and adp[["cellSize"]] equal to 1m. In the
diagram, the viewer is in the plane containing two beams that are not shown, so the two visible
beams are separated by 40 degrees. Circles indicate the centres of the range-gated bins within the
beams. The lines enclosing those circles indicate the coverage of beams that spread plus and minus
2.5 degrees from their centreline.

Note that adp[["oceCoordinate"]] stores the present coordinate system of the object, and it has
possible values "beam", "xyz", "sfm" or "enu". (This should not be confused with adp[["originalCoordinate"]],
which stores the coordinate system used in the original data file.)

The data slot holds some standardized items, and many that vary from instrument to instrument.
One standard item is adp[["v"]], a three-dimensional numeric array of velocities in m/s. In this
matrix, the first index indicates time, the second bin number, and the third beam number. The
meaning of beams number depends on whether the object is in beam coordinates, frame coordinates,
or earth coordinates. For example, if in earth coordinates, then beam 1 is the eastward component
of velocity. Thus, for example,

library(oce)
data(adp)
t <- adp[["time"]]
d <- adp[["distance"]]
eastward <- adp[["v"]][,,1]
imagep(t, d, eastward, missingColor="gray")

plots an image of the eastward component of velocity as a function of time (the x axis) and distance
from sensor (y axis), since the adp dataset is in earth coordinates. Note the semidurnal tidal signal,
and the pattern of missing data at the ocean surface (gray blotches at the top).

Corresponding to the velocity array are two arrays of type raw, and identical dimension, accessed
by adp[["a"]] and adp[["q"]], holding measures of signal strength and data quality (referred to
as "correlation" in some documentation), respectively. (The exact meanings of these depend on the
particular type of instrument, and it is assumed that users will be familiar enough with instruments
to know both the meanings and their practical consequences in terms of data-quality assessment,
etc.)

In addition to the arrays, there are time-based vectors. The vector adp[["time"]] (of length
equal to the first index of adp[["v"]], etc.) holds times of observation. Depending on type
of instrument and its configuration, there may also be corresponding vectors for sound speed
(adp[["soundSpeed"]]), pressure (adp[["pressure"]]), temperature (adp[["temperature"]]),
heading (adp[["heading"]]) pitch (adp[["pitch"]]), and roll (adp[["roll"]]), depending on
the setup of the instrument.

The precise meanings of the data items depend on the instrument type. All instruments have v (for
velocity), q (for a measure of data quality) and a (for a measure of backscatter amplitude, also called
echo intensity). Teledyne-RDI profilers have an additional item g (for percent-good).

VmDas-equipped Teledyne-RDI profilers additional navigation data, with details listed in the table
below; note that the RDI documentation (reference 2) and the RDI gui use inconsistent names for
most items.

22 adp-class

Oce name RDI doc name RDI GUI name
avgSpeed Avg Speed Speed/Avg/Mag
avgMagnitudeVelocityEast Avg Mag Vel East ?
avgMagnitudeVelocityNorth Avg Mag Vel North ?
avgTrackMagnetic Avg Track Magnetic Speed/Avg/Dir (?)
avgTrackTrue Avg Track True Speed/Avg/Dir (?)
avgTrueVelocityEast Avg True Vel East ?
avgTrueVelocityNorth Avg True Vel North ?
directionMadeGood Direction Made Good Speed/Made Good/Dir
firstLatitude First latitude Start Lat
firstLongitude First longitude Start Lon
firstTime UTC Time of last fix End Time
lastLatitude Last latitude End Lat
lastLongitude Last longitude End Lon
lastTime UTC Time of last fix End Time
numberOfHeadingSamplesAveraged Number heading samples averaged ?
numberOfMagneticTrackSamplesAveraged Number of magnetic track samples averaged ?
numberOfPitchRollSamplesAvg Number of magnetic track samples averaged ?
numberOfSpeedSamplesAveraged Number of speed samples averaged ?
numberOfTrueTrackSamplesAvg Number of true track samples averaged ?
primaryFlags Primary Flags ?
shipHeading Heading ?
shipPitch Pitch ?
shipRoll Roll ?
speedMadeGood Speed Made Good Speed/Made Good/Mag
speedMadeGoodEast Speed MG East ?
speedMadeGoodNorth Speed MG North ?

For Teledyne-RDI profilers, there are four three-dimensional arrays holding beamwise data. In
these, the first index indicates time, the second bin number, and the third beam number (or coordi-
nate number, for data in xyz, sfm, enu or other coordinate systems). In the list below, the quoted
phrases are quantities as defined in Figure 9 of reference 1.

• v is velocity in m/s, inferred from two-byte signed integer values (multiplied by the scale
factor that is stored in velocityScale in the metadata).

• q is "correlation magnitude" a one-byte quantity stored as type raw in the object. The values
may range from 0 to 255.

• a is "backscatter amplitude", also known as "echo intensity" a one-byte quantity stored as type
raw in the object. The values may range from 0 to 255.

• g is "percent good" a one-byte quantity stored as raw in the object. The values may range from
0 to 100.

Finally, there is a vector adp[["distance"]] that indicates the bin distances from the sensor, mea-
sured in metres along an imaginary centre line bisecting beam pairs. The length of this vector equals
dim(adp[["v"]])[2].

adp-class 23

Teledyne-RDI Sentinel V ADCPs

As of 2016-09-27 there is provisional support for the TRDI "SentinelV" ADCPs, which are 5
beam ADCPs with a vertical centre beam. Relevant vertical beam fields are called adp[["vv"]],
adp[["va"]], adp[["vq"]], and adp[["vg"]] in analogy with the standard 4-beam fields.

Accessing and altering information within adp objects

Extracting values Matrix data may be accessed as illustrated above, e.g. or an adp object named
adv, the data are provided by adp[["v"]], adp[["a"]], and adp[["q"]]. As a convenience,
the last two of these can be accessed as numeric (as opposed to raw) values by e.g. adp[["a",
"numeric"]]. The vectors are accessed in a similar way, e.g. adp[["heading"]], etc. Quantities
in the metadata slot are also available by name, e.g. adp[["velocityResolution"]], etc.

Assigning values. This follows the standard form, e.g. to increase all velocity data by 1 cm/s, use
adp[["v"]] <- 0.01 + adp[["v"]].

Overview of contents The show method (e.g. show(d)) displays information about an ADP object
named d.

Dealing with suspect data

There are many possibilities for confusion with adp devices, owing partly to the flexibility that
manufacturers provide in the setup. Prudent users will undertake many tests before trusting the
details of the data. Are mean currents in the expected direction, and of the expected magnitude,
based on other observations or physical constraints? Is the phasing of currents as expected? If
the signals are suspect, could an incorrect scale account for it? Could the transformation matrix
be incorrect? Might the data have exceeded the maximum value, and then “wrapped around” to
smaller values? Time spent on building confidence in data quality is seldom time wasted.

References

1. Teledyne-RDI, 2007. WorkHorse commands and output data format. P/N 957-6156-00 (Novem-
ber 2007).

2. Teledyne-RDI, 2012. VmDas User’s Guide, Ver. 1.46.5.

See Also

A file containing ADP data is usually recognized by Oce, and so read.oce() will usually read the
data. If not, one may use the general ADP function read.adp() or specialized variants read.adp.rdi(),
read.adp.nortek(), read.adp.ad2cp(), read.adp.sontek() or read.adp.sontek.serial().

ADP data may be plotted with plot,adp-method(), which is a generic function so it may be called
simply as plot.

Statistical summaries of ADP data are provided by the generic function summary, while briefer
overviews are provided with show.

Conversion from beam to xyz coordinates may be done with beamToXyzAdp(), and from xyz to
enu (east north up) may be done with xyzToEnuAdp(). toEnuAdp() may be used to transfer either
beam or xyz to enu. Enu may be converted to other coordinates (e.g. aligned with a coastline) with
enuToOtherAdp().

24 adpAd2cpFileTrim

Other classes provided by oce: adv-class, argo-class, bremen-class, cm-class, coastline-class,
ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class, rsk-class, sealevel-class,
section-class, topo-class, windrose-class, xbt-class

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(), adpFlagPastBoundary(),
adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(), beamName(),
beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

adpAd2cpFileTrim Trim an AD2CP File

Description

Create an AD2CP file by copying the first n data chunks (regions starting with 0xa5, etc) of another
such file. This can be useful in supplying small sample files for bug reports.

Usage

adpAd2cpFileTrim(infile, n = 100L, outfile, debug = getOption("oceDebug"))

Arguments

infile name of an AD2CP file.

n integer indicating the number of data chunks to keep. The default is to keep 100
chunks, a common choice for sample files.

outfile optional name of the new AD2CP file to be created. If this is not supplied,
a default is used, by adding _trimmed to the base filename, e.g. if infile is
"a.ad2cp" then outfile will be a_trimmed.ad2cp.

debug an integer value indicating the level of debugging. If this is 1L, then a brief
indication is given of the processing steps. If it is > 1L, then information is
given about each data chunk, which can yield very extensive output.

Value

adpAd2cpFileTrim() returns the name of the output file, outfile, as provided or constructed.

Sample of Usage

Can only be run by the developer, since it uses a private file.
f <- "~/Dropbox/oce_secret_data/ad2cp/byg_trimmed.ad2cp"
if (file.exists(f))

adpAd2cpFileTrim(f, 100L) # this file is already trimmed to 200 chunks

adpConvertRawToNumeric 25

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpConvertRawToNumeric(), adpEnsembleAverage(), adpFlagPastBoundary(),
adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(), beamName(),
beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to ad2cp data: ad2cpCodeToName(), ad2cpHeaderValue(), is.ad2cp(),
read.adp.ad2cp()

Other functions that trim data files: adpRdiFileTrim(), advSontekAdrFileTrim(), oceFileTrim()

adpConvertRawToNumeric

Convert Raw to Numeric Values in an adp Object

Description

Convert variables in an adp object from raw to numeric format.

Usage

adpConvertRawToNumeric(
object = NULL,
variables = NULL,
debug = getOption("oceDebug")

)

Arguments

object an adp object.

variables variables stored in an adp object that has the same dimensional as v and is stored
in a raw format.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

26 adpEnsembleAverage

Value

adpConvertRawToNumeric returns an adp object whose specified variables have been converted
from raw to numerical format.

Author(s)

Jaimie Harbin and Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpEnsembleAverage(), adpFlagPastBoundary(), adpRdiFileTrim(),
adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(), beamName(), beamToXyz(),
beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(), binmapAdp(),
enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

library(oce)
data(adp)
adp[["a"]][, , 1][, 1]
ADP <- adpConvertRawToNumeric(adp)
ADP[["a"]][, , 1][, 1]

adpEnsembleAverage Ensemble Average an adp Object in Time

Description

Ensemble averaging of adp objects is often necessary to reduce the uncertainty in velocity estimates
from single pings. Many types of ADPs can be configured to perform the ensemble averaging
during the data collection, due to memory limitations for long deployments. In cases where the
instrument is not memory limited, it may be desirable to perform the ensemble averaging during
post-processing, thereby reducing the overall size of the data set and decreasing the uncertainty of
the velocity estimates (by averaging out Doppler noise).

Usage

adpEnsembleAverage(x, n = 5, leftover = FALSE, na.rm = TRUE, ...)

adpEnsembleAverage 27

Arguments

x an adp object.

n number of pings to average together.

leftover a logical value indicating how to proceed in cases where n does not divide evenly
into the number of ensembles in x. If leftover is FALSE (the default) then any
extra ensembles at the end of x are ignored. Otherwise, they are used to create a
final ensemble in the returned value.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds

... extra arguments to be passed to the mean() function.

Value

A new adp object with ensembles averaged as specified. E.g. for an adp object with 100 pings and
n=5 the number of rows of the data arrays will be reduced by a factor of 5.

Author(s)

Clark Richards and Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpFlagPastBoundary(),
adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(), beamName(),
beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

library(oce)
data(adp)
adpAvg <- adpEnsembleAverage(adp, n = 2)
plot(adpAvg)

28 adpFlagPastBoundary

adpFlagPastBoundary Flag adp Data Past Water Column Boundary

Description

Flag variables with the same dimension of v in an adp object that are beyond the water column
boundary while retaining existing flags. Currently, this operation can only be performed on adp
objects that contain bottom ranges. Commonly, handleFlags() would then be used to remove
such data.

Usage

adpFlagPastBoundary(
x = NULL,
fields = NULL,
df = 20,
trim = 0.15,
good = 1,
bad = 4,
debug = getOption("oceDebug")

)

Arguments

x an adp object containing bottom ranges.

fields a variable contained within x indicating which field to flag. If NULL (the de-
fault) then adpFlagPastBoundary() applies itself to all flag fields that have the
same dimensionality as v in the data slot.

df the degrees of freedom to use during the smoothing spline operation.

trim a scale factor for boundary trimming (see “Details”).

good number stored in flags to indicate good data.

bad number stored in flags to indicate bad data.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

If the object’s oceCoordinate is "beam", this works by using smooth.spline() on the time-
dependent bottom ranges, beam-by-beam. If oceCoordinate is "enu", "xyz", or "other", a
smooth.spline() is used on a time-dependent bottom range averaged across all the beams. The df
value of the present function is passed to smooth.spline(), as a way to control smoothness. Once

adpRdiFileTrim 29

this is done, data within distance of 1 − trim multiplied by the bottom range are flagged as being
bad. The default value of trim is 0.15, which is close to the value (0.134) of 1−cos(angle∗pi/180),
with angle=30 as the beam angle in degrees.

Value

adpFlagPastBoundary returns an adp object with flags adjusted in the specified fields if data are
beyond the water column boundary.

Author(s)

Jaimie Harbin, Clark Richards, and Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(), beamName(),
beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

adpRdiFileTrim Trim an RDI adp File

Description

Create an RDI adp file by copying the first n data chunks (starting with byte 0x7f 0x7f) of another
such file. This can be useful in supplying small sample files for bug reports.

Usage

adpRdiFileTrim(infile, n = 100L, outfile, debug = getOption("oceDebug"))

Arguments

infile name of an RDI file.

n integer indicating the number of data chunks to keep. The default is to keep 100
chunks, a common choice for sample files.

outfile optional name of the new RDI file to be created. If this is not supplied, a default
is used, by adding _trimmed to the base filename, e.g. if infile is "a.000"
then outfile will be a_trimmed.000.

30 adp_rdi.000

debug an integer value indicating the level of debugging. If this is 0, then read.adp.rdi()
proceeds quietly, except for issuing warnings and errors if necessary. If it is 1,
then the R code of read.adp.rdi() produces some messages. If it is 2, then
also the underlying C/C++ code produces a message each time a possible en-
semble is detected. If it is 3, then the C/C++ code also produces information on
some details of the ensemble. Levels 2 and 3 are mainly for use by the develop-
ers.

Value

adpRdiFileTrim() returns the name of the output file, outfile, as provided or constructed.

Sample of Usage

Can only be run by the developer, since it uses a private file.
file <- "~/data/archive/sleiwex/2008/moorings/m09/adp/rdi_2615/raw/adp_rdi_2615.000"
if (file.exists(file)) {

adpRdiFileTrim(file, 9L, "test.000")
}

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adp_rdi.000, applyMagneticDeclination,adp-method, as.adp(),
beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that trim data files: adpAd2cpFileTrim(), advSontekAdrFileTrim(), oceFileTrim()

adp_rdi.000 Sample adp File in RDI Format

Description

Sample adp File in RDI Format

adv 31

See Also

Other raw datasets: CTD_BCD2014666_008_1_DN.ODF.gz, ctd.cnv.gz, ctd_aml_type1.csv.gz,
ctd_aml_type3.csv.gz, d200321-001.ctd.gz, d201211_0011.cnv.gz, xbt.edf

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), applyMagneticDeclination,adp-method, as.adp(),
beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

read.oce(system.file("extdata", "adp_rdi.000", package="oce"))

adv Sample adv Data

Description

This adv object is a sampling of measurements made with a Nortek Vector acoustic Doppler ve-
locimeter deployed as part of the St Lawrence Internal Wave Experiment (SLEIWEX). Various
identifying features have been redacted.

Usage

data(adv)

Source

This file came from the SLEIWEX-2008 experiment.

See Also

Other datasets provided with oce: adp, amsr, argo, cm, coastlineWorld, ctd, ctdRaw, echosounder,
landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
toEnuAdv(), velocityStatistics(), xyzToEnu(), xyzToEnuAdv()

32 adv-class

Examples

library(oce)
data(adv)

Velocity time-series
plot(adv)

Spectrum of upward component of velocity, with ``turbulent'' reference line
s <- spectrum(adv[["v"]][, 3], plot = FALSE)
plot(log10(s$freq), log10(s$spec), type = "l")
for (a in seq(-20, 20, by = 1)) {

abline(a = a, b = -5 / 3, col = "gray", lty = "dotted")
}

adv-class Class to Store Acoustic-Doppler Velocimeter Data

Description

This class holds data from acoustic-Doppler velocimeters.

Details

A file containing ADV data is usually recognized by Oce, and so read.oce() will usually read the
data. If not, one may use the general ADV function read.adv() or specialized variants read.adv.nortek(),
read.adv.sontek.adr() or read.adv.sontek.text().

ADV data may be plotted with plot,adv-method() function, which is a generic function so it may
be called simply as plot(x), where x is an adv object.

Statistical summaries of ADV data are provided by the generic function summary,adv-method().

Conversion from beam to xyz coordinates may be done with beamToXyzAdv(), and from xyz to
enu (east north up) may be done with xyzToEnuAdv(). toEnuAdv() may be used to transfer either
beam or xyz to enu. Enu may be converted to other coordinates (e.g. aligned with a coastline) with
enuToOtherAdv().

Slots

data As with all oce objects, the data slot for adv objects is a list containing the main data for the
object. The key items stored in this slot include time and v.

metadata As with all oce objects, the metadata slot for adv objects is a list containing informa-
tion about the data or about the object itself. Examples that are of common interest include
frequency, oceCordinate, and frequency.

processingLog As with all oce objects, the processingLog slot for adv objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

advSontekAdrFileTrim 33

Modifying slot contents

Although the [[<- operator may permit modification of the contents of adv objects (see [[<-,adv-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a adv object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,adv-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,adv-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

See Also

Other classes provided by oce: adp-class, argo-class, bremen-class, cm-class, coastline-class,
ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class, rsk-class, sealevel-class,
section-class, topo-class, windrose-class, xbt-class

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
toEnuAdv(), velocityStatistics(), xyzToEnu(), xyzToEnuAdv()

Examples

data(adv)
adv[["v"]] <- 0.001 + adv[["v"]] # add 1mm/s to all velocity components

advSontekAdrFileTrim Trim a Sontek ADR adv File

34 airRho

Description

Create a Sontek ADR adv (acoustic Doppler velocimeter) file by copying the header plus the first
n data chunks (recognized by the three-byte sequence 0xA5, 0x11, ‘0x3c’) into a new file. This can
be useful in supplying small sample files for bug reports.

Usage

advSontekAdrFileTrim(infile, n = 100, outfile, debug = getOption("oceDebug"))

Arguments

infile name of a Sontek ADR adp file.

n integer indicating the number of data chunks to keep. The default is to keep 100
chunks, a common choice for sample files.

outfile optional name of the new Sontek ADR adp file to be created. If this is not
supplied, a default is used, by adding _trimmed to the base filename, e.g. if
infile is "x.adr" then outfile will be x_trimmed.adr.

debug an integer value indicating the level of debugging. If this is 1L, then a brief
indication is given of the processing steps. If it is > 1L, then information is
given about each data chunk, which can yield very extensive output.

Value

advSontekAdrFileTrim() returns the name of the output file, outfile, as provided or constructed.

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, applyMagneticDeclination,adv-method,
beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(), plot,adv-method, read.adv(),
read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

Other functions that trim data files: adpAd2cpFileTrim(), adpRdiFileTrim(), oceFileTrim()

airRho Air Density

Description

Compute ρ, the in-situ density of dry air.

Usage

airRho(temperature, pressure, humidity)

amsr 35

Arguments

temperature in-situ temperature, in ◦C.

pressure numeric value for pressure in Pa (not the kPa used in public weather forecasts).

humidity ignored at present

Details

This will eventually be a proper equation of state, but for now it just uses a dry-air formula posted
on wikipedia (i.e. not trustworthy).

Value

In-situ dry-air density, in kg/m3.

Author(s)

Dan Kelley

References

1. https://en.wikipedia.org/wiki/Density_of_air

2. National Oceanographic and Atmospheric Agency, 1976. U.S. Standard Atmosphere, 1976.
NOAA-S/T 76-1562. (A PDF of this document may be available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539_1977009539.pdf
or http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA035728
although neither link has proven to be reliable.)

Examples

degC <- seq(0, 30, length.out = 100)
p <- seq(98, 102, length.out = 100) * 1e3
contour(x = degC, y = p, z = outer(degC, p, airRho), labcex = 1)

amsr Sample amsr Data (Near Nova Scotia)

Description

This is a three-day composite satellite image for July 27, 2023, trimmed to show waters south and
east of Nova Scotia, using code provide in the “Details” section.

Usage

data(amsr)

36 amsr-class

Details

The following code was used to create this dataset.

library(oce)
amsr <- read.amsr(download.amsr(2023, 7, 27, destdir="~/data/amsr"))
amsr <- subset(amsr, -71 < longitude & longitude < -60, debug=2)
amsr <- subset(amsr, 36 < latitude & latitude < 45, debug=2)

See Also

Other satellite datasets provided with oce: landsat

Other datasets provided with oce: adp, adv, argo, cm, coastlineWorld, ctd, ctdRaw, echosounder,
landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

Other things related to amsr data: [[,amsr-method, [[<-,amsr-method, amsr-class, composite,amsr-method,
download.amsr(), plot,amsr-method, read.amsr(), subset,amsr-method, summary,amsr-method

Examples

library(oce)
data(coastlineWorld)
data(amsr)
plot(amsr, "SST")
lines(coastlineWorld[["longitude"]], coastlineWorld[["latitude"]])

amsr-class Class to Store AMSR-2 Satellite Data

Description

This class stores data from the AMSR-2 satellite.

Details

The Advanced Microwave Scanning Radiometer (AMSR-2) is in current operation on the Japan
Aerospace Exploration Agency (JAXA) GCOM-W1 space craft, launched in May 2012. Data are
processed by Remote Sensing Systems. The satellite completes an ascending and descending pass
during local daytime and nighttime hours respectively. Each daily file contains 7 daytime and
7 nighttime maps of variables named as follows within the data slot of amsr objects: timeDay,
SSTDay, LFwindDay (wind at 10m sensed in the 10.7GHz band), MFwindDay (wind at 10m sensed
at 18.7GHz), vaporDay, cloudDay, and rainDay, along with similarly-named items that end in
Night. See reference 1 for additional information on the instrument, how to cite the data source in
a paper, etc.

The bands are stored in raw() form, to save storage. The accessor function [[,amsr-method can
provide these values in raw form or in physical units; plot,amsr-method(), and summary,amsr-method()
work with physical units.

amsr-class 37

Slots

data As with all oce objects, the data slot for amsr objects is a list containing the main data for
the object.

metadata As with all oce objects, the metadata slot for amsr objects is a list containing informa-
tion about the data or about the object itself. Examples that are of common interest include
longitude and latitude, which define the grid.

processingLog As with all oce objects, the processingLog slot for amsr objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of amsr objects (see [[<-,amsr-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a amsr object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,amsr-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,amsr-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley and Chantelle Layton

References

1. Information on the satellite, how to cite the data, etc. is provided at http://www.remss.com/missions/amsr/.

2. A simple interface for viewing and downloading data is at http://images.remss.com/amsr/amsr2_data_daily.html.

38 angle2hms

See Also

Other classes holding satellite data: g1sst-class, landsat-class, satellite-class

Other things related to amsr data: [[,amsr-method, [[<-,amsr-method, amsr, composite,amsr-method,
download.amsr(), plot,amsr-method, read.amsr(), subset,amsr-method, summary,amsr-method

angle2hms Convert Astronomical Angle in Degrees to Hours, Minutes and Sec-
onds

Description

The purpose of angle2hms is to facilitate comparison of rightAscension angles computed by
sunAngle() and moonAngle() with angles reported in astronomical sources and software, which
often employ an hour-minute-second notation. In that notation, decimal hour is computed as 24/360
times the angle in degrees, and from that decimal hour are compute integer hour and minute values,
plus a decimal second value. It is common in the astronomical literature to use strings to represent
the results, e.g. with 11h40m48s.10 for the value used in the “Examples”; see Chapter 1 of Meeus
(1991) for more on angle calculation and representation.

Usage

angle2hms(angle)

Arguments

angle numerical value giving an angle in degrees

Value

angle2hms returns a list containing values time (a numerical value for decimal hour, between 0
and 24), hour, minute, and second (the last of which may have a fractional part), and string,
a character value indicates the time in hour-minute-second notation, with the second part to two
decimal places and intervening h, m and s characters between the units.

Author(s)

Dan Kelley

References

• Meeus, Jean. Astronomical Algorithms. Second Edition. Richmond, Virginia, USA: Willmann-
Bell, 1991.

See Also

Other things related to astronomy: eclipticalToEquatorial(), equatorialToLocalHorizontal(),
julianCenturyAnomaly(), julianDay(), moonAngle(), siderealTime(), sunAngle(), sunDeclinationRightAscension()

angleRemap 39

Examples

A randomly-chosen example on page 99 of Meeus (1991).
angle2hms(177.74208) # string component 11h50m58s.10

angleRemap Convert Angle From 0:360 to -180:180 Convention

Description

This is mostly used for instrument heading angles, in cases where the instrument is aligned nearly
northward, so that small variations in heading (e.g. due to mooring motion) can yield values that
swing from small angles to large angles, because of the modulo-360 cut point. The method is to use
the cosine and sine of the angle in order to find "x" and "y" values on a unit circle, and then to use
atan2() to infer the angles.

Usage

angleRemap(theta)

Arguments

theta an angle (in degrees) that is in the range from 0 to 360 degrees

Value

A vector of angles, in the range -180 to 180.

Author(s)

Dan Kelley

Examples

library(oce)
fake some heading data that lie near due-north (0 degrees)
n <- 20
heading <- 360 + rnorm(n, sd = 10)
heading <- ifelse(heading > 360, heading - 360, heading)
x <- 1:n
plot(x, heading, ylim = c(-10, 360), type = "l", col = "lightgray", lwd = 10)
lines(x, angleRemap(heading))

40 applyMagneticDeclination

applyMagneticDeclination

Alter an Object to Account for Magnetic Declination (Generic)

Description

Current-measuring instruments that infer flow direction using magnetic compasses require a cor-
rection for magnetic declination, in order to infer currents with x and y oriented eastward and
northward, respectively. applyMagneticDeclination() is a generic function that handles this
task by altering velocity components (and heading values, if they exist). It works for objects
of the cm, adp and adv and cm classes by calling applyMagneticDeclination,adp-method(),
applyMagneticDeclination,adv-method(), or applyMagneticDeclination,cm-method(), re-
spectively.

Usage

applyMagneticDeclination(object = "oce", declination = "ANY", debug = "ANY")

Arguments

object an object of cm, adp, or adv class.

declination numeric value holding magnetic declination in degrees, positive for clockwise
from north.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The returned value is a copy of object that has been modified in 4 ways. (1) the horizontal com-
ponents of velocity are rotated clockwise by declination degrees. (2) If the object holds heading
values, then declination is added to them. (3) The north item in the metadata slot is set to
"geographic", and a warning is issued if this was also the value in object. (4) The declination
item in the metadata slot is set to the value supplied to this function.

Value

an object of the same class as object, modified as described in “Details”.

Author(s)

Dan Kelley, aided, for the adp and adv variants, by Clark Richards and Jaimie Harbin.

applyMagneticDeclination,adp-method 41

See Also

Use magneticField() to determine the declination, inclination and intensity at a given spot on the
world, at a given time.

Other things related to magnetism: applyMagneticDeclination,adp-method, applyMagneticDeclination,adv-method,
applyMagneticDeclination,cm-method, applyMagneticDeclination,oce-method, magneticField()

applyMagneticDeclination,adp-method

Alter an adp Object to Account for Magnetic Declination

Description

Acoustic-Doppler profiling instruments that infer direction using magnetic compasses to determine
current direction need to have a correction applied for magnetic declination, if the goal is to infer
currents with x and y oriented eastward and northward, respectively. This is what the present
function does (see “Details”).

Usage

S4 method for signature 'adp'
applyMagneticDeclination(
object = "oce",
declination = 0,
debug = getOption("oceDebug")

)

Arguments

object an adp object.

declination numeric value holding magnetic declination in degrees, positive for clockwise
from north.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The returned value is a copy of object that has been modified in 4 ways. (1) the horizontal com-
ponents of velocity are rotated clockwise by declination degrees. (2) If the object holds heading
values, then declination is added to them. (3) The north item in the metadata slot is set to
"geographic", and a warning is issued if this was also the value in object. (4) The declination
item in the metadata slot is set to the value supplied to this function.

42 applyMagneticDeclination,adv-method

Value

An adp object, modified as outlined in “Description”.

Author(s)

Dan Kelley, aided by Clark Richards and Jaimie Harbin.

See Also

Use magneticField() to determine the declination, inclination and intensity at a given spot on the
world, at a given time.

Other things related to magnetism: applyMagneticDeclination(), applyMagneticDeclination,adv-method,
applyMagneticDeclination,cm-method, applyMagneticDeclination,oce-method, magneticField()

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, as.adp(), beamName(), beamToXyz(),
beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(), binmapAdp(),
enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

Transform beam coordinate to xyx, then to enu with respect to
magnetic north, and then to geographic north.
library(oce)
file <- system.file("extdata", "adp_rdi.000", package = "oce")
lon <- -69.73433
lat <- 47.88126
beam <- read.oce(file, from = 1, to = 4, longitude = lon, latitude = lat)
dec <- magneticField(lon, lat, beam[["time"]][1])$declination
xyz <- beamToXyzAdp(beam)
Here, we tell xyzToEnuAdp() not to set a declination,
so enuMag has metadata$north equal to "magnetic". We could
also skip the use of applyMagneticDeclination() by supplying
the known declination to xyzToEnuAdp().
enuMag <- xyzToEnuAdp(xyz, declination = NULL)
enuGeo <- applyMagneticDeclination(enuMag, declination = dec)

applyMagneticDeclination,adv-method

Alter an adv Object to Account for Magnetic Declination

applyMagneticDeclination,adv-method 43

Description

Acoustic-Doppler velocimetry instruments that infer direction using magnetic compasses need to
have a correction applied for magnetic declination, if the goal is to infer currents with x and y ori-
ented eastward and northward, respectively. This is what the present function does (see “Details”).

Usage

S4 method for signature 'adv'
applyMagneticDeclination(
object = "oce",
declination = 0,
debug = getOption("oceDebug")

)

Arguments

object an adv object.

declination numeric value holding magnetic declination in degrees, positive for clockwise
from north.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The returned value is a copy of object that has been modified in 4 ways. (1) the horizontal com-
ponents of velocity are rotated clockwise by declination degrees. (2) If the object holds heading
values, then declination is added to them. (3) The north item in the metadata slot is set to
"geographic", and a warning is issued if this was also the value in object. (4) The declination
item in the metadata slot is set to the value supplied to this function.

Value

A adv object, adjusted as outlined in “Details”.

Author(s)

Dan Kelley, aided by Clark Richards and Jaimie Harbin.

See Also

Use magneticField() to determine the declination, inclination and intensity at a given spot on the
world, at a given time.

Other things related to magnetism: applyMagneticDeclination(), applyMagneticDeclination,adp-method,
applyMagneticDeclination,cm-method, applyMagneticDeclination,oce-method, magneticField()

44 applyMagneticDeclination,cm-method

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(), plot,adv-method, read.adv(),
read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

applyMagneticDeclination,cm-method

Alter a cm Object to Account for Magnetic Declination

Description

Current-meter (cm) instruments determine directions from onboard compasses, so interpreting ve-
locity components in geographical coordinates requires that magnetic declination be taken into
account. This is what the present function does (see “Details”).

Usage

S4 method for signature 'cm'
applyMagneticDeclination(
object = "oce",
declination = 0,
debug = getOption("oceDebug")

)

Arguments

object a cm object.

declination numeric value holding magnetic declination in degrees, positive for clockwise
from north.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The returned value is a copy of object that has been modified in 4 ways. (1) the horizontal com-
ponents of velocity are rotated clockwise by declination degrees. (2) If the object holds heading
values, then declination is added to them. (3) The north item in the metadata slot is set to
"geographic", and a warning is issued if this was also the value in object. (4) The declination
item in the metadata slot is set to the value supplied to this function.

Value

A cm object, adjusted as outlined in “Details”.

applyMagneticDeclination,oce-method 45

Author(s)

Dan Kelley

See Also

Use magneticField() to determine the declination, inclination and intensity at a given spot on the
world, at a given time.

Other things related to magnetism: applyMagneticDeclination(), applyMagneticDeclination,adp-method,
applyMagneticDeclination,adv-method, applyMagneticDeclination,oce-method, magneticField()

Other things related to cm data: [[,cm-method, [[<-,cm-method, as.cm(), cm, cm-class, plot,cm-method,
read.cm(), rotateAboutZ(), subset,cm-method, summary,cm-method

applyMagneticDeclination,oce-method

Alter an Object to Account for Magnetic Declination

Description

Current-measuring instruments that infer flow direction using magnetic compasses require a cor-
rection for magnetic declination, in order to infer currents with x and y oriented eastward and
northward, respectively. applyMagneticDeclination() is a generic function that handles this
task by altering velocity components (and heading values, if they exist). It works for objects
of the cm, adp and adv and cm classes by calling applyMagneticDeclination,adp-method(),
applyMagneticDeclination,adv-method(), or applyMagneticDeclination,cm-method(), re-
spectively.

Usage

S4 method for signature 'oce'
applyMagneticDeclination(
object = "oce",
declination = 0,
debug = getOption("oceDebug")

)

Arguments

object an object of cm, adp, or adv class.

declination numeric value holding magnetic declination in degrees, positive for clockwise
from north.

debug a debugging flag, set to a positive value to get debugging.

46 approx3d

Details

The returned value is a copy of object that has been modified in 4 ways. (1) the horizontal com-
ponents of velocity are rotated clockwise by declination degrees. (2) If the object holds heading
values, then declination is added to them. (3) The north item in the metadata slot is set to
"geographic", and a warning is issued if this was also the value in object. (4) The declination
item in the metadata slot is set to the value supplied to this function.

Value

an object of the same class as object, modified as outlined in “Details”.

Author(s)

Dan Kelley, aided, for the adp and adv variants, by Clark Richards and Jaimie Harbin.

See Also

Use magneticField() to determine the declination, inclination and intensity at a given spot on the
world, at a given time.

Other things related to magnetism: applyMagneticDeclination(), applyMagneticDeclination,adp-method,
applyMagneticDeclination,adv-method, applyMagneticDeclination,cm-method, magneticField()

approx3d Trilinear Interpolation in a 3D Array

Description

Interpolate within a 3D array, using the trilinear approximation.

Usage

approx3d(x, y, z, f, xout, yout, zout)

Arguments

x vector of x values for grid (must be equi-spaced)

y vector of y values for grid (must be equi-spaced)

z vector of z values for grid (must be equi-spaced)

f matrix of rank 3, with the gridded values mapping to the x values (first index of
f), etc.

xout vector of x values for output.

yout vector of y values for output (length must match that of xout).

zout vector of z values for output (length must match that of xout).

argo 47

Details

Trilinear interpolation is used to interpolate within the f array, for those (xout, yout and zout)
triplets that are inside the region specified by x, y and z. Triplets that lie outside the range of x, y or
z result in NA values.

Value

A vector of interpolated values (or NA values), with length matching that of xout.

Author(s)

Dan Kelley and Clark Richards

Examples

set up a grid
library(oce)
n <- 5
x <- seq(0, 1, length.out = n)
y <- seq(0, 1, length.out = n)
z <- seq(0, 1, length.out = n)
f <- array(1:n^3, dim = c(length(x), length(y), length(z)))
interpolate along a diagonal line
m <- 100
xout <- seq(0, 1, length.out = m)
yout <- seq(0, 1, length.out = m)
zout <- seq(0, 1, length.out = m)
approx <- approx3d(x, y, z, f, xout, yout, zout)
graph the results
plot(xout, approx, type = "l")
points(xout[1], f[1, 1, 1])
points(xout[m], f[n, n, n])

argo Sample argo Data

Description

This holds data from ARGO 6900388 in the North Atlantic.

Details

Below is the official citation (note that this DOI has web links for downloads):

Argo (2017). Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) -
Snapshot of Argo GDAC of July, 8st 2017. SEANOE. DOI:10.17882/42182#50865

48 argo-class

Source

The NetCDF file used by read.argo() to create this argo object was downloaded using FTP to
ftp.ifremer.fr/ifremer/argo/dac/bodc/6900388/6900388_prof.nc on 2020 June 24.

See Also

Other datasets provided with oce: adp, adv, amsr, cm, coastlineWorld, ctd, ctdRaw, echosounder,
landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo-class, argoGrid(),
argoNames2oceNames(), as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(),
read.argo.copernicus(), subset,argo-method, summary,argo-method

Examples

library(oce)
data(argo)
summary(argo)
data(coastlineWorld)
plot(argo, which = "trajectory")

argo-class Class to Store Argo Profiler Data

Description

This class stores data from Argo floats.

Details

An argo object may be read with read.argo() or created with as.argo(). Argo data can be grid-
ded to constant pressures with argoGrid() or subsetted with subset,argo-method(). Plots can be
made with plot,argo-method(), while summary,argo-method() produces statistical summaries
and show produces overviews.

Slots

data As with all oce objects, the data slot for argo objects is a list containing the main data for
the object. The key items stored in this slot include equal-length vectors time, longitude,
latitude and equal-dimension matrices pressure, salinity, and temperature.

metadata As with all oce objects, the metadata slot for argo objects is a list containing informa-
tion about the data or about the object itself. Examples that are of common interest include
id, a vector of ID codes for the profiles, and dataMode, a vector of strings indicating whether
the profile is in archived mode ("A"), realtime mode ("R"), or delayed mode ("D").

argo-class 49

processingLog As with all oce objects, the processingLog slot for argo objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of argo objects (see [[<-,argo-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a argo object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,argo-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,argo-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley and Clark Richards

See Also

Other classes provided by oce: adp-class, adv-class, bremen-class, cm-class, coastline-class,
ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class, rsk-class, sealevel-class,
section-class, topo-class, windrose-class, xbt-class

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argoGrid(), argoNames2oceNames(),
as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(), read.argo.copernicus(),
subset,argo-method, summary,argo-method

50 argoGrid

argoGrid Grid Argo Float Data

Description

Grid an Argo float, by interpolating to fixed pressure levels. The gridding is done with approx().
If there is sufficient user demand, other methods may be added, by analogy to sectionGrid().

Usage

argoGrid(argo, p, debug = getOption("oceDebug"), ...)

Arguments

argo A argo object to be gridded.

p Optional indication of the pressure levels to which interpolation should be done.
If this is not supplied, the pressure levels will be calculated based on the existing
values, using medians. If p="levitus", then pressures will be set to be those
of the Levitus atlas, given by standardDepths(), trimmed to the maximum
pressure in argo. If p is a single numerical value, it is taken as the number of
subdivisions to use in a call to seq() that has range from 0 to the maximum
pressure in argo. Finally, if a vector numerical values is provided, then it is
used as is.

debug A flag that turns on debugging. Higher values provide deeper debugging.

... Optional arguments to approx(), which is used to do the gridding.

Value

x an argo object.

A note about flags

Data-quality flags contained within the original object are ignored by this function, and the returned
value contains no such flags. This is because such flags represent an assessment of the original
data, not of quantities derived from those data. This function produces a warning to this effect.
The recommended practice is to use handleFlags() or some other means to deal with flags before
calling the present function.

Author(s)

Dan Kelley and Clark Richards

See Also

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoNames2oceNames(),
as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(), read.argo.copernicus(),
subset,argo-method, summary,argo-method

argoJuldToTime 51

Examples

library(oce)
data(argo)
g <- argoGrid(argo, p = seq(0, 100, 1))
par(mfrow = c(2, 1))
t <- g[["time"]]
z <- -g[["pressure"]][, 1]
Set zlim because of spurious temperatures.
imagep(t, z, t(g[["temperature"]]), ylim = c(-100, 0), zlim = c(0, 20))
imagep(t, z, t(g[["salinity"]]), ylim = c(-100, 0))

argoJuldToTime Convert Argo Julian Day to R Time

Description

Convert Argo Julian Day to R Time

Usage

argoJuldToTime(jday)

Arguments

jday A numerical value indicating the julian day in the Argo convention, with day=0
at 1950-01-01.

Author(s)

Jaimie Harbin and Dan Kelley

Examples

argoJuldToTime(25749)

52 argoNames2oceNames

argoNames2oceNames Convert Argo Data Name to Oce Name

Description

This function is used internally by read.argo() to convert Argo-convention data names to oce-
convention names. Users should not call this directly, since its return value may be changed at any
moment (e.g. to include units as well as names).

Usage

argoNames2oceNames(names, ignore.case = TRUE)

Arguments

names vector of character strings containing names in the Argo convention.

ignore.case a logical value passed to gsub(), indicating whether to ignore the case of input
strings. The default is set to TRUE because some data files use lower-case names,
despite the fact that the Argo documentation specifies upper-case.

Details

Initially, Feb 2016, the inference of names was initially done by an inspection of some data files,
based on reference 1. Later, in June 2023, broader inspection of more files and documents yielded
about ten additions, and a single correction: VRSpH was renamed phSensorVoltageDifference, to
match related names that had been added.

It should be noted that the data files examined contain some names that are not documented in
reference 1, and others that are listed only in its changelog, with no actual definitions being given.
For example, the files had six distinct variable names that seem to relate to phase in the oxygen
sensor, but these are not translated by the present function because these variable names are not
defined in reference 1, or not defined uniquely in reference 2.

The names are converted with gsub(), using the ignore.case argument of the present function.
The procedure is to first handle the items listed in the following table, with string searches anchored
to the start of the string. After that, the qualifiers _ADJUSTED, _ERROR and _QC, are translated to
Adjusted, Error, and QC, respectively.

An incomplete list of name translations is as follows, where ~ represents digit sequences in some
instances and letters in others. Note that until June 2023, pHSensorVoltageDifference was called
VRSpH.

Argo name oce name
BBP bbp
BETA_BACKSCATTERING betaBackscattering
BPHASE_OXY bphaseOxygen
C~PHASE_DOXY C~phaseOxygen
CDOM CDOM
CNDC conductivity

argoNames2oceNames 53

CHLA chlorophyllA
CP beamAttenuation
CYCLE_NUMBER cycleNumber (both this and cycle are handled by the [[operator)
DATA_CENTRE dataCentre
DATA_MODE dataMode
DATA_STATE_INDICATOR dataStateIndicator
DC_REFERENCE DCReference
DIRECTION direction
DOWN_IRRADIANCE downwellingIrradiance
DOWNWELLING_PAR downwellingPAR
FIRMWARE_VERSION firmwareVersion
FIT_ERROR_NITRATE fitErrorNitrate
FLUORESCENCE_CDOM fluorescenceCDOM
FLUORESCENCE_CHLA fluorescenceChlorophyllA
IB_PH pHBaseCurrent
IK_PH pHCounterCurrent
INST_REFERENCE instReference
JULD juld (and used to compute time)
JULD_QC_LOCATION juldQCLocation
LATITUDE latitude
LONGITUDE longitude
MOLAR_DOXY oxygenUncompensated
MTIME mtime
NB_SAMPLE_CTD nbSampleCtd
PH_IN_SITU_FREE pHFree
PH_IN_SITU_TOTAL pH
PI_NAME PIName
PLATFORM_NUMBER id
POSITION_ACCURACY positionAccuracy
POSITIONING_SYSTEM positioningSystem
PROFILE profile
PROJECT_NAME projectName
RAW_DOWNWELLING_IRRADIANCE rawDownwellingIrradiance
RAW_DOWNWELLING_PAR rawDownwellingPAR
RAW_UPWELLING_RADIANCE rawUpwellingRadiance
STATION_PARAMETERS stationParameters
TEMP temperature
TEMP_CPU_CHLA temperatureCPUChlorophyllA
TEMP_DOXY temperatureOxygen
TEMP_NITRATE temperatureNitrate
TEMP_PH temperaturePH
TEMP_SPECTROPHOTOMETER_NITRATE temperatureSpectrophotometerNitrate
TILT tilt
TPHASE_DOXY tphaseOxygen
TURBIDITY turbidity
UP_RADIANCE upwellingRadiance
UV_INTENSITY UVIntensity
UV_INTENSITY_DARK_NITRATE UVIntensityDarkNitrate

54 argShow

UV_INTENSITY_NITRATE UVIntensityNitrate
VRS_PH pHSensorVoltageDifference
WMO_INST_TYPE WMOInstType

Value

A character vector of the same length as names, but with replacements having been made for all
known quantities.

Author(s)

Dan Kelley, with help from Anna Victor

References

1. Argo User’s Manual Version 3.3, Nov 89th, 2019, available at https://archimer.ifremer.fr/doc/00187/29825/
online.

2. Argo list of parameters in an excel spreadsheet, available at http://www.argodatamgt.org/content/download/27444/187206/file/argo-parameters-list-core-and-b.xlsx

See Also

Other functions that convert variable names to the oce convention: ODFNames2oceNames(), bodcNames2oceNames(),
metNames2oceNames(), woceNames2oceNames()

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoGrid(),
as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(), read.argo.copernicus(),
subset,argo-method, summary,argo-method

argShow Show a Function Argument

Description

Show a Function Argument

Usage

argShow(x, nshow = 4, last = FALSE, sep = "=")

Arguments

x the argument

nshow number of values to show at first (if length(x)> 1)

last indicates whether this is the final argument to the function

sep the separator between name and value

as.adp 55

as.adp Create an adp Object

Description

Create an adp Object

Usage

as.adp(
time,
distance,
v,
a = NULL,
q = NULL,
orientation = "upward",
coordinate = "enu"

)

Arguments

time of observations in POSIXct format

distance to centre of bins

v array of velocities, with first index for time, second for bin number, and third for
beam number

a amplitude, a raw() array with dimensions matching u

q quality, a raw() array with dimensions matching u

orientation a string indicating sensor orientation, e.g. "upward" and "downward"

coordinate a string indicating the coordinate system, "enu", "beam", "xy", or "other"

Details

Construct an adp object. Only a basic subset of the typical data slot is represented in the arguments
to this function, on the assumption that typical usage in reading data is to set up a nearly-blank adp
object, the data slot of which is then inserted. However, in some testing situations it can be useful
to set up artificial adp objects, so the other arguments may be useful.

Value

An adp object.

Author(s)

Dan Kelley

56 as.argo

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

data(adp)
t <- adp[["time"]]
d <- adp[["distance"]]
v <- adp[["v"]]
a <- as.adp(time = t, distance = d, v = v)

plot(a)

as.argo Coerce Data Into an argo Object

Description

Coerce a dataset into an argo dataset. This is not the right way to read official argo datasets, which
are provided in NetCDF format and may be read with read.argo().

Usage

as.argo(
time,
longitude,
latitude,
salinity,
temperature,
pressure,
units = NULL,
id,
filename = "",
missingValue

)

as.cm 57

Arguments

time a vector of POSIXct times.

longitude a vector of longitudes.

latitude a vector of latitudes.

salinity a vector of salinities.

temperature a vector of temperatures.

pressure a vector of pressures.

units an optional list containing units. If NULL, the default, then "degree east" is
used for longitude, "degree north" for latitude, "" for salinity, "ITS-90"
for temperature, and "dbar" for pressure.

id an identifier for the argo float, typically a number, but stored within the object
in a character form. (For example, the dataset retrieved with data(argo) has an
id of "6900388".)

filename a source filename, which defaults to an empty string.

missingValue an optional missing value, indicating data values that should be taken as NA.

Value

An argo object.

Author(s)

Dan Kelley

See Also

The documentation for the argo class explains the structure of argo objects, and also outlines the
other functions dealing with them.

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoGrid(),
argoNames2oceNames(), handleFlags,argo-method, plot,argo-method, read.argo(), read.argo.copernicus(),
subset,argo-method, summary,argo-method

as.cm Coerce Data Into a cm Object

Description

Coerce Data Into a cm Object

58 as.cm

Usage

as.cm(
time,
u = NULL,
v = NULL,
pressure = NULL,
conductivity = NULL,
temperature = NULL,
salinity = NULL,
longitude = NA,
latitude = NA,
filename = "",
debug = getOption("oceDebug")

)

Arguments

time A vector of times of observation, or an oce object from which time and two
velocity components can be inferred, e.g. an adv object, or an adp object that
has only one distance bin. If time is an oce object, then all of the following
arguments are ignored.

u, v optional numerical vectors containing the x and y components of velocity (m/s).
pressure, conductivity, salinity, temperature

optional numerical vectors containing pressure (dbar), electrical conductivity,
practical salinity, and in-situ temperature (degree C).

longitude, latitude
optional position specified in degrees East and North.

filename optional source file name.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

See Also

Other things related to cm data: [[,cm-method, [[<-,cm-method, applyMagneticDeclination,cm-method,
cm, cm-class, plot,cm-method, read.cm(), rotateAboutZ(), subset,cm-method, summary,cm-method

Examples

library(oce)
Example 1: creation from scratch
t <- Sys.time() + 0:50
u <- sin(2 * pi * 0:50 / 5) + rnorm(51)
v <- cos(2 * pi * 0:50 / 5) + rnorm(51)
p <- 100 + rnorm(51)

as.coastline 59

summary(as.cm(t, u, v, p))

Example 2: creation from an adv object
data(adv)
summary(as.cm(adv))

as.coastline Coerce Data Into a coastline Object

Description

Coerces a sequence of longitudes and latitudes into a coastline dataset. This may be used when
read.coastline() cannot read a file, or when the data have been manipulated.

Usage

as.coastline(longitude, latitude, fillable = FALSE)

Arguments

longitude the longitude in decimal degrees, positive east of Greenwich, or a data frame
with columns named latitude and longitude, in which case these values are
extracted from the data frame and the second argument is ignored.

latitude the latitude in decimal degrees, positive north of the Equator.

fillable boolean indicating whether the coastline can be drawn as a filled polygon.

Value

a coastline object.

Author(s)

Dan Kelley

See Also

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, coastline-class,
coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(), plot,coastline-method,
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

60 as.ctd

as.ctd Coerce Data Into a ctd Object

Description

Assemble data into a ctd object. This function is complicated (spanning approximately 600 lines of
code) because it tries to handle many special cases, and tries to make sensible defaults for unspec-
ified parameters. If odd results are found, users might find it helpful to call this function with the
first parameter being a simple vector of Practical Salinity values, in which case the processing of
the other arguments is relatively straightforward.

Usage

as.ctd(
salinity,
temperature = NULL,
pressure = NULL,
conductivity = NULL,
scan = NULL,
time = NULL,
units = NULL,
flags = NULL,
missingValue = NULL,
type = "",
serialNumber = NULL,
ship = NULL,
cruise = NULL,
station = NULL,
startTime = NULL,
longitude = NULL,
latitude = NULL,
deploymentType = "unknown",
pressureAtmospheric = 0,
sampleInterval = NULL,
profile = NULL,
debug = getOption("oceDebug")

)

Arguments

salinity may be (1) a numeric vector holding Practical Salinity, (2) a list or data frame
holding salinity and other hydrographic variables or (3) an oce-class ob-
ject that holds hydrographic information. If salinity is not provided, then
conductivity must be provided, so that swSCTp() can be used to compute
salinity.

temperature a numeric vector containing in-situ temperature in ◦C on the ITS-90 scale; see
“Temperature units” in the documentation for swRho().

as.ctd 61

pressure a numeric vector containing sea pressure values, in decibars. Typically, this
vector has the same length as salinity and temperature, but it also possible
to supply just one value, which will be repeated to get the right length. Note
that as.ctd() stores the sum of pressure and pressureAtmospheric in the
returned object, although the default value for pressureAtmospheric is zero,
so in the default case, pressure is stored directly.

conductivity an optional numeric vector containing electrical conductivity ratio through the
water column. To convert from raw conductivity in milliSeimens per centimeter
divide by 42.914 to get conductivity ratio (see Culkin and Smith, 1980).

scan optional numeric vector holding scan number. If not provided, this is set to
seq_along(salinity).

time optional vector of times of observation.
units an optional list containing units. If not supplied, defaults are set for pressure,

temperature, salinity, and conductivity. Since these are simply guesses,
users are advised strongly to supply units. See “Examples”.

flags if supplied, this is a list containing data-quality flags. The elements of this list
must have names that match the data provided to the object.

missingValue optional missing value, indicating data that should be taken as NA. Set to NULL
to turn off this feature.

type optional type of CTD, e.g. "SBE"
serialNumber optional serial number of instrument
ship optional string containing the ship from which the observations were made.
cruise optional string containing a cruise identifier.
station optional string containing a station identifier.
startTime optional indication of the start time for the profile, which is used in some several

plotting functions. This is best given as a POSIXt time, but it may also be a
character string that can be converted to a time with as.POSIXct(), using UTC
as the timezone.

longitude optional numerical value containing longitude in decimal degrees, positive in the
eastern hemisphere. If this is a single number, then it is stored in the metadata
slot of the returned value; if it is a vector of numbers, then they are stored in the
data slot. If longitude' is not provided (i.e. if it is NULL, the default), then as.ctd()’
tries to find it from the first parameter, if it is a list, or an oce object.

latitude similar to longitude. Positive in the northern hemisphere.
deploymentType character string indicating the type of deployment. Use "unknown" if this is

not known, "profile" for a profile (in which the data were acquired during a
downcast, while the device was lowered into the water column, perhaps also
including an upcast; "moored" if the device is installed on a fixed mooring,
"thermosalinograph" (or "tsg") if the device is mounted on a moving vessel,
to record near-surface properties, or "towyo" if the device is repeatedly lowered
and raised.

pressureAtmospheric

A numerical value (a constant or a vector), that is subtracted from pressure be-
fore storing it in the return value. (This altered pressure is also used in cal-
culating salinity, if that is to be computed from conductivity, etc., using
swSCTp(); see salinity above.)

62 as.ctd

sampleInterval optional numerical value indicating the time between samples in the profile.

profile optional positive integer specifying the number of the profile to extract from an
object that has data in matrices, such as for some argo objects. Currently the
profile argument is only utilized for argo objects.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The following sections provide an some notes on how as.ctd() handles certain object types given
as the first parameter.

Converting argo objects
If the salinity argument is an object of argo, then that object is dismantled and reassembled as
a ctd object in ways that are mostly straightforward, although the handling of time depends on
the information in the original NetCDF data file that was used by read.argo() to create the argo
object.

All Argo data files contain an item called juld from which the profile time can be computed, and
some also contain an additional item named MTIME, from which the times of individual measure-
ments can also be computed. Both cases are handled by as.ctd(), using a scheme outlined in Note
4 of the Details section of the read.argo() documentation.

Converting rsk objects
If the salinity argument is an object of rsk, then as.ctd passes it, pressureAtmospheric,
longitude, and latitude to rsk2ctd(), which builds the ctd object that is returned by as.ctd.
The other arguments to as.ctd are ignored in this instance, because rsk objects already contain
their information. If required, any data or metadata element can be added to the value returned by
as.ctd using oceSetData() or oceSetMetadata(), respectively.

The returned rsk object contains pressure in a form that may need to be adjusted, because rsk ob-
jects may contain either absolute pressure or sea pressure. This adjustment is handled automatically
by as.ctd, by examination of the metadata item named pressureType (described in the documen-
tation for read.rsk()). Once the sea pressure is determined, adjustments may be made with the
pressureAtmospheric argument, although in that case it is better considered a pressure adjustment
than the atmospheric pressure.

rsk objects may store sea pressure or absolute pressure (the sum of sea pressure and atmospheric
pressure), depending on how the object was created with as.rsk() or read.rsk(). However, ctd
objects store sea pressure, which is needed for plotting, calculating density, etc. This poses no
difficulties, however, because as.ctd automatically converts absolute pressure to sea pressure, if
the metadata in the rsk object indicates that this is appropriate. Further alteration of the pressure
can be accomplished with the pressureAtmospheric argument, as noted above.

Value

A ctd object.

as.ctd 63

Author(s)

Dan Kelley, with help from Clark Richards

References

1. Culkin, F., and Norman D. Smith, 1980. Determination of the concentration of potassium
chloride solution having the same electrical conductivity, at 15 C and infinite frequency, as
standard seawater of salinity 35.0000 ppt (Chlorinity 19.37394 ppt). IEEE Journal of Oceanic
Engineering, volume 5, pages 22-23.

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

library(oce)
1. fake data, with default units
pressure <- 1:50
temperature <- 10 - tanh((pressure - 20) / 5) + 0.02 * rnorm(50)
salinity <- 34 + 0.5 * tanh((pressure - 20) / 5) + 0.01 * rnorm(50)
ctd <- as.ctd(salinity, temperature, pressure)
Add a new column
fluo <- 5 * exp(-pressure / 20)
ctd <- oceSetData(ctd,

name = "fluorescence", value = fluo,
unit = list(unit = expression(mg / m^3), scale = "")

)
summary(ctd)

2. fake data, with supplied units (which are the defaults, actually)
ctd <- as.ctd(salinity, temperature, pressure,

units = list(
salinity = list(unit = expression(), scale = "PSS-78"),
temperature = list(unit = expression(degree * C), scale = "ITS-90"),
pressure = list(unit = expression(dbar), scale = "")

)
)

64 as.echosounder

as.echosounder Coerce Data Into an echosounder Object

Description

Coerces a dataset into a echosounder dataset.

Usage

as.echosounder(
time,
depth,
a,
src = "",
sourceLevel = 220,
receiverSensitivity = -55.4,
transmitPower = 0,
pulseDuration = 400,
beamwidthX = 6.5,
beamwidthY = 6.5,
frequency = 41800,
correction = 0

)

Arguments

time times of pings.
depth depths of samples within pings.
a matrix of echo amplitudes, as would be stored with read.echosounder().
src optional string indicating data source.
sourceLevel source level, in dB (uPa at 1m), denoted sl in reference 1 p15, where it is in

units 0.1dB (uPa at 1m).
receiverSensitivity

receiver sensitivity of the main element, in dB(counts/uPa), denoted rs in refer-
ence 1 p15, where it is in units of 0.1dB(counts/uPa)

transmitPower transmit power reduction factor, in dB, denoted tpow in reference 1 p10, where
it is in units 0.1 dB.

pulseDuration duration of transmitted pulse in us
beamwidthX x-axis -3dB one-way beamwidth in deg, denoted bwx in reference 1 p16, where

the unit is 0.2 deg
beamwidthY y-axis -3dB one-way beamwidth in deg, denoted bwx in reference 1 p16, where

the unit is 0.2 deg
frequency transducer frequency in Hz, denoted fq in reference 1 p16
correction user-defined calibration correction in dB, denoted corr in reference 1 p14, where

the unit is 0.01dB.

as.gps 65

Details

Creates an echosounder file. The defaults for e.g. transmitPower are taken from the echosounder
dataset, and they are unlikely to make sense generally. The first three parameters must be supplied,
and the dimension of a must align with the lengths of time and depths. The other parameters have
defaults that are unlikely to be correct for arbitrary application, but they are not essential for basic
plots, etc.

Those who use the readHAC package to read echosounder data should note that it stores the a
matrix in a flipped and transposed format. See that package’s demo code for a function named
flip() that transforms the matrix as required by as.echosounder(). Indeed, users working with
HAC data ought to study the whole of the readHAC documentation, to learn what data are stored,
so that oceSetMetadata() and oceSetData() can be used as needed to flesh out the contents
returned by as.echosounder().

Value

An echosounder object.

Author(s)

Dan Kelley

See Also

Other things related to echosounder data: [[,echosounder-method, [[<-,echosounder-method,
echosounder, echosounder-class, findBottom(), plot,echosounder-method, read.echosounder(),
subset,echosounder-method, summary,echosounder-method

as.gps Coerce Data Into a gps Object

Description

Coerces a sequence of longitudes and latitudes into a GPS dataset. This may be used when read.gps()
cannot read a file, or when the data have been manipulated.

Usage

as.gps(longitude, latitude, filename = "")

Arguments

longitude the longitude in decimal degrees, positive east of Greenwich, or a data frame
with columns named latitude and longitude, in which case these values are
extracted from the data frame and the second argument is ignored.

latitude the latitude in decimal degrees, positive north of the Equator.

filename name of file containing data (if applicable).

https://CRAN.R-project.org/package=readHAC
https://CRAN.R-project.org/package=readHAC

66 as.ladp

Value

A gps object.

Author(s)

Dan Kelley

See Also

Other things related to gps data: [[,gps-method, [[<-,gps-method, gps-class, plot,gps-method,
read.gps(), summary,gps-method

Examples

Location of the Tower Tank at Dalhousie University
towerTank <- as.gps(-63.59428, 44.63572)

as.ladp Coerce Data Into an ladp object

Description

This function assembles vectors of pressure and velocity, possibly also with shears, salinity, tem-
perature, etc.

Usage

as.ladp(
longitude,
latitude,
station,
time,
pressure,
u,
v,
uz,
vz,
salinity,
temperature,
...

)

as.lisst 67

Arguments

longitude longitude in degrees east, or an oce object that contains the data otherwise given
by longitude and the other arguments.

latitude latitude in degrees east (use negative in southern hemisphere).
station number or string indicating station ID.
time time at the start of the profile, constructed by e.g. as.POSIXct().
pressure pressure in decibars, through the water column.
u eastward velocity (m/s).
v northward velocity (m/s).
uz vertical derivative of eastward velocity (1/s).
vz vertical derivative of northward velocity (1/s).
salinity salinity through the water column, in practical salinity units.
temperature temperature through the water column.
... optional additional data columns.

Value

An ladp object.

Author(s)

Dan Kelley

See Also

Other things related to ladp data: [[,ladp-method, [[<-,ladp-method, ladp-class, plot,ladp-method,
summary,ladp-method

as.lisst Coerce Data Into a lisst Object

Description

If data contains fewer than 42 columns, an error is reported. If it contains more than 42 columns,
only the first 42 are used. This is used by read.lisst(), the documentation on which explains the
meanings of the columns.

Usage

as.lisst(
data,
filename = "",
year = 0,
tz = "UTC",
longitude = NA,
latitude = NA

)

68 as.lobo

Arguments

data A table (or matrix) containing 42 columns, as in a LISST data file.

filename Name of file containing the data.

year Year in which the first observation was made. This is necessary because LISST
timestamps do not indicate the year of observation. The default value is odd
enough to remind users to include this argument.

tz Timezone of observations. This is necessary because LISST timestamps do not
indicate the timezone.

longitude Longitude of observation.

latitude Latitude of observation.

Value

A lisst object.

Author(s)

Dan Kelley

See Also

Other things related to lisst data: [[,lisst-method, [[<-,lisst-method, lisst-class, plot,lisst-method,
read.lisst(), summary,lisst-method

as.lobo Coerce Data Into a lobo Object

Description

Coerce a dataset into a lobo dataset.

Usage

as.lobo(
time,
u,
v,
salinity,
temperature,
pressure,
nitrate,
fluorescence,
filename = ""

)

as.met 69

Arguments

time vector of times of observation

u vector of x velocity component observations

v vector of y velocity component observations

salinity vector of salinity observations

temperature vector of temperature observations

pressure vector of pressure observations

nitrate vector of nitrate observations

fluorescence vector of fluorescence observations

filename source filename

Value

A lobo object.

Author(s)

Dan Kelley

See Also

Other things related to lobo data: [[,lobo-method, [[<-,lobo-method, lobo, lobo-class, plot,lobo-method,
read.lobo(), subset,lobo-method, summary,lobo-method

as.met Coerce Data Into a met Object

Description

Coerces a dataset into a met dataset. This fills in only a few of the typical data fields, so the returned
object is much sparser than the output from read.met(). Also, almost no metadata fields are filled
in, so the resultant object does not store station location, units of the data, data-quality flags, etc.
Anyone working with data from Environment Canada (reference 2) is advised to use read.met()
instead of the present function.

Usage

as.met(time, temperature, pressure, u, v, filename = "(constructed from data)")

70 as.oce

Arguments

time Either a vector of observation times (or character strings that can be coerced into
times) or the output from canadaHCD::hcd_hourly (see reference 1).

temperature vector of temperatures.

pressure vector of pressures.

u vector of eastward wind speed in m/s.

v vector of northward wind speed in m/s.

filename optional string indicating data source

Value

A met object.

Author(s)

Dan Kelley

References

1. The canadaHCD package is in development by Gavin Simpson; see https://github.com/gavinsimpson/canadaHCD
for instructions on how to download and install from GitHub.

2. Environment Canada website for Historical Climate Data https://climate.weather.gc.ca/index_e.html

See Also

Other things related to met data: [[,met-method, [[<-,met-method, download.met(), met, met-class,
plot,met-method, read.met(), subset,met-method, summary,met-method

as.oce Coerce Something Into an oce Object

Description

Coerce Something Into an oce Object

Usage

as.oce(x, ...)

Arguments

x an item containing data. This may be data frame, list, or an oce object.

... optional extra arguments, passed to conversion functions as.coastline() or
ODF2oce(), if these are used.

as.rsk 71

Details

This function is limited and not intended for common use. In most circumstances, users should
employ a function such as as.ctd() to construct specialized oce sub-classes.

as.oce creates an oce object from data contained within its first argument, which may be a list, a
data frame, or an object of oce. (In the last case, x is simply returned, without modification.)

If x is a list containing items named longitude and latitude, then as.coastline() is called
(with the specified . . . value) to create a coastline object.

If x is a list created by read_odf() from the (as yet unreleased) ODF package developed by the
Bedford Institute of Oceanography, then ODF2oce() is called (with no arguments other than the
first) to calculate a return value. If the sub-class inference made by ODF2oce() is incorrect, users
should call that function directly, specifying a value for its coerce argument.

If x has not been created by read_odf(), then the names of the items it contains are examined, and
used to try to infer the proper return value. There are only a few cases (although more may be added
if there is sufficient user demand). The cases are as follows.

• If x contains items named temperature, pressure and either salinity or conductivity,
then an object of type ctd will be returned.

• If x contains columns named longitude and latitude, but no other columns, then an object
of class coastline is returned.

Value

An oce object.

as.rsk Coerce Data Into a rsk Object

Description

Create a rsk object.

Usage

as.rsk(
time,
columns,
filename = "",
instrumentType = "rbr",
serialNumber = "",
model = "",
sampleInterval = NA,
debug = getOption("oceDebug")

)

72 as.sealevel

Arguments

time a vector of times for the data.

columns a list or data frame containing the measurements at the indicated times; see
“Details”.

filename optional name of file containing the data.

instrumentType type of instrument.

serialNumber serial number for instrument.

model instrument model type, e.g. "RBRduo".

sampleInterval sampling interval. If given as NA, then this is estimated as the median difference
in times.

debug a flag that can be set to TRUE to turn on debugging.

Details

The contents of columns are be copied into the data slot of the returned object directly, so it
is critical that the names and units correspond to those expected by other code dealing with rsk
objects. If there is a conductivity, it must be called conductivity, and it must be in units of
mS/cm. If there is a temperature, it must be called temperature, and it must be an in-situ value
recorded in ITS-90 units. And if there is a pressure, it must be absolute pressure (sea pressure plus
atmospheric pressure) and it must be named pressure. No checks are made within as.rsk on any
of these rules, but if they are broken, you may expect problems with any further processing.

Value

An rsk object.

Author(s)

Dan Kelley

See Also

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, ctdFindProfilesRBR(),
plot,rsk-method, read.rsk(), rsk, rsk-class, rskPatm(), rskToc(), subset,rsk-method,
summary,rsk-method

as.sealevel Coerce Data Into a sealevel Object

Description

Coerces a dataset (minimally, a sequence of times and heights) into a sealevel dataset. The ar-
guments are based on the standard data format, as were described in a file formerly available at
reference 1.

as.sealevel 73

Usage

as.sealevel(
elevation,
time,
header = NULL,
stationNumber = NA,
stationVersion = NA,
stationName = NULL,
region = NULL,
year = NA,
longitude = NA,
latitude = NA,
GMTOffset = NA,
decimationMethod = NA,
referenceOffset = NA,
referenceCode = NA,
deltat

)

Arguments

elevation a list of sea-level heights in metres, in an hourly sequence.

time optional list of times, in POSIXct format. If missing, the list will be constructed
assuming hourly samples, starting at 0000-01-01 00:00:00.

header a character string as read from first line of a standard data file.

stationNumber three-character string giving station number.

stationVersion single character for version of station.

stationName the name of station (at most 18 characters).

region the name of the region or country of station (at most 19 characters).

year the year of observation.

longitude the longitude in decimal degrees, positive east of Greenwich.

latitude the latitude in decimal degrees, positive north of the equator.

GMTOffset offset from GMT, in hours.
decimationMethod

a coded value, with 1 meaning filtered, 2 meaning a simple average of all sam-
ples, 3 meaning spot readings, and 4 meaning some other method.

referenceOffset

?

referenceCode ?

deltat optional interval between samples, in hours (as for the ts() timeseries function).
If this is not provided, and t can be understood as a time, then the difference
between the first two times is used. If this is not provided, and t cannot be
understood as a time, then 1 hour is assumed.

74 as.section

Value

A sealevel object (for details, see read.sealevel()).

Author(s)

Dan Kelley

References
http://ilikai.soest.hawaii.edu/rqds/hourly.fmt (this link worked for years but failed at
least temporarily on December 4, 2016).

See Also

The documentation for the sealevel class explains the structure of sealevel objects, and also outlines
the other functions dealing with them.

Other things related to sealevel data: [[,sealevel-method, [[<-,sealevel-method, plot,sealevel-method,
read.sealevel(), sealevel, sealevel-class, sealevelTuktoyaktuk, subset,sealevel-method,
summary,sealevel-method

Examples

library(oce)

Construct a year of M2 tide, starting at the default time
0000-01-01T00:00:00.
h <- seq(0, 24 * 365)
elevation <- 2.0 * sin(2 * pi * h / 12.4172)
sl <- as.sealevel(elevation)
summary(sl)

As above, but start at the Y2K time.
time <- as.POSIXct("2000-01-01") + h * 3600
sl <- as.sealevel(elevation, time)
summary(sl)

as.section Create a Section

Description

Create a section based on columnar data, or a set of oce objects that can be coerced to a section.
There are three cases.

as.section 75

Usage

as.section(
salinity,
temperature,
pressure,
longitude,
latitude,
station,
sectionId = "",
debug = getOption("oceDebug")

)

Arguments

salinity This may be a numerical vector, in which case it is interpreted as the salinity,
and the other arguments are used for the other components of ctd objects. Alter-
natively, it may be one of a variety of other objects from which the CTD objects
can be inferred, in which case the other arguments are ignored; see “Details”.

temperature Temperature, in a vector holding values for all stations.

pressure Pressure, in a vector holding values for all stations.

longitude Longitude, in a vector holding values for all stations.

latitude Latitude, in a vector holding values for all stations.

station Station identifiers, in a vector holding values for all stations.

sectionId Section identifier.

debug an integer value that controls whether as.section() prints information during
its work. The function works quietly if this is 0 and prints out some information
if it is positive.

Details

Case 1. If the first argument is a numerical vector, then it is taken to be the salinity, and factor()
is applied to station to break the data up into chunks that are assembled into ctd objects with
as.ctd() and combined to make a section object to be returned. This mode of operation is provided
as a convenience for datasets that are already partly processed; if original CTD data are available,
the next mode is preferred, because it permits the storage of much more data and metadata in the
CTD object.

Case 2. If the first argument is a list containing oce objects, then those objects are taken as profiles of
something. A requirement for this to work is that every element of the list contains both longitude
and latitude in either the metadata or data slot (in the latter case, the mean value is recorded in
the section object) and that every element also contains pressure in its data slot.

Case 3. If the first argument is a argo object, then the profiles it contains are turned into ctd objects,
and these are assembled into a section to be returned.

Value

An object of section.

76 as.tidem

Author(s)

Dan Kelley

See Also

Other things related to section data: [[,section-method, [[<-,section-method, handleFlags,section-method,
initializeFlagScheme,section-method, plot,section-method, read.section(), section,
section-class, sectionAddStation(), sectionGrid(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

Examples

library(oce)
data(ctd)
vector of names of CTD objects
fake <- ctd
fake[["temperature"]] <- ctd[["temperature"]] + 0.5
fake[["salinity"]] <- ctd[["salinity"]] + 0.1
fake[["longitude"]] <- ctd[["longitude"]] + 0.01
fake[["station"]] <- "fake"
sec1 <- as.section(c("ctd", "fake"))
summary(sec1)
vector of CTD objects
ctds <- vector("list", 2)
ctds[[1]] <- ctd
ctds[[2]] <- fake
sec2 <- as.section(ctds)
summary(sec2)
argo data (a subset)
data(argo)
sec3 <- as.section(subset(argo, profile < 5))
summary(sec3)

as.tidem Create tidem Object From Fitted Harmonic Data

Description

This function takes a set of tidal constituent amplitudes and phases, and constructs a return value of
similar form to that returned by tidem(). Its purpose is to enable predictions based on published
constituent amplitudes and phases. Since as.tidem() does not account for a reference height, it is
the user’s responsible to account for this after a prediction is made using predict.tidem().

Usage

as.tidem(
tRef,
latitude,

as.tidem 77

name,
amplitude,
phase,
frequency,
speed,
debug = getOption("oceDebug")

)

Arguments

tRef a POSIXt value indicating the mean time of the observations used to develop the
harmonic model. This is rounded to the nearest hour in as.tidem(), to match
the behaviour of tidem().

latitude numerical value indicating the latitude of the observations that were used to cre-
ate the harmonic model. This is needed for nodal-correction procedures carried
out by tidemVuf().

name character vector holding names of constituents.
amplitude, phase

numeric vectors of constituent amplitudes and phases. These must be of the
same length as name.

frequency, speed
optional numeric vectors giving the frequencies of the constituents (in cycles
per hour) or the analogous speeds (in degrees per hour). Only one of these may
be given, and a conversion is done from the latter to the former, if required. If
the frequencies are thus specified, then these are used instead of the frequencies
that oce normally used, as defined in data(tideconst). A warning will be
issued if the absolute value of the relative frequency mismatch for any given
component exceeds 1e-6, and this will occur for any NOAA tables containing
the SA component, for which this relative mismatch is approximately 4e-5 (see
reference 5).

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

All the constituent names used by tidem() are permitted here, except for "Z0" (see “Description”
regarding reference height). To get a list of constituent names, please consult Foreman (1978), or
type the following in an R console:

data(tidedata)
data.frame(name=tidedata$const$name, freq=tidedata$const$freq)

In addition to the above, as.tidem() can handle NOAA names of constituents. For the most part,
these match oce names, but there are 4 exceptions: NOAA names "LAM2", "M1", "RHO", and "2MK3"

78 as.tidem

are converted to oce names "LDA2", "NO1", "RHO1", and "MO3". The name mapping was inferred
by matching frequencies; for these constituents, the fractional mismatch in frequencies was under
4e-8; see Reference 5 for more details. A message is printed if these name conversions are required
in the particular use of as.tidem().

Apart from the standard oce names and this set of NOAA synonyms, any other constituent name is
reported in a warning message.

Value

An object of tidem, with only minimal contents.

Known issues

There are two known differences between tidem() and the Matlab T_TIDE package, as listed in
references 3 and 4.

References

1. Foreman, M. G. G., 1978. Manual for Tidal Currents Analysis and Prediction. Pacific Marine
Science Report. British Columbia, Canada: Institute of Ocean Sciences, Patricia Bay.

2. Wikipedia, "Theory of Tides." https://en.wikipedia.org/wiki/Theory_of_tides Downloaded Aug
17, 2019.

3. Github issue 1653 "tidem() and t_tide do not produce identical results" (https://github.com/dankelley/oce/issues/1653)

4. Github issue 1654 "predict(tidem()) uses all constituents, unlike T_TIDE" (https://github.com/dankelley/oce/issues/1654)

5. Github issue 2143 "mismatch in oce/NOAA frequency of SA tidal constituent" (https://github.com/dankelley/oce/issues/2143)

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, plot,tidem-method, predict.tidem(),
summary,tidem-method, tidalCurrent, tidedata, tidem, tidem-class, tidemAstron(), tidemVuf(),
webtide()

Examples

Example 1: show agreement with tidem()
data(sealevelTuktoyaktuk)
'm0' is model fitted by tidem()
m0 <- tidem(sealevelTuktoyaktuk)
p0 <- predict(m0, sealevelTuktoyaktuk[["time"]])
m1 <- as.tidem(

mean(sealevelTuktoyaktuk[["time"]]), sealevelTuktoyaktuk[["latitude"]],
m0[["name"]], m0[["amplitude"]], m0[["phase"]]

)
Test agreement with tidem() result, by comparing predicted sealevels.
p1 <- predict(m1, sealevelTuktoyaktuk[["time"]])
stopifnot(max(abs(p1 - p0), na.rm = TRUE) < 1e-10)

Example 2: See the effect of dropping weak constituents
m0[["name"]][which(m0[["amplitude"]] > 0.05)]

as.topo 79

h <- "
name amplitude phase

Z0 1.98061875 0.000000
MM 0.21213065 263.344739
MSF 0.15605629 133.795004
O1 0.07641438 74.233130
K1 0.13473817 81.093134
OO1 0.05309911 235.749693
N2 0.08377108 44.521462
M2 0.49041340 77.703594
S2 0.22023705 137.475767"

coef <- read.table(text = h, header = TRUE)
m2 <- as.tidem(

mean(sealevelTuktoyaktuk[["time"]]),
sealevelTuktoyaktuk[["latitude"]],
coef$name, coef$amplitude, coef$phase

)
p2 <- predict(m2, sealevelTuktoyaktuk[["time"]])
par(mfrow = c(3, 1))
oce.plot.ts(sealevelTuktoyaktuk[["time"]], p0)
ylim <- par("usr")[3:4] # to match scales in other panels
oce.plot.ts(sealevelTuktoyaktuk[["time"]], p1, ylim = ylim)
oce.plot.ts(sealevelTuktoyaktuk[["time"]], p2, ylim = ylim)

as.topo Coerce Data Into a topo Object

Description

Coerce Data Into a topo Object

Usage

as.topo(longitude, latitude, z, filename = "")

Arguments

longitude Either a vector of longitudes (in degrees east, and bounded by -180 and 180), or
a bathy object created by getNOAA.bathy() from the marmap package; in the
second case, all other arguments are ignored.

latitude A vector of latitudes.

z A matrix of heights (positive over land).

filename Name of data (used when called by read.topo().

Value

A topo object.

80 as.unit

Author(s)

Dan Kelley

See Also

Other things related to topo data: [[,topo-method, [[<-,topo-method, download.topo(), plot,topo-method,
read.topo(), subset,topo-method, summary,topo-method, topo-class, topoInterpolate(),
topoWorld

as.unit Convert a String to a Unit

Description

This converts strings to unit objects. It is designed mainly for use within various functions in the
package, not for the end user. Therefore, the documentation does not give a full listing; for that,
developers should examine the tests/test_that/test_units.R file. Developers who wish to
add new entries are asked to follow the conventions in this file, with regard to regular expressions,
spaces between tokens, etc., and also to add tests for whatever they add.

Usage

as.unit(u, default = list(unit = expression(), scale = ""))

Arguments

u a character string indicating a unit. Case is ignored, so that e.g. "dbar" and
"DBAR" yield equal results. Many common notations are recognized, e.g. kg/m^3
and kg m-3 for density, etc.

default a default to be used for the return value, if u is not a recognized string. Setting
this to NULL is a good way to discover whether a given value of u is recognized
as a unit by this function, as opposed to something (like a conductivity ratio)
that simply has no unit.

Value

if as.unit recognizes u as unit, then it returns a list with elements unit, which is an expression(),
and scale, which is a character value. That is also the case if it does not recognize u, and if default
is not specified. However, if u is not recognized, and if default is provided by the user, then
as.unit returns the provided value of default.

Author(s)

Dan Kelley

as.windrose 81

Examples

as.unit("DBAR")
as.unit("IPTS-68")
as.unit("ITS-90")
as.unit("PSS-78")
as.unit("UMOL/KG")

as.windrose Create a windrose Object

Description

Create a wind-rose object, typically for plotting with plot,windrose-method().

Usage

as.windrose(x, y, dtheta = 15, debug = getOption("oceDebug"))

Arguments

x The x component of wind speed (or stress) or an object of class met (see met),
in which case the u and v components of that object are used for the components
of wind speed, and y here is ignored.

y The y component of wind speed (or stress).

dtheta The angle increment (in degrees) within which to classify the data.

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

Value

A windrose object, with data slot containing

Item Meaning
n the number of x values
x.mean the mean of the x values
y.mean the mean of the y values
theta the central angle (in degrees) for the class
count the number of observations in this class
mean the mean of the observations in this class
fivenum the fivenum() vector for observations in this class (the min, the lower hinge, the median, the upper hinge, and the max)

Author(s)

Dan Kelley, with considerable help from Alex Deckmyn.

82 as.xbt

See Also

Other things related to windrose data: [[,windrose-method, [[<-,windrose-method, plot,windrose-method,
summary,windrose-method, windrose-class

Examples

library(oce)
set.seed(1234)
theta <- seq(0, 360, 0.25)
x <- 1 + cos(pi / 180 * theta) + rnorm(theta)
y <- sin(pi / 180 * theta) + rnorm(theta)
wr <- as.windrose(x, y)
summary(wr)

as.xbt Create an xbt Object

Description

Create an xbt Object

Usage

as.xbt(
z,
temperature,
longitude = NA,
latitude = NA,
filename = "",
sequenceNumber = NA,
serialNumber = ""

)

Arguments

z numeric vector giving vertical coordinates of measurements. This is the negative
of depth, i.e. z is 0 at the air-sea interface, and negative within the water column.

temperature numeric vector giving in-situ temperatures at the z values.
longitude, latitude

location in degE and degN.

filename character value naming source file.

sequenceNumber numerical value of the sequence number of the XBT drop.

serialNumber character value holding the serial number of the XBT.

bcdToInteger 83

Value

An xbt object.

Author(s)

Dan Kelley

See Also

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, plot,xbt-method, read.xbt(),
read.xbt.noaa1(), subset,xbt-method, summary,xbt-method, xbt, xbt-class, xbt.edf

bcdToInteger Convert a BCD Value to an Integer Value

Description

Convert a BCD Value to an Integer Value

Usage

bcdToInteger(x, endian = c("little", "big"))

Arguments

x a raw value, or vector of raw values, coded in binary-coded decimal.

endian character string indicating the endian-ness ("big" or "little"). The PC/intel con-
vention is to use "little", and so most data files are in that format.

Value

An integer, or list of integers.

Author(s)

Dan Kelley

Examples

library(oce)
twenty.five <- bcdToInteger(as.raw(0x25))
thirty.seven <- as.integer(as.raw(0x25))

84 beamName

beamName Get Names of Acoustic-Doppler Beams

Description

Get Names of Acoustic-Doppler Beams

Usage

beamName(x, which)

Arguments

x an adp object.

which an integer indicating beam number.

Value

A character string containing a reasonable name for the beam, of the form "beam 1", etc., for beam
coordinates, "east", etc. for enu coordinates, "u", etc. for "xyz", or "u'", etc., for "other"
coordinates. The coordinate system is determined with x[["coordinate"]].

Author(s)

Dan Kelley

See Also

This is used by read.oce().

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamToXyz(), enuToOther(), enuToOtherAdv(), plot,adv-method,
read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

beamToXyz 85

beamToXyz Change the Coordinate System in an adv or adp Object

Description

Convert velocity data from an acoustic-Doppler velocimeter or acoustic-Doppler profiler from one
coordinate system to another.

Usage

beamToXyz(x, ...)

Arguments

x an adp or adv object.

... extra arguments that are passed on to beamToXyzAdp() or beamToXyzAdv().

Value

An object of the same class as x, but with velocities in xyz coordinates instead of beam coordinates.

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), enuToOther(), enuToOtherAdv(), plot,adv-method,
read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

86 beamToXyzAdp

beamToXyzAdp Convert adp Object From Beam to XYZ Coordinates

Description

Convert ADP velocity components from a beam-based coordinate system to a xyz-based coordinate
system. The action depends on the type of object. Objects creating by reading RDI Teledyne,
Sontek, and some Nortek instruments are handled directly.

Usage

beamToXyzAdp(x, debug = getOption("oceDebug"))

Arguments

x an adp object.
debug an integer specifying whether debugging information is to be printed during the

processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

For a 3-beam Nortek aquadopp object, the beams are transformed into velocities using the matrix
stored in the header.

For 4-beam objects (and for the slanted 4 beams of 5-beam objects), the along-beam velocity
components B1 B2, B3, and B4 are converted to Cartesian velocity components u v and w us-
ing formulae from section 5.5 of RD Instruments (1998), viz. the along-beam velocity compo-
nents B1, B2, B3, and B4 are used to calculate velocity components in a cartesian system ref-
erenced to the instrument using the following formulae: u = ca(B1 − B2), v = ca(B4 − B3),
w = −b(B1 + B2 + B3 + B4). In addition to these, an estimate of the error in velocity is com-
puted as e = d(B1 + B2 − B3 − B4). The geometrical factors in these formulae are: c is +1 for
convex beam geometry or -1 for concave beam geometry, a = 1/(2 sin θ) where θ is the angle the
beams make to the axial direction (which is available as x[["beamAngle"]]), b = 1/(4 cos θ), and
d = a/

√
2.

Value

An object with the first 3 velocity indices having been altered to represent velocity components in
xyz (or instrument) coordinates. (For rdi data, the values at the 4th velocity index are changed
to represent the "error" velocity.) To indicate the change, the value of x[["oceCoordinate"]] is
changed from beam to xyz.

Author(s)

Dan Kelley

beamToXyzAdpAD2CP 87

References

1. Teledyne RD Instruments. “ADCP Coordinate Transformation: Formulas and Calculations,”
January 2010. P/N 951-6079-00.

2. WHOI/USGS-provided Matlab code for beam-enu transformation http://woodshole.er.usgs.gov/pubs/of2005-1429/MFILES/AQDPTOOLS/beam2enu.m

See Also

See read.adp() for other functions that relate to objects of class "adp".

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdpAD2CP(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

beamToXyzAdpAD2CP Convert From Beam to XYZ Coordinates (AD2CP adp Data)

Description

This looks at all the items in the data slot of x, to see if they contain an array named v that holds
velocity. If that velocity has 4 components, and if oceCoordinate for the item is "beam", then
along-beam velocity components B1 B2, B3, and B4 are converted to instrument-oriented Cartesian
velocity components u v and w using the convex-geometry formulae from section 5.5 of reference
1, viz. u = ca(B1 −B2), v = ca(B4 −B3), w = −b(B1 +B2 +B3 +B4). In addition to these,
an estimate of the error in velocity is computed as e = d(B1 + B2 − B3 − B4). The geometrical
factors in these formulae are: a = 1/(2 sin θ) where θ is the angle the beams make to the axial
direction (which is available as x[["beamAngle"]]), b = 1/(4 cos θ), and d = a/

√
2.

Usage

beamToXyzAdpAD2CP(x, debug = getOption("oceDebug"))

Arguments

x an adp object.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

88 beamToXyzAdv

References

1. Teledyne RD Instruments. “ADCP Coordinate Transformation: Formulas and Calculations,”
January 2010. P/N 951-6079-00.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdv(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

beamToXyzAdv Convert adv Object from Beam Coordinates to XYZ Coordinates

Description

Convert ADV velocity components from a beam-based coordinate system to a xyz-based coordinate
system.

Usage

beamToXyzAdv(x, debug = getOption("oceDebug"))

Arguments

x an adv object.

debug a flag that, if non-zero, turns on debugging. Higher values yield more extensive
debugging.

Details

The coordinate transformation is done using the transformation matrix contained in transformation.matrix
in the metadata slot, which is normally inferred from the header in the binary file. If there is no
such matrix (e.g. if the data were streamed through a data logger that did not capture the header),
beamToXyzAdv the user will need to store one in x, e.g. by doing something like the following:

x[["transformation.matrix"]] <- rbind(c(11100, -5771, -5321),
c(#' 291, 9716, -10002),
c(1409, 1409, 1409)) / 4096

Author(s)

Dan Kelley

beamUnspreadAdp 89

References

1. https://nortek.zendesk.com/hc/en-us/articles/360029820971-How-is-a-Coordinate-transformation-done-

See Also

See read.adv() for notes on functions relating to "adv" objects.

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamUnspreadAdp(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

beamUnspreadAdp Adjust adp Object to Account for Spherical Spreading

Description

Compensate ADP signal strength for spherical spreading.

Usage

beamUnspreadAdp(
x,
count2db = c(0.45, 0.45, 0.45, 0.45),
asMatrix = FALSE,
debug = getOption("oceDebug")

)

Arguments

x an adp object.

count2db a set of coefficients, one per beam, to convert from beam echo intensity to deci-
bels.

asMatrix a boolean that indicates whether to return a numeric matrix, as opposed to re-
turning an updated object (in which the matrix is cast to a raw value).

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

90 beamUnspreadAdp

Details

First, beam echo intensity is converted from counts to decibels, by multiplying by count2db. Then,
the signal decrease owing to spherical spreading is compensated for by adding the term 20 log 10(r),
where r is the distance from the sensor head to the water from which scattering is occurring. r is
given by x[["distance"]].

Value

An adp object.

Author(s)

Dan Kelley

References

The coefficient to convert to decibels is a personal communication. The logarithmic term is ex-
plained in textbooks on acoustics, optics, etc.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

library(oce)
data(adp)
plot(adp, which = 5) # beam 1 echo intensity
adp.att <- beamUnspreadAdp(adp)
plot(adp.att, which = 5) # beam 1 echo intensity
Profiles
par(mar = c(4, 4, 1, 1))
a <- adp[["a", "numeric"]] # second arg yields matrix return value
distance <- adp[["distance"]]
plot(apply(a, 2, mean), distance, type = "l", xlim = c(0, 256))
lines(apply(a, 2, median), distance, type = "l", col = "red")
legend("topright", lwd = 1, col = c("black", "red"), legend = c("original", "attenuated"))
Image
plot(adp.att, which = "amplitude", col = oce.colorsViridis(100))

bilinearInterp 91

bilinearInterp Bilinear Interpolation Within a Grid

Description

This is used by topoInterpolate.

Usage

bilinearInterp(x, y, gx, gy, g)

Arguments

x vector of x values at which to interpolate
y vector of y values at which to interpolate
gx vector of x values for the grid
gy vector of y values for the grid
g matrix of the grid values

Value

vector of interpolated values

binApply1D Apply a Function to Vector Data

Description

The function FUN is applied to f in bins specified by xbreaks. The division of data into bins is done
with cut().

Usage

binApply1D(x, f, xbreaks, FUN, include.lowest = FALSE, ...)

Arguments

x a vector of numerical values.
f a vector of data to which FUN will be applied.
xbreaks optional vector holding values of x at the boundaries between bins. If this is not

given, it is computed by calling pretty() with n=20 segments.
FUN function that is applied to the f values in each x bin. This must take a single

numeric vector as input, and return a single numeric value.
include.lowest logical value indicating whether to include x values that equal xbreaks[1]. See

“Details”.
... optional arguments to pass to FUN.

92 binApply2D

Details

By default, the sub-intervals defined by the xbreaks argument are open on the left and closed on the
right, to match the behaviour of cut(). An open interval does not include points on the boundary,
and so any x values that exactly match the first breaks value will not be counted. To include such
points in the calculation, set include.lowest to TRUE.

Value

A list with the following elements: xbreaks as used, xmids (the mid-points between those breaks)
and result (the result of applying FUN to the f values in the designated bins).

Author(s)

Dan Kelley

See Also

Other bin-related functions: binApply2D(), binAverage(), binCount1D(), binCount2D(), binMean1D(),
binMean2D()

Examples

library(oce)
salinity profile (black) with 1-dbar bin means (red)
data(ctd)
plotProfile(ctd, "salinity")
p <- ctd[["pressure"]]
S <- ctd[["salinity"]]
pbreaks <- seq(0, max(p), 1)
binned <- binApply1D(p, S, pbreaks, mean)
lines(binned$result, binned$xmids, lwd = 2, col = rgb(1, 0, 0, 0.9))

binApply2D Apply a Function to Matrix Data

Description

The function FUN is applied to f in bins specified by xbreaks and ybreaks.

Usage

binApply2D(x, y, f, xbreaks, ybreaks, FUN, include.lowest = FALSE, ...)

binAverage 93

Arguments

x a vector of numerical values.

y a vector of numerical values.

f a vector of data to which FUN will be applied.

xbreaks values of x at the boundaries between the bins; calculated using pretty() if not
supplied.

ybreaks as xbreaks, but for y.

FUN function that is applied to the f values in each (x,y) bin. This must take two
numeric vectors as input, and return a single numeric value.

include.lowest logical value indicating whether to include x values that equal xbreaks[1] and
y values that equal ybreaks[1]. See “Details”.

... optional arguments to pass to FUN.

Details

The division into bins is done with cut(), to which include.lowest is passed. By default, the x
bins are open at the left and closed on the right, and the y bins are open at the bottom and closed
at the top. However, if include.lowest is TRUE, then those boundary points are included in the
calculation.

Value

A list with the following elements: xbreaks and ybreaks as used, mid-points xmids and ymids,
and result, a matrix containing the result of applying FUN() to the f values in the designated bins.

Author(s)

Dan Kelley

See Also

Other bin-related functions: binApply1D(), binAverage(), binCount1D(), binCount2D(), binMean1D(),
binMean2D()

binAverage Bin-average a Vector y, Based on x Values

Description

binAverage() works by calling binMean1D(), after computing the xbreaks parameter of the latter
function as seq(xmin,xmax,xinc). Note that the return value of binAverage() uses only the
xmids and result entries of the binMean1D() result.

Usage

binAverage(x, y, xmin, xmax, xinc, include.lowest = FALSE, na.rm = FALSE)

94 binAverage

Arguments

x a vector of numerical values.

y a vector of numerical values.

xmin x value at the lower limit of first bin; the minimum x will be used if this is not
provided.

xmax x value at the upper limit of last bin; the maximum x will be used if this is not
provided.

xinc width of bins, in terms of x value; 1/10th of xmax-xmin will be used if this is
not provided.

include.lowest logical value indicating whether to include y values for which the corresponding
x is equal to xmin. See “Details”.

na.rm logical value indicating whether to remove NA values before doing the com-
putation of the average. This is passed to mean(), which does the work of the
present function.

Details

By default, the sub-intervals defined by xmin, xinc and xmax arguments are open on the left and
closed on the right, to match the behaviour of cut(). An open interval does not include points on
the boundary, and so any x values that exactly match the first breaks value will not be counted. To
include such points in the calculation, set include.lowest to TRUE.

Value

A list with two elements: x, the mid-points of the bins, and y, the average y value in the bins.

Author(s)

Dan Kelley

See Also

Other bin-related functions: binApply1D(), binApply2D(), binCount1D(), binCount2D(), binMean1D(),
binMean2D()

Examples

library(oce)
A. fake linear data
x <- seq(0, 100, 1)
y <- 1 + 2 * x
plot(x, y, pch = 1)
ba <- binAverage(x, y)
points(bax, bay, pch = 3, col = "red", cex = 3)

B. fake quadratic data
y <- 1 + x^2
plot(x, y, pch = 1)

binCount1D 95

ba <- binAverage(x, y)
points(bax, bay, pch = 3, col = "red", cex = 3)

C. natural data
data(co2)
plot(co2)
avg <- binAverage(time(co2), co2, 1950, 2000, 2)
points(avgx, avgy, col = "red")

binCount1D Bin-count Vector Data

Description

Count the number of elements of a given vector that fall within successive pairs of values within a
second vector.

Usage

binCount1D(x, xbreaks, include.lowest = FALSE)

Arguments

x vector of numerical values.

xbreaks Vector of values of x at the boundaries between bins, calculated using pretty()
if not supplied.

include.lowest logical value indicating whether to include x values that equal xbreaks[1]. See
“Details”.

Details

By default, the sub-intervals defined by the xbreaks argument are open on the left and closed on the
right, to match the behaviour of cut(). An open interval does not include points on the boundary,
and so any x values that exactly match the first breaks value will not be counted. To count such
points, set include.lowest to TRUE.

To contextualize binCount1D() in terms of base R functions, note that

binCount1D(1:20, seq(0, 20, 2))$number

matches

unname(table(cut(1:20, seq(0, 20, 2))))

Value

A list with the following elements: the breaks (xbreaks, midpoints (xmids) between those breaks,
and the count (number) of x values between successive breaks.

96 binCount2D

Author(s)

Dan Kelley

See Also

Other bin-related functions: binApply1D(), binApply2D(), binAverage(), binCount2D(), binMean1D(),
binMean2D()

binCount2D Bin-count Matrix Data

Description

Count the number of elements of a given matrix z=z(x,y) that fall within successive pairs of breaks
in x and y.

Usage

binCount2D(x, y, xbreaks, ybreaks, flatten = FALSE, include.lowest = FALSE)

Arguments

x, y vectors of numerical values.
xbreaks, ybreaks

vector of values of x and y at the boundaries between the 2D bins, calculated
using pretty() on each of x and y, if not supplied.

flatten A logical value indicating whether the return value also contains equilength
vectors x, y, z and n, a flattened representation of xmids, ymids, result and
number.

include.lowest logical value indicating whether to include points where x equals xbreaks[1]
or y equals ybreaks[1].

Details

By default, the sub-intervals defined by xbreaks and ybreaks are open on the left/bottom and
closed on the right/top, to match the behaviour of cut(). An open interval does not include points
on the boundary, and so any x and y values that equal xbreaks[1] or ybreaks[1] will not be
counted. To include such points in the calculation, set include.lowest to TRUE.

Value

A list with the following elements: the breaks (xbreaks and ybreaks), the midpoints (xmids and
ymids) between those breaks, and the count (number) of f values in the boxes defined between
successive breaks.

Author(s)

Dan Kelley

binmapAdp 97

See Also

Other bin-related functions: binApply1D(), binApply2D(), binAverage(), binCount1D(), binMean1D(),
binMean2D()

binmapAdp Bin-map an adp Object

Description

Bin-map an ADP object, by interpolating velocities, backscatter amplitudes, etc., to uniform depth
bins, thus compensating for the pitch and roll of the instrument. This only makes sense for ADP
objects that are in beam coordinates.

Usage

binmapAdp(x, debug = getOption("oceDebug"))

Arguments

x an adp object.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

An adp object.

Bugs

This only works for 4-beam RDI ADP objects.

Sample of Usage

library(oce)
file <- "~/data/archive/sleiwex/2008/moorings/m09/adp/rdi_2615/raw/adp_rdi_2615.000"
beam <- read.oce(file,

from=as.POSIXct("2008-06-26", tz="UTC"),
to=as.POSIXct("2008-06-26 00:10:00", tz="UTC"),
longitude=-69.73433, latitude=47.88126)

beam2 <- binmapAdp(beam)
plot(enuToOther(toEnu(beam), heading=-31.5))
plot(enuToOther(toEnu(beam2), heading=-31.5))
plot(beam, which=5:8) # backscatter amplitude
plot(beam2, which=5:8)

98 binMean1D

Author(s)

Dan Kelley and Clark Richards

References

The method was devised by Clark Richards for use in his PhD work at Department of Oceanography
at Dalhousie University.

See Also

See adp for a discussion of adp objects and notes on the many functions dealing with them.

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(),
plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

binMean1D Bin-average f=f(x)

Description

Average the values of a vector f in bins defined on another vector x. The values are broken up into
bins using cut().

Usage

binMean1D(x, f, xbreaks, include.lowest = FALSE, na.rm = FALSE)

Arguments

x vector of numerical values that will be categorized into bins via the xbreaks
parameter.

f vector of numerical values that are associated with the x values.

xbreaks vector of values of x at the boundaries between bins, calculated using pretty()
if not supplied.

include.lowest logical value indicating whether to include x values that equal xbreaks[1]. See
“Details”.

na.rm logical value indicating whether to remove NA values before doing the com-
putation of the average. This is passed to mean(), which does the work of the
present function.

binMean2D 99

Details

By default, the sub-intervals defined by the xbreaks argument are open on the left and closed on the
right, to match the behaviour of cut(). An open interval does not include points on the boundary,
and so any x values that exactly match the first breaks value will not be counted. To include such
points in the calculation, set include.lowest to TRUE.

Value

A list with the following elements: the breaks (xbreaks, midpoints (xmids) between those breaks,
the count (number) of x values between successive breaks, and the resultant average (result) of f,
classified by the x breaks.

Author(s)

Dan Kelley

See Also

Other bin-related functions: binApply1D(), binApply2D(), binAverage(), binCount1D(), binCount2D(),
binMean2D()

Examples

Plot raw temperature profile as circles, with lines indicating
the result of averaging in 1-metre depth intervals.
library(oce)
data(ctd)
z <- ctd[["z"]]
T <- ctd[["temperature"]]
plot(T, z, cex = 0.3)
TT <- binMean1D(z, T, seq(-100, 0, 1))
lines(TT$result, TT$xmids, col = rgb(1, 0, 0, 0.9), lwd = 2)

binMean2D Bin-average f=f(x,y)

Description

Average the values of a vector f(x,y) in bins defined on vectors x and y. A common example
might be averaging spatial data into location bins.

100 binMean2D

Usage

binMean2D(
x,
y,
f,
xbreaks,
ybreaks,
flatten = FALSE,
fill = FALSE,
fillgap = -1,
include.lowest = FALSE,
na.rm = FALSE,
debug = getOption("oceDebug")

)

Arguments

x vector of numerical values.

y vector of numerical values.

f Matrix of numerical values, a matrix f=f(x,y).

xbreaks Vector of values of x at the boundaries between bins, calculated using pretty(x)
if not supplied.

ybreaks Vector of values of y at the boundaries between bins, calculated using pretty(y)
if not supplied.

flatten a logical value indicating whether the return value also contains equilength
vectors x, y, z and n, a flattened representation of xmids, ymids, result and
number.

fill, fillgap values controlling whether to attempt to fill gaps (that is, regions of NA values)
in the matrix. If fill is false, gaps, or regions with NA values, are not al-
tered. If fill is TRUE, then gaps that are of size less than or equal to fillgap
are interpolated across, by calling fillGapMatrix() with the supplied value of
fillgap.

include.lowest logical value indicating whether to include y values for which the corresponding
x is equal to xmin. See “Details”.

na.rm logical value indicating whether to remove NA values before doing the com-
putation of the average. This is passed to mean(), which does the work of the
present function.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

bodcNames2oceNames 101

Value

By default, i.e. with flatten being FALSE, binMean2D() returns a list with the following ele-
ments: xmids, a vector holding the x-bin midpoints; ymids, a vector holding the y-bin midpoints;
number, a matrix holding the number the points in each bin; and result, a matrix holding the mean
value in each bin. If flatten is TRUE, the number and result matrices are renamed as n and f
and transformed to vectors, while the bin midpoints are renamed as x and y and extended to match
the length of n and f.

Author(s)

Dan Kelley

See Also

Other bin-related functions: binApply1D(), binApply2D(), binAverage(), binCount1D(), binCount2D(),
binMean1D()

Examples

library(oce)
x <- runif(500, 0, 0.5)
y <- runif(500, 0, 0.5)
f <- x^2 + y^2
xb <- seq(0, 0.5, 0.1)
yb <- seq(0, 0.5, 0.1)
m <- binMean2D(x, y, f, xb, yb)
cm <- colormap(f, col = oceColorsTurbo)
opar <- par(no.readonly = TRUE)
drawPalette(colormap = cm)
plot(x, y, col = cm$zcol, pch = 20, cex = 1.4)
contour(m$xmids, m$ymids, m$result, add = TRUE, labcex = 1.4)
par(opar)

bodcNames2oceNames Determine oce Variable Names from an NERC/BODC Names

Description

Translate names in the NERC/BODC vocabulary to oce names, primarily so that read.netcdf()
can produce more easily interpreted results. Please note that bodcNames2oceNames() handles only
a tiny subset of the huge number of names in the NERC/BODC vocabulary (see Reference 1). To
see the names that the function handles currently, type bodcNames2oceNames in an R session.

Usage

bodcNames2oceNames(bodcNames, unduplicate = TRUE)

102 bodcNames2oceNames

Arguments

bodcNames character vector that specifies variable names that use the NERC/BODC con-
vention.

unduplicate logical value indicating whether to rename repeated entries, so that e.g. if
"temperature occurs twice, the second instance will be changed to "temperature2".
Set this to FALSE if you plan are calling bodcNames2oceNames in a renaming
function of your own, and call unduplicateNames() at the end of your func-
tion; see Example 2.

Value

bodcNames2oceNames returns a vector of the same length as its first argument, with translations to
oce names, as appropriate. Note that the usual oce convention for handling duplicates is used, with
the first name that maps to temperature being set to temperature, the next to temperature2, etc.

Author(s)

Dan Kelley

References

1. The NERC Environmental Data Server. http://vocab.nerc.ac.uk/collection/P01/current/

See Also

Other functions that convert variable names to the oce convention: ODFNames2oceNames(), argoNames2oceNames(),
metNames2oceNames(), woceNames2oceNames()

Examples

Example 1: typical usage
bodcNames2oceNames(c("PSALST01", "TEMPP901", "PRESPR01"))

Example 2: extend to add new variables
BODC2 <- function(originalNames) {

rval <- bodcNames2oceNames(originalNames, unduplicate = FALSE)
rval[rval == "bowler hat"] <- "hat"
rval[rval == "top hat"] <- "hat"
unduplicateNames(rval)

}
BODC2(c("PSALST01", "TEMPP901", "PRESPR01", "bowler hat", "top hat"))

http://vocab.nerc.ac.uk/collection/P01/current/

bound125 103

bound125 Calculate a Bound, Rounded up to Mantissa 1, 2, or 5

Description

Calculate a Bound, Rounded up to Mantissa 1, 2, or 5

Usage

bound125(x)

Arguments

x a single positive number

Value

for positive x, a value exceeding x that has mantissa 1, 2, or 5; otherwise, x

bremen-class Class to Store Bremen-formatted Data

Description

This class is for data stored in a format used at Bremen. It is somewhat similar to the odf, in
the sense that it does not apply just to a particular instrument. Although some functions are pro-
vided for dealing with these data (see “Details”), the most common action is to read the data with
read.bremen(), and then to coerce the object to another storage class (e.g. using as.ctd() for
CTD-style data) so that specialized functions can be used thereafter.

Slots

data As with all oce objects, the data slot for bremen objects is a list containing the main data for
the object.

metadata As with all oce objects, the metadata slot for bremen objects is a list containing infor-
mation about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for bremen objects is a list with
entries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of bremen objects (see [[<-,bremen-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

104 byteToBinary

Retrieving slot contents

The full contents of the data and metadata slots of a bremen object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,bremen-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,bremen-method operator can also be used to retrieve items from within the data and
metadata slots. For example, o[["temperature"]] can be used to retrieve temperature from an
object containing that quantity. The rule is that a named quantity is sought first within the object’s
metadata slot, with the data slot being checked only if metadata does not contain the item. This
[[method can also be used to get certain derived quantities, if the object contains sufficient in-
formation to calculate them. For example, an object that holds (practical) salinity, temperature and
pressure, along with longitude and latitude, has sufficient information to compute Absolute Salinity,
and so o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, cm-class, coastline-class,
ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class, rsk-class, sealevel-class,
section-class, topo-class, windrose-class, xbt-class

Other things related to bremen data: [[,bremen-method, [[<-,bremen-method, plot,bremen-method,
read.bremen(), summary,bremen-method

byteToBinary Format Bytes as Binary (Defunct)

Description

WARNING: The endian argument will soon be removed from this function; see oce-defunct. This
is because the actions for endian="little" made no sense in practical work. The default value for
endian was changed to "big" on 2017 May 6.

Usage

byteToBinary(x, endian = "big")

Arguments

x an integer to be interpreted as a byte.
endian character string indicating the endian-ness ("big" or "little"). WARNING: This

argument will be removed soon.

cm 105

Value

A character string representing the bit strings for the elements of x, in order of significance for
the endian="big" case. (The nibbles, or 4-bit sequences, are interchanged in the now-deprecated
"little" case.) See “Examples” for how this relates to the output from rawToBits.

Author(s)

Dan Kelley

Examples

library(oce)
Note comparison with rawToBits():
a <- as.raw(0x0a)
byteToBinary(a, "big") # "00001010"
as.integer(rev(rawToBits(a))) # 0 0 0 0 1 0 1 0

cm Sample cm Data

Description

The result of using read.cm() on a current meter file holding measurements made with an Intero-
cean S4 device. See read.cm() for some general cautionary notes on reading such files. Note that
the salinities in this sample dataset are known to be incorrect, perhaps owing to a lack of calibration
of an old instrument that had not been used in a long time.

Usage

data(cm)

See Also

Other datasets provided with oce: adp, adv, amsr, argo, coastlineWorld, ctd, ctdRaw, echosounder,
landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

Other things related to cm data: [[,cm-method, [[<-,cm-method, applyMagneticDeclination,cm-method,
as.cm(), cm-class, plot,cm-method, read.cm(), rotateAboutZ(), subset,cm-method, summary,cm-method

Examples

library(oce)
data(cm)
summary(cm)
plot(cm)

106 cm-class

cm-class Class to Store Current Meter Data

Description

This class stores current meter data, e.g. from an Interocean/S4 device or an Aanderaa/RCM device.

Slots

data As with all oce objects, the data slot for cm objects is a list containing the main data for the
object. The key items stored in this slot are time, u and v.

metadata As with all oce objects, the metadata slot for cm objects is a list containing information
about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for cm objects is a list with entries
describing the creation and evolution of the object. The contents are updated by various oce
functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of cm objects (see [[<-,cm-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a cm object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,cm-method operator, as e.g. o[["data"]] and o[["metadata"]],
respectively.

The [[,cm-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

cnvName2oceName 107

See Also

Other things related to cm data: [[,cm-method, [[<-,cm-method, applyMagneticDeclination,cm-method,
as.cm(), cm, plot,cm-method, read.cm(), rotateAboutZ(), subset,cm-method, summary,cm-method

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, coastline-class,
ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class, rsk-class, sealevel-class,
section-class, topo-class, windrose-class, xbt-class

cnvName2oceName Infer Variable Name, Units and Scale From a Seabird Header

Description

This function is used by read.ctd.sbe() to infer data names and units from the coding used
by Teledyne/Seabird (SBE) .cnv files. Lacking access to documentation on the SBE format, the
present function is based on inspection of a suite of CNV files available to the oce developers.

Usage

cnvName2oceName(h, columns = NULL, debug = getOption("oceDebug"))

Arguments

h The header line.

columns Optional list containing name correspondences, as described for read.ctd.sbe().

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

A few sample header lines that have been encountered are:

name 4 = t068: temperature, IPTS-68 [deg C]
name 3 = t090C: Temperature [ITS-90, deg C]
name 4 = t190C: Temperature, 2 [ITS-90, deg C]

Examination of several CNV files suggests that it is best to try to infer the name from the characters
between the "=" and ":" characters, because the material after the colon seems to vary more between
sample files.

The table given below indicates the translation patterns used. These are taken from reference 1. The
.cnv convention for multiple sensors is to include optional extra digits in the name, and these are
indicated with ~ or ~~ in the table; their decoding is done with grep().

108 cnvName2oceName

It is important to note that this table is by no means complete, since there are a great many SBE
names listed in their document (reference 1), plus names not listed there but present in data files
supplied by prominent archiving agencies. If an SBE name is not recognized, then the oce name
is set to that SBE name. This can cause problems in some other processing steps (e.g. if swRho()
or a similar function is called with an oce object as first argument), and so users are well-advised
to rename the items as appropriate. The first step in doing this is to pass the object to summary(),
to discover the SBE names in question. Then consult the SBE documentation to find an appro-
priate name for the data, and either manipulate the names in the object data slot directly or use
oceRenameData() to rename the elements. Finally, please publish an ’issue’ on the oce Github
site https://github.com/dankelley/oce/issues so that the developers can add the data type
in question. (To save development time, there is no plan to add all possible data types without a
reasonable and specific expression user interest. Oxygen alone has over forty variants.)

Key Result Unit;scale Notes
accM acceleration m/s^2
altM altimeter m
alt altimeter m
bat~ beamAttenuation 1/m
C2-C1mS/cm conductivityDifference mS/cm
C2-C1S/m conductivityDifference S/m
C2-C1uS/cm conductivityDifference uS/cm
cond~mS/cm conductivity mS/cm
cond~S/m conductivity S/m
cond~uS/cm conductivity uS/cm
CStarAt~ beamAttenuation 1/m
CStarTr~ beamTransmission percent
c~mS/cm conductivity mS/cm
c~S/m conductivity S/m
c~uS/cm conductivity uS/cm
density~~ density kg/m^3
depFM depth m
depF depth m
depSM depth m
depS depth m
dz/dtM descentRate m/s
flCM fluorescence ug/l; Chelsea Mini Chl Con
flCUVA~ fluorescence ug/l; Chelsea UV Aquatracka
flC~ fluorescence ug/l; Chelsea Aqua 3
flEC-AFL~ fluorescence mg/m^3; WET Labs ECO-AFL/FLtab
flScufa~ fluorescence -; Turner SCUFA (RFU)
flSPR fluorescence -; Seapoint, Rhodamine
flSPuv fluorescence -; Seapoint, UV
flSP fluorescence -; Seapoint
flS fluorescence -; Seatech
flT fluorescence -; Turner 10-005 flT
f~ frequency Hz
f~~ frequency Hz
gpa geopotentialAnomaly -; J/kg

cnvName2oceName 109

latitude latitude degN
longitude longitude degE
n2satMg/L nitrogenSaturation mg/l
n2satML/L nitrogenSaturation ml/l
n2satumol/kg nitrogenSaturation umol/kg
nbin nbin
obsscufa~ backscatter NTU; Turner SCUFA
opoxMg/L oxygen mg/l; Optode, Aanderaa
opoxML/L oxygen ml/l; Optode, Aanderaa
opoxMm/L oxygen umol/l; Optode, Aanderaa
opoxPS oxygen percent; Optode, Aanderaa
oxsatMg/L oxygen mg/l; Weiss
oxsatML/L oxygen ml/l; Weiss
oxsatMm/Kg oxygen umol/kg; Weiss
oxsolMg/L oxygen mg/l; Garcia-Gordon
oxsolML/L oxygen ml/l; Garcia-Gordon
oxsolMm/Kg oxygen umol/kg; Garcia-Gordon
par/log PAR log; Satlantic
par~ PAR -; Biospherical/Licor
ph pH -
potemp~68C thetaM degC; IPTS-68
potemp~90C thetaM degC; ITS-90
pr50M pressure dbar; SBE50
prDE pressure psi; digiquartz 2
prdE pressure psi; strain gauge 2
prDM pressure dbar; digiquartz
prdM pressure dbar; strain gauge
prM pressure dbar
prSM pressure dbar
prSM pressure dbar; strain gauge
pr pressure dbar 1
ptempC pressureTemperature degC; ITS-90 3
pumps pumpStatus
rhodflTC~ Rhodamine ppb; Turner Cyclops
sal~~ salinity -, PSS-78 4
sbeox~ML/L oxygen ml/l; SBE43
sbeox~Mm/Kg oxygen umol/kg; SBE43
sbeox~Mm/L oxygen umol/l; SBE43
sbeox~PS oxygen percent; SBE43
sbeox~V oxygenRaw V; SBE43
sbox~dV/dT oxygen dov/dt; SBE43
sbox~ML/L oxygen ml/l; SBE43
sbox~Mm/Kg oxygen umol/kg; SBE43
sbox~Mm/L oxygen umol/l; SBE43
sbox~PS oxygen percent; SBE43
sbox~V oxygenRaw V; SBE43
scan scan -
seaTurbMtr~ turbidity FTU; Seapoint

110 cnvName2oceName

secS-priS salinityDifference -, PSS-78
sigma-é sigmaTheta kg/m^3 5
sigma-t sigmaT kg/m^3
sigma-theta sigmaTheta kg/m^3 5
spar spar -
specc specificConductance uS/cm
sva specificVolumeAnomaly 1e-8 m^3/kg;
svCM~ soundSpeed m/s; Chen-Millero
t090Cm temperature degC; ITS-90
t190C temperature degC; ITS-90
T2~68C temperatureDifference degC; IPTS-68
T2~90C temperatureDifference degC; ITS-90
t3868C~ temperature degC; IPTS-68
t3890C~ temperature degC; ITS-90
t38~38C temperature degC; IPTS-68
t38~90C temperature degC; ITS-90
t4968C temperature degC; IPTS-68
t4990C temperature degC; ITS-90
timeH timeH hour; elapsed
timeJV2 timeJV2 julian day
timeJ timeJ julian day
timeK timeK s; since Jan 1, 2000
timeM timeM minute; elapsed
timeN timeN s; NMEA since Jan 1, 1970
timeQ timeQ s; NMEA since Jan 1, 2000
timeS timeS s; elapsed
tnc268C temperature degC; IPTS-68
tnc290C temperature degC; ITS-90
tnc68C temperature degC; IPTS-68
tnc90C temperature degC; ITS-90
tsa thermostericAnomaly 1e-8 m^3/kg
turbflTCdiff turbidityDifference NTU; Turner Cyclops
turbflTC~ turbidity NTU; Turner Cyclops
turbWETbbdiff turbidityDifference 1/(m*sr); WET Labs ECO
turbWETbb~ turbidity 1/(m*sr); WET Labs ECO
turbWETntudiff turbidityDifference NTU; WET Labs ECO
turbWETntu~ turbidity NTU; WET Labs ECO
tv268C temperature degC; IPTS-68
tv290C temperature degC; ITS-90
t~68C temperature degC; IPTS-68
t~68 temperature degC; IPTS-68
t~90C temperature degC; ITS-90
t~90 temperature degC; ITS-90
upoly~ upoly -
user~ user -
v~~ voltage V
wetBAttn beamAttenuation 1/m; WET Labs AC3
wetBTrans beamTransmission percent; WET Labs AC3

cnvName2oceName 111

wetCDOMdiff fluorescenceDifference mg/m^3; WET Labs CDOM
wetCDOM~ fluorescence mg/m^3; WET Labs CDOM
wetChAbs fluorescence 1/m; WET Labs AC3 absorption
wetStardiff fluorescenceDifference mg/m^3; WET Labs WETstar
wetStar~ fluorescence mg/m^3; WET Labs WETstar
xmiss beamTransmission percent; Chelsea/Seatech
xmiss~ beamTransmission percent; Chelsea/Seatech

Notes:

1. ’pr’ is in a Dalhousie-generated data file but seems not to be in reference 1.

2. This is an odd unit, and so if sw* functions are called on an object containing this, a conversion
will be made before performing the computation. Be on the lookout for errors, since this is a
rare situation.

3. Assume ITS-90 temperature scale, since sample .cnv file headers do not specify it.

4. Some files have PSU for this. Should we handle that? And are there other S scales to consider?

5. The ’theta’ symbol (here shown accented e) may appear in different ways with different en-
coding configurations, set up within R or in the operating system.

Author(s)

Dan Kelley

References

1. A SBE data processing manual was once at http://www.seabird.com/document/sbe-data-processing-manual,
but as of summer 2018, this no longer seems to be provided by SeaBird. A web search will
turn up copies of the manual that have been put online by various research groups and data-
archiving agencies. As of 2018-07-05, the latest version was named SBEDataProcessing_7.26.4.pdf
and had release date 12/08/2017, and this was the reference version used in coding oce.

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that interpret variable names and units from headers: ODFNames2oceNames(),
oceNames2whpNames(), oceUnits2whpUnits(), unitFromString(), unitFromStringRsk(), woceNames2oceNames(),
woceUnit2oceUnit()

112 coastline-class

coastline-class Class to Store Coastline Data

Description

This class stores coastline data.

Slots

data As with all oce objects, the data slot for coastline objects is a list containing the main data
for the object. The key items stored in this slot are longitude and latitude.

metadata As with all oce objects, the metadata slot for coastline objects is a list containing
information about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for coastline objects is a
list with entries describing the creation and evolution of the object. The contents are up-
dated by various oce functions to keep a record of processing steps. Object summaries and
processingLogShow() both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of coastline objects (see
[[<-,coastline-method), it is better to use oceSetData() and oceSetMetadata(), because
those functions save an entry in the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a coastline object may be retrieved in the
standard R way using slot(). For example slot(o,"data") returns the data slot of an object
named o, and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,coastline-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,coastline-method operator can also be used to retrieve items from within the data and
metadata slots. For example, o[["temperature"]] can be used to retrieve temperature from an
object containing that quantity. The rule is that a named quantity is sought first within the object’s
metadata slot, with the data slot being checked only if metadata does not contain the item. This [[
method can also be used to get certain derived quantities, if the object contains sufficient information
to calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

coastlineBest 113

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class, rsk-class, sealevel-class,
section-class, topo-class, windrose-class, xbt-class

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(), plot,coastline-method,
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

coastlineBest Find the Name of the Best Coastline Object

Description

Find the name of the most appropriate coastline for a given locale Checks coastlineWorld, coastlineWorldFine
and coastlineWorldCoarse, in that order, to find the one most appropriate for the locale.

Usage

coastlineBest(lonRange, latRange, span, debug = getOption("oceDebug"))

Arguments

lonRange range of longitude for locale

latRange range of latitude for locale

span span of domain in km (if provided, previous two arguments are ignored).

debug set to a positive value to get debugging information during processing.

Value

The name of a coastline that can be loaded with data().

Author(s)

Dan Kelley

See Also

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineCut(), coastlineWorld, download.coastline(), plot,coastline-method,
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

114 coastlineCut

coastlineCut Cut a Coastline Object at Specified Longitude

Description

This can be helpful in preventing mapPlot() from producing ugly horizontal lines in world maps.
These lines occur when a coastline segment is intersected by longitude lon_0+180. Since the coast-
line files in the oce and ocedata packages are already "cut" at longitudes of -180 and 180, the
present function is not needed for default maps, which have +lon_0=0. However, may help with
other values of lon_0.

Usage

coastlineCut(coastline, lon_0 = 0)

Arguments

coastline a coastline object.

lon_0 longitude as would be given in a +lon_0= item in a call to sf::sf_project().

Value

a new coastline object

Caution

This function is provisional. Its behaviour, name and very existence may change. Part of the
development plan is to see if there is common ground between this and the clipPolys function in
the PBSmapping package.

Author(s)

Dan Kelley

See Also

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineBest(), coastlineWorld, download.coastline(), plot,coastline-method,
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

Examples

library(oce)
data(coastlineWorld)
mapPlot(coastlineCut(coastlineWorld, lon_0 = 100),

projection = "+proj=moll +lon_0=100", col = "gray"
)

https://CRAN.R-project.org/package=PBSmapping

coastlineWorld 115

coastlineWorld Sample coastline Data (Global, at 1:110M scale)

Description

This is a coarse resolution coastline at scale 1:110M, with 10,696 points, suitable for world-scale
plots plotted at a small size, e.g. inset diagrams. Finer resolution coastline files are provided in the
ocedata package.

Installing your own datasets

Follow the procedure along the lines described in “Details”, where of course your source file will
differ. Also, you should change the name of the coastline object from coastlineWorld, to avoid
conflicts with the built-in dataset. Save the .rda file to some directory of your choosing, e.g.
perhaps /data/coastlines or ~/data/coastlines on a unix-type machine. Then, whenever you
need the file, use load() to load it. Most users find it convenient to do the loading in an Rprofile()
startup file.

Source

Downloaded from https://www.naturalearthdata.com, in ne_110m_admin_0_countries.shp
in July 2015, with an update on December 16, 2017.

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, ctd, ctdRaw, echosounder, landsat,
lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineBest(), coastlineCut(), download.coastline(), plot,coastline-method,
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

colormap Calculate a Color Map

Description

Create a mapping between numeric values and colors, for use in palettes and plots. The return
value can be used in various ways, including colorizing points on scattergraphs, controlling images
created by image() or imagep(), drawing palettes with drawPalette(), etc.

https://CRAN.R-project.org/package=ocedata

116 colormap

Usage

colormap(
z = NULL,
zlim,
zclip = FALSE,
breaks,
col = oceColorsViridis,
name,
x0,
x1,
col0,
col1,
blend = 0,
missingColor,
debug = getOption("oceDebug")

)

Arguments

z an optional vector or other set of numerical values to be examined. If z is given,
the return value will contain an item named zcol that will be a vector of the
same length as z, containing a color for each point. If z is not given, zcol will
contain just one item, the color "black".

zlim optional vector containing two numbers that specify the z limits for the color
scale. This can only be provided in cases A and B, as defined in “Details”. For
case A, if zlim is not provided, then it is inferred by using rangeExtended()
on breaks, if that is provided, or from z otherwise. Also, in case A, it is an error
to provide both zlim and breaks, unless the latter is of length 1, meaning the
number of subdivisions to use within the range set by zlim. In case B, zlim is
inferred from using rangeExtended() on c(x0,x1). In case C, providing zlim
yields an error message, because it makes no sense in the context of a named,
predefined color scheme.

zclip logical, with TRUE indicating that z values outside the range of zlim or breaks
should be painted with missingColor and FALSE indicating that these values
should be painted with the nearest in-range color.

breaks an optional indication of break points between color levels (see image()). If
this is provided, the arguments name through blend are all ignored (see “De-
tails”). If it is provided, then it may either be a vector of break points, or a
single number indicating the desired number of break points to be computed
with pretty(z,breaks). In either case of non-missing breaks, the resultant
break points must number 1 plus the number of colors (see col).

col either a vector of colors or a function taking a numerical value as its single
argument and returning a vector of colors. Prior to 2021-02-08, the default
for col was oceColorsJet, but it was switched to oceColorsViridis on that
date. The value of col is ignored if name is provided, or if x0 through col1 are
provided.

colormap 117

name an optional string naming a built-in colormap (one of "gmt_relief", "gmt_ocean",
"gmt_globe" or "gmt_gebco") or the name of a file or URL that contains a
color map specification in GMT format. If name is given, then it is passed
to colormapGMT(), which creates the colormap. Note that the colormap thus
created has a fixed relationship between value and color, and zlim, only other
argument that is examined is z (which may be used so that zcol will be defined
in the return value), and warnings are issued if some irrelevant arguments are
provided.

x0, x1, col0, col1
Vectors that specify a color map. They must all be the same length, with x0 and
x1 being numerical values, and col0 and col1 being colors. The colors may be
strings (e.g. "red") or colors as defined by rgb() or hsv().

blend a number indicating how to blend colors within each band. This is ignored
except when x0 through col1 are supplied. A value of 0 means to use col0[i]
through the interval x0[i] to x1[i]. A value of 1 means to use col1[i] in
that interval. A value between 0 and 1 means to blend between the two colors
according to the stated fraction. Values exceeding 1 are an error at present, but
there is a plan to use this to indicate sub-intervals, so a smooth palette can be
created from a few colors.

missingColor color to use for missing values. This cannot be provided if name is also provided
(case C), because named schemes have pre-defined colors. For other cases,
missingColor defaults to "gray", if it is not provided as an argument.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

Details

colormap can be used in a variety of ways, including the following.

• Case A. Supply some combination of arguments that is sufficient to define a mapping of value
to color, without providing x0, col0, x1 or col1 (see case B for these), or providing name (see
Case C). There are several ways to do this. One approach is to supply z but no other argument,
in which case zlim, and breaks will be determined from z, and the default col will be used.
Another approach is to specify breaks and col together, in the same way as they might be
specified for the base R function image(). It is also possible to supply only zlim, in which
case breaks is inferred from that value.

• Case B. Supply x0, col0, x1, and col1, but not zlim, breaks, col or name. The x0, col0,
x1 and col1 values specify a value-color mapping that is similar to that used for GMT color
maps. The method works by using seq() to interpolate between the elements of the x0 vector.
The same is done for x1. Similarly, colorRampPalette() is used to interpolate between the
colors in the col0 vector, and the same is done for col1.

• Case C. Supply name and possibly also z, but not zlim, breaks, col, x0, col0, x1 or col1.
The name may be the name of a pre-defined color palette ("gmt_relief", "gmt_ocean",
"gmt_globe" or "gmt_gebco"), or it may be the name of a file (or URL pointing to a file) that
contains a color map in the GMT format (see “References”). If z is supplied along with name,
then zcol will be set up in the return value, e.g. for use in colorizing points. Another method
for finding colors for data points is to use the colfunction() function in the return value.

118 colormap

Value

a list containing the following (not necessarily in this order)

• zcol, a vector of colors for z, if z was provided, otherwise "black"

• zlim, a two-element vector suitable as the argument of the same name supplied to image() or
imagep()

• breaks and col, vectors of breakpoints and colors, suitable as the same-named arguments to
image() or imagep()

• zclip the provided value of zclip.

• x0 and x1, numerical vectors of the sides of color intervals, and col0 and col1, vectors of
corresponding colors. The meaning is the same as on input. The purpose of returning these
four vectors is to permit users to alter color mapping, as in example 3 in “Examples”.

• missingColor, a color that could be used to specify missing values, e.g. as the same-named
argument to imagep().

• colfunction, a univariate function that returns a vector of colors, given a vector of z values;
see Example 6.

Sample of Usage

Example 2. topographic image with a standard color scheme
par(mfrow=c(1,1))
data(topoWorld)
cm <- colormap(name="gmt_globe")
imagep(topoWorld, breaks=cm$breaks, col=cm$col)

Example 3. topographic image with modified colors,
black for depths below 4km.
cm <- colormap(name="gmt_globe")
deep <- cm$x0 < -4000
cm$col0[deep] <- "black"
cm$col1[deep] <- "black"
cm <- colormap(x0=cm$x0, x1=cm$x1, col0=cm$col0, col1=cm$col1)
imagep(topoWorld, breaks=cm$breaks, col=cm$col)

Example 4. image of world topography with water colorized
smoothly from violet at 8km depth to blue
at 4km depth, then blending in 0.5km increments
to white at the coast, with tan for land.
cm <- colormap(x0=c(-8000, -4000, 0, 100),

x1=c(-4000, 0, 100, 5000),
col0=c("violet","blue","white","tan"),
col1=c("blue","white","tan","yellow"))

lon <- topoWorld[["longitude"]]
lat <- topoWorld[["latitude"]]
z <- topoWorld[["z"]]
imagep(lon, lat, z, breaks=cm$breaks, col=cm$col)
contour(lon, lat, z, levels=0, add=TRUE)

colormap 119

Example 5. visualize GMT style color map
cm <- colormap(name="gmt_globe", debug=4)
plot(seq_along(cm$x0), cm$x0, pch=21, bg=cm$col0)
grid()
points(seq_along(cm$x1), cm$x1, pch=21, bg=cm$col1)

Example 6. colfunction
cm <- colormap(c(0, 1))
x <- 1:10
y <- (x - 5.5)^2
z <- seq(0, 1, length.out=length(x))
drawPalette(colormap=cm)
plot(x, y, pch=21, bg=cm$colfunction(z), cex=3)

Author(s)

Dan Kelley

References

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormapGMT(), oceColors9B(), oceColorsCDOM(), oceColorsChlorophyll(),
oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(), oceColorsGebco(), oceColorsJet(),
oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(), oceColorsSalinity(),
oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(),
oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)
Example 1. color scheme for points on xy plot
x <- seq(0, 1, length.out = 40)
y <- sin(2 * pi * x)
par(mar = c(3, 3, 1, 1))
mar <- par("mar") # prevent margin creep by drawPalette()

120 colormapGMT

First, default breaks
c <- colormap(y)
drawPalette(c$zlim, col = c$col, breaks = c$breaks)
plot(x, y, bg = c$zcol, pch = 21, cex = 1)
grid()
par(mar = mar)
Second, 100 breaks, yielding a smoother palette
c <- colormap(y, breaks = 100)
drawPalette(c$zlim, col = c$col, breaks = c$breaks)
plot(x, y, bg = c$zcol, pch = 21, cex = 1)
grid()
par(mar = mar)

colormapGMT Create a GMT-type (CPT) Colormap

Description

colormapGMT creates colormaps in the Generic Mapping Tools (GMT) scheme (see References 1 to
4). A few such schemes are built-in, and may be referred to by name ("gmt_gebco", "gmt_globe",
"gmt_ocean", or "gmt_relief") while others are handled by reading local files that are in GMT
format, or URLs providing such files (see Reference 3).

Usage

colormapGMT(name, debug = getOption("oceDebug"))

Arguments

name character value specifying the GMT scheme, or a source for such a scheme. Four
pre-defined schemes are available, accessed by setting name to "gmt_gebco",
"gmt_globe", "gmt_ocean", or "gmt_relief". If name is not one of these
values, then it is taken to be the name of a local file in GMT format or, if no
such file is found, a URL holding such a file.

debug integer that, if positive, indicates to print some debugging output

Details

The GMT files understood by colormapGMT are what GMT calls "Regular CPT files" (see refer-
ence 4). This is a text format that can be read and (with care) edited in a text editor. There are three
categories of lines within this file. (1) Any line starting with the "#" character is a comment, and
is ignored by colormapGMT. (2) Lines with 8 numbers specify colour bands. The first number is a
z value, and the three numbers after that are red, green and blue values in the range from 0 to 255.
This set of 4 numbers is followed on the same line with similar values. Think of this sequence as
describing a band of colours between two z values. (3) Lines starting with a character, followed
by three numbers, specify particular codings. The character "B" specifies background colour, while
"F" specifies foreground colour, and "N" specifies the colour to be used for missing data (the letter

composite 121

stands for not-a-number). Only "N" is used by colormapGMT, and it takes on the role that the
missingColor argument would otherwise have. (This is why missingColor is not permitted if
name is given.)

Value

colormap returns a list, in the same format as the return value for colormap().

Author(s)

Dan Kelley

References

1. General overview of GMT system https://www.generic-mapping-tools.org.

2. Information on GMT color schemes https://docs.generic-mapping-tools.org/dev/cookbook/cpts.html

3. Source of GMT specification files https://beamreach.org/maps/gmt/share/cpt/

4. CPT (color palette table) format https://www.soest.hawaii.edu/gmt/gmt/html/GMT_Docs.html#x1-820004.15

See Also

Other things related to colors: colormap(), oceColors9B(), oceColorsCDOM(), oceColorsChlorophyll(),
oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(), oceColorsGebco(), oceColorsJet(),
oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(), oceColorsSalinity(),
oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(),
oceColorsViridis(), oceColorsVorticity(), ocecolors

composite Create a Composite Object by Averaging Across Good Data

Description

Items within the data slots of the objects that are supplied as arguments are averaged in a way
that makes sense for the object class, i.e. taking into account the particular bad-data codes of that
particular class.

Usage

composite(object, ...)

Arguments

object either a list of oce objects, in which case this is the only argument, or a single
oce object, in which case at least one other argument (an object of the same size)
must be supplied.

... Ignored, if object is a list. Otherwise, one or more oce objects of the same
sub-class as the first argument.

122 composite,amsr-method

See Also

Other functions that create composite objects: composite,amsr-method, composite,list-method

composite,amsr-method Create a Composite of amsr Satellite Data

Description

Form averages for each item in the data slot of the supplied objects, taking into account the bad-data
codes.

Items within the data slots of the objects that are supplied as arguments are averaged in a way
that makes sense for the object class, i.e. taking into account the particular bad-data codes of that
particular class.

Usage

S4 method for signature 'amsr'
composite(object, ...)

Arguments

object An amsr object.

... Other amsr objects.

Details

If none of the objects has good data at any particular pixel (i.e. particular latitude and longitude),
the resultant will have the bad-data code of the last item in the argument list. The metadata in the
result are taken directly from the metadata of the final argument, except that the filename is set to a
comma-separated list of the component filenames.

See Also

Other things related to amsr data: [[,amsr-method, [[<-,amsr-method, amsr, amsr-class, download.amsr(),
plot,amsr-method, read.amsr(), subset,amsr-method, summary,amsr-method

Other functions that create composite objects: composite(), composite,list-method

composite,list-method 123

composite,list-method Composite by Averaging Across Data

Description

This is done by calling a specialized version of the function defined in the given class. In the present
version, the objects must inherit from amsr, so the action is to call composite,amsr-method().

Items within the data slots of the objects that are supplied as arguments are averaged in a way
that makes sense for the object class, i.e. taking into account the particular bad-data codes of that
particular class.

Usage

S4 method for signature 'list'
composite(object)

Arguments

object a list of oce objects.

See Also

Other functions that create composite objects: composite(), composite,amsr-method

computableWaterProperties

Determine Available Derived Water Properties

Description

This determines what things can be derived from the supplied variables. For example, if salinity,
temperature, and pressure are supplied, then potential temperature, sound speed, and several
other things can be derived. If, in addition, longitude and latitude are supplied, then Absolute
Salinity, Conservative Temperature, and some other things can be derived. Similarly, nitrate can
be computed from NO2+NO3 together with nitrate, and nitrite can be computed from NO2+NO3
together with nitrate. See the “Examples” for a full listing.

Usage

computableWaterProperties(x)

Arguments

x a specification of the names of known variables. This may be (a) an oce object,
in which case the names are determined by calling names() on the data slot of
x, or (b) a vector of character values indicating the names.

124 concatenate

Value

computableWaterProperties() returns a sorted character vector holding the names of computable
water properties, or NULL, if there are no computable values.

Author(s)

Dan Kelley

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(), swBeta(), swCSTp(),
swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(), swN2(), swPressure(),
swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(), swSigma2(),
swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(), swSoundSpeed(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

library(oce)
Example 1
data(ctd)
computableWaterProperties(ctd)
Example 2: nothing an be computed from just salinity
computableWaterProperties("salinity")
Example 3: quite a lot can be computed from this trio of values
computableWaterProperties(c("salinity", "temperature", "pressure"))
Example 4: now we can get TEOS-10 values as well
computableWaterProperties(c(

"salinity", "temperature", "pressure",
"longitude", "latitude"

))

concatenate Concatenate oce Objects (Generic)

Description

Concatenate oce Objects (Generic)

Usage

concatenate(object, ..., debug = getOption("oceDebug"))

concatenate,adp-method 125

Arguments

object an oce object.

... optional additional oce objects.

debug integer indicating a debugging level. If this is 0, the work is done silently. If it
is a larger integer, some information may be printed during the processing.

Value

An object of class corresponding to that of object.

See Also

Other functions that concatenate oce objects: concatenate,adp-method, concatenate,list-method,
concatenate,oce-method

concatenate,adp-method

Concatenate adp Objects

Description

This function concatenates adp objects. It is intended for objects holding data sampled through
time, and it works by pasting together data linearly if they are vectors, by row if they are matrices,
and by second index if they are arrays. It has been tested for the following classes: adp, adv, ctd,
and met. It may do useful things for other classes, and so users are encouraged to try, and to report
problems to the developers. It is unlikely that the function will do anything even remotely useful for
image and topographic data, to name just two cases that do not fit the sampled-over-time category.

Usage

S4 method for signature 'adp'
concatenate(object, ..., debug = getOption("oceDebug"))

Arguments

object An object of adp, or a list containing such objects (in which case the remaining
arguments are ignored).

... optional additional objects of adp.

debug integer indicating debugging level. If this exceeds 1, some information may be
printed during the processing.

Value

An object of adp.

126 concatenate,list-method

Author(s)

Dan Kelley

See Also

Other functions that concatenate oce objects: concatenate(), concatenate,list-method, concatenate,oce-method

Examples

1. Split, then recombine, a ctd object.
data(ctd)
ctd1 <- subset(ctd, scan <= median(ctd[["scan"]]))
ctd2 <- subset(ctd, scan > median(ctd[["scan"]]))
CTD <- concatenate(ctd1, ctd2)

2. Split, then recombine, an adp object.
data(adp)
midtime <- median(adp[["time"]])
adp1 <- subset(adp, time <= midtime)
adp2 <- subset(adp, time > midtime)
ADP <- concatenate(adp1, adp2)

Not run:
3. Download two met files and combine them.
met1 <- read.met(download.met(id=6358, year=2003, month=8))
met2 <- read.met(download.met(id=6358, year=2003, month=9))
MET <- concatenate(met1, met2)

End(Not run)

concatenate,list-method

Concatenate a List of oce Objects

Description

Concatenate a List of oce Objects

Usage

S4 method for signature 'list'
concatenate(object)

Arguments

object a list of oce objects.

concatenate,oce-method 127

Value

An object of class corresponding to that in object.

See Also

Other functions that concatenate oce objects: concatenate(), concatenate,adp-method, concatenate,oce-method

concatenate,oce-method

Concatenate oce Objects (oce-Specific)

Description

This function concatenates oce objects. It is intended for objects holding data sampled through
time, and it works by pasting together data linearly if they are vectors, by row if they are matrices,
and by second index if they are arrays. It has been tested for the following classes: adp, adv, ctd,
and met. It may do useful things for other classes, and so users are encouraged to try, and to report
problems to the developers. It is unlikely that the function will do anything even remotely useful for
image and topographic data, to name just two cases that do not fit the sampled-over-time category.

Usage

S4 method for signature 'oce'
concatenate(object, ..., debug = getOption("oceDebug"))

Arguments

object An object of oce, or a list containing such objects (in which case the remaining
arguments are ignored).

... optional additional objects of oce.

debug integer indicating debugging level. If this exceeds 1, some information may be
printed during the processing.

Value

An object of oce.

Author(s)

Dan Kelley

See Also

Other functions that concatenate oce objects: concatenate(), concatenate,adp-method, concatenate,list-method

128 coriolis

Examples

1. Split, then recombine, a ctd object.
data(ctd)
ctd1 <- subset(ctd, scan <= median(ctd[["scan"]]))
ctd2 <- subset(ctd, scan > median(ctd[["scan"]]))
CTD <- concatenate(ctd1, ctd2)

2. Split, then recombine, an adp object.
data(adp)
midtime <- median(adp[["time"]])
adp1 <- subset(adp, time <= midtime)
adp2 <- subset(adp, time > midtime)
ADP <- concatenate(adp1, adp2)

Not run:
3. Download two met files and combine them.
met1 <- read.met(download.met(id=6358, year=2003, month=8))
met2 <- read.met(download.met(id=6358, year=2003, month=9))
MET <- concatenate(met1, met2)

End(Not run)

coriolis Coriolis Parameter on the Earth

Description

Compute f , the Coriolis parameter as a function of latitude (see reference 1), assuming earth side-
rial angular rotation rate omega=7292115e-11 rad/s. See reference 1 for general notes, and see
reference 2 for comments on temporal variations of omega.

Usage

coriolis(latitude, degrees = TRUE)

Arguments

latitude Vector of latitudes in ◦N or radians north of the equator.

degrees Flag indicating whether degrees are used for latitude; if set to FALSE, radians are
used.

Value

Coriolis parameter, in radian/s.

Author(s)

Dan Kelley

ctd 129

References

1. Gill, A.E., 1982. Atmosphere-ocean Dynamics, Academic Press, New York, 662 pp.

2. Groten, E., 2004: Fundamental Parameters and Current, 2004. Best Estimates of the Param-
eters of Common Relevance to Astronomy, Geodesy, and Geodynamics. Journal of Geodesy,
77:724-797. (downloaded from http://www.iag-aig.org/attach/e354a3264d1e420ea0a9920fe762f2a0/51-groten.pdf
March 11, 2017).

Examples

C <- coriolis(45) # 1e-4

ctd Sample ctd Data

Description

This is a CTD profile measured in Halifax Harbour in 2003, based on ctdRaw(), but trimmed to just
the downcast with ctdTrim(), using indices inferred by inspection of the results from plotScan().

Usage

data(ctd)

Details

This station was sampled by students enrolled in the Dan Kelley’s Physical Oceanography class at
Dalhousie University. The data were acquired near the centre of the Bedford Basin of the Hali-
fax Harbour, during an October 2003 field trip of Dalhousie University’s Oceanography 4120/5120
class. Note that the startTime in the metadata slot was altered from 1903 to 2003, using oceEdit().
The change was done because the original time was clearly incorrect, perhaps owing to the use of
software that was designed to work in the twentieth century only.

Sample of Usage

library(oce)
data(ctd)
plot(ctd)

See Also

The full profile (not trimmed to the downcast) is available as data(ctdRaw).

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctdRaw, echosounder,
landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),

130 ctd-class

ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), woceUnit2oceUnit(), write.ctd()

ctd-class Class to Store CTD (or general hydrographic) Data

Description

This class stores hydrographic data such as measured with a CTD (conductivity, temperature, depth)
instrument, or with other systems that produce similar data. Data repositories may store conduc-
tivity, temperature and depth, as in the instrument name, but it is also common to store salinity,
temperature and pressure instead (or in addition). For this reason, ctd objects are required to hold
salinity, temperature and pressure in their data slot, with other data being optional. Formulae
are available for converting between variants of these data triplets, e.g. swSCTp() can calculate
salinity given conductivity, temperature and pressure, and these are used by the main func-
tions that create ctd objects. For example, if read.ctd.sbe() is used to read a Seabird file that
contains only conductivity, temperature and pressure, then that function will automatically append
a data item to hold salinity. Since as.ctd() does the same with salinity, the result this is that all ctd
objects hold salinity, temperature and pressure, which are henceforth called the three basic
quantities.

Details

Different units and scales are permitted for the three basic quantities, and most oce functions check
those units and scales before doing calculations (e.g. of seawater density), because those calcu-
lations demand certain units and scales. The way this is handled is that the accessor function
[[,ctd-method] returns values in standardized form. For example, a ctd object might hold tem-
perature defined on the IPTS-68 scale, but e.g. ctd[["temperature"]] returns a value on the
ITS-90 scale. (The conversion is done with T90fromT68().) Similarly, pressure may be stored
in either dbars or PSI, but e.g. ctd[["pressure"]] returns a value in dbars, after dividing by
0.689476 if the value is stored in PSI. Luckily, there is (as of early 2016) only one salinity scale in
common use in data files, namely PSS-78.

Slots

data As with all oce objects, the data slot for ctd objects is a list containing the main data for
the object. The key items stored in this slot are: salinity, temperature, and pressure,
although in many instances there are quite a few additional items.

metadata As with all oce objects, the metadata slot for ctd objects is a list containing information
about the data or about the object itself. An example of the former might be the location at
which a ctd measurement was made, stored in longitude and latitude, and of the latter
might be filename, the name of the data source.

ctd-class 131

processingLog As with all oce objects, the processingLog slot for ctd objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of ctd objects (see [[<-,ctd-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a ctd object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,ctd-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,ctd-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Reading/creating ctd objects

A file containing CTD profile data may be read with read.ctd(), and a CTD object can also be
created with as.ctd(). See read.ctd() for references on data formats used in CTD files. Data
can also be assembled into ctd objects with as.ctd().

Statistical summaries are provided by summary,ctd-method(), while show() displays an overview.

CTD objects may be plotted with plot,ctd-method(), which does much of its work by calling
plotProfile() or plotTS(), both of which can also be called by the user, to get fine control over
the plots.

A CTD profile can be isolated from a larger record with ctdTrim(), a task made easier when
plotScan() is used to examine the results. Towyow data can be split up into sets of profiles
(ascending or descending) with ctdFindProfiles(). CTD data may be smoothed and/or cast onto
specified pressure levels with ctdDecimate().

As with all oce objects, low-level manipulation may be done with oceSetData() and oceSetMetadata().
Additionally, many of the contents of CTD objects may be altered with the [[<-,ctd-method
scheme, and sufficiently skilled users may even manipulate the contents directly.

132 ctd.cnv.gz

Data sources

Archived CTD (and other) data may be found on servers such as

1. https://cchdo.ucsd.edu/

Author(s)

Dan Kelley

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, lisst-class, lobo-class, met-class, oce-class, odf-class, rsk-class,
sealevel-class, section-class, topo-class, windrose-class, xbt-class

Examples

1. Create a ctd object with fake data.
a <- as.ctd(salinity = 35 + 1:3 / 10, temperature = 10 - 1:3 / 10, pressure = 1:3)
summary(a)

2. Fix a typo in a station latitude (fake! it's actually okay)
data(ctd)
ctd <- oceSetMetadata(

ctd, "latitude", ctd[["latitude"]] - 0.001,
"fix latitude typo in log book"

)

ctd.cnv.gz Sample ctd File in .cnv Format

Description

Sample ctd File in .cnv Format

ctdDecimate 133

See Also

Other raw datasets: CTD_BCD2014666_008_1_DN.ODF.gz, adp_rdi.000, ctd_aml_type1.csv.gz,
ctd_aml_type3.csv.gz, d200321-001.ctd.gz, d201211_0011.cnv.gz, xbt.edf

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctdDecimate(), ctdFindProfiles(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

read.oce(system.file("extdata", "ctd.cnv.gz", package="oce"))

ctdDecimate Decimate a ctd Profile

Description

Interpolate a CTD profile to specified pressure values. This is used by sectionGrid(), but is also
useful for dealing with individual CTD/bottle profiles.

Usage

ctdDecimate(
x,
p = 1,
method = "boxcar",
rule = 1,
e = 1.5,
na.rm = FALSE,
debug = getOption("oceDebug")

)

Arguments

x a ctd object.

p pressure increment, or vector of pressures. In the first case, pressures from 0dbar
to the rounded maximum pressure are used, incrementing by p dbars. If a vector
of pressures is given, interpolation is done to these pressures.

method the method to be used for calculating decimated values. This may be a string
specifying the method, or a function. In the string case, the possibilities are as
follows.

134 ctdDecimate

• "boxcar" (based on a local average)
• "approx" (based on linear interpolation between neighboring points, using
approx() with the rule argument specified here)

• "approxML" as "approx", except that a mixed layer is assumed to apply
above the top data value; this is done by setting the yleft argument to
approx(), and by calling that function with rule=c(2, 1))

• "lm" (based on local regression, with e setting the size of the local region);
• "rr" for the Reiniger and Ross method, carried out with oce.approx();
• "unesco" (for the UNESCO method, carried out with oce.approx().

On the other hand, if method is a function, then it must take two arguments,
named data and parameters. The first is set to x@data by ctdTrim(). The
second is passed directly to the user’s function (see Example 2). The return value
from the function must be a logical vector of the same length as the pressure
data, with TRUE values meaning to keep the corresponding entries of the data
slot.

rule an integer that is passed to approx(), in the case where method is "approx".
Note that the default value for rule is 1, which will inhibit extrapolation beyond
the observed pressure range. This is a change from the behaviour previous to
May 8, 2017, when a rule of 2 was used (without stating so as an argument).

e is an expansion coefficient used to calculate the local neighbourhoods for the
"boxcar" and "lm" methods. If e=1, then the neighbourhood for the i-th pres-
sure extends from the (i-1)-th pressure to the (i+1)-th pressure. At the end-
points it is assumed that the outside bin is of the same pressure range as the
first inside bin. For other values of e, the neighbourhood is expanded linearly in
each direction. If the "lm" method produces warnings about "prediction from a
rank-deficient fit", a larger value of "e" should be used.

na.rm logical value indicating whether to remove NA values before decimating. This
value is ignored unless method is boxcar in which case it is passed to binMean1D()
which does the averaging. This parameter was added in February 2024, and the
behaviour of ctdDecimate() prior that date was equivalent to na.rm=FALSE, so
that is the default value, even though it is expected that many uses will find using
TRUE is more convenient. See https://github.com/dankelley/oce/issues/2192
for more discussion.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The "approx" and "approxML" methods may be best for bottle data, in which the usual task is to
interpolate from a coarse sampling grid to a finer one. The distinction is that "approxML" assumes
a mixed-layer above the top sample value. For CTD data, the "boxcar" method may be the pre-
ferred choice, because the task is normally to sub-sample, and some degree of smoothing is usually

ctdDecimate 135

desired. (The "lm" method can be quite slow, and its results may be quite similar to those of the
boxcar method.)

For widely-spaced data, a sort of numerical cabeling effect can result when density is computed
based on interpolated salinity and temperature. See reference 2 for a discussion of this issue and
possible solutions.

Value

A ctd object, with pressures that are as set by the "p" parameter and all other properties modified
appropriately.

A note about flags

Data-quality flags contained within the original object are ignored by this function, and the returned
value contains no such flags. This is because such flags represent an assessment of the original
data, not of quantities derived from those data. This function produces a warning to this effect.
The recommended practice is to use handleFlags() or some other means to deal with flags before
calling the present function.

Author(s)

Dan Kelley

References

1. R.F. Reiniger and C.K. Ross, 1968. A method of interpolation with application to oceano-
graphic data. Deep Sea Research, 15, 185-193.

2. Oguma, Sachiko, Toru Suzuki, Yutaka Nagata, Hidetoshi Watanabe, Hatsuyo Yamaguchi, and
Kimio Hanawa. “Interpolation Scheme for Standard Depth Data Applicable for Areas with
a Complex Hydrographical Structure.” Journal of Atmospheric and Oceanic Technology 21,
no. 4 (April 1, 2004): 704-15.

See Also

The documentation for ctd explains the structure of CTD objects, and also outlines the other func-
tions dealing with them.

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdFindProfiles(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

136 ctdFindProfiles

Examples

library(oce)
data(ctd)
plotProfile(ctd, "salinity", ylim = c(10, 0))
p <- seq(0, 45, 1)
ctd2 <- ctdDecimate(ctd, p = p)
lines(ctd2[["salinity"]], ctd2[["pressure"]], col = "blue")
p <- seq(0, 45, 1)
ctd3 <- ctdDecimate(ctd, p = p, method = function(x, y, xout) {

predict(smooth.spline(x, y, df = 30), xout)$y
})
lines(ctd3[["salinity"]], ctd3[["pressure"]], col = "red")

ctdFindProfiles Find Profiles Within a Tow-Yow ctd Record

Description

Examine the pressure record looking for extended periods of either ascent or descent, and return
either indices to these events or a vector of CTD records containing the events.

Usage

ctdFindProfiles(
x,
cutoff = 0.5,
minLength = 10,
minHeight,
smoother = smooth.spline,
direction = c("descending", "ascending"),
breaks,
arr.ind = FALSE,
distinct,
debug = getOption("oceDebug"),
...

)

Arguments

x a ctd object.

cutoff criterion on pressure difference; see “Details”. If not provided, this defaults to
0.5.

minLength lower limit on number of points in candidate profiles. If not provided, this de-
faults to 10.

minHeight lower limit on height of candidate profiles. If not provided, this defaults to 0.1
times the pressure span.

ctdFindProfiles 137

smoother The smoothing function to use for identifying down/up casts. The default is
smooth.spline, which performs well for a small number of cycles; see “Ex-
amples” for a method that is better for a long tow-yo. The return value from
smoother must be either a list containing an element named y or something that
can be coerced to a vector with as.vector(). To turn smoothing off, so that
cycles in pressure are determined by simple first difference, set smoother to
NULL.

direction String indicating the travel direction to be selected.

breaks optional integer vector indicating the indices of last datum in each profile stored
within x. Thus, the first profile in the return value will contain the x data from
indices 1 to breaks[1]. If breaks is given, then all other arguments except x
are ignored. Using breaks is handy in cases where other schemes fail, or when
the author has independent knowledge of how the profiles are strung together in
x.

arr.ind logical value indicating whether the array indices should be returned; the alter-
native is to return a vector of ctd objects.

distinct An optional string indicating how to identify profiles by unique values. Use
"location" to find profiles by a change in longitude and latitude, or use the
name of any of item in the data slot in x. In these cases, all the other arguments
except x are ignored. However, if distinct is not supplied, the other arguments
are handled as described above.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

... Optional extra arguments that are passed to the smoothing function, smoother.

Details

The method works by examining the pressure record. First, this is smoothed using smoother() (see
“Arguments”), and then the result is first-differenced using diff(). Median values of the positive
and negative first-difference values are then multiplied by cutoff. This establishes criteria for any
given point to be in an ascending profile, a descending profile, or a non-profile. Contiguous regions
are then found, and those that have fewer than minLength points are discarded. Then, those that
have pressure ranges less than minHeight are discarded.

Caution: this method is not well-suited to all datasets. For example, the default value of smoother
is smooth.spline(), and this works well for just a few profiles, but poorly for a tow-yo with a
long sequence of profiles; in the latter case, it can be preferable to use simpler smoothers (see
“Examples”). Also, depending on the sampling protocol, it is often necessary to pass the resultant
profiles through ctdTrim(), to remove artifacts such as an equilibration phase, etc. Generally, one
is well-advised to use the present function for a quick look at the data, relying on e.g. plotScan()
to identify profiles visually, for a final product.

138 ctdFindProfiles

Value

If arr.ind=TRUE, a data frame with columns start and end, the indices of the downcasts. Other-
wise, a vector of ctd objects. In this second case, the station names are set to a form like "10/3",
for the third profile within an original ctd object with station name "10", or to "3", if the original
ctd object had no station name defined.

Sample of Usage

library(oce)
These examples cannot be tested, because they are based on
data objects that are not provided with oce.

Example 1. Find profiles within a towyo file, as can result
if the CTD is cycled within the water column as the ship
moves.
profiles <- ctdFindProfiles(towyo)

Example 2. Use a moving average to smooth pressure, instead of the
default smooth.spline() method. This might avoid a tendency of
the default scheme to miss some profiles in a long towyo.
movingAverage <- function(x, n = 11, ...)
{

f <- rep(1/n, n)
stats::filter(x, f, ...)

}
casts <- ctdFindProfiles(towyo, smoother=movingAverage)

Example 3: glider data read into a ctd object. Chop
into profiles by looking for pressure jumps exceeding
10 dbar.
breaks <- which(diff(gliderAsCtd[["pressure"]]) > 10)
profiles <- ctdFindProfiles(gliderAsCtd, breaks=breaks)

Author(s)

Dan Kelley and Clark Richards

See Also

The documentation for ctd explains the structure of CTD objects, and also outlines the other func-
tions dealing with them.

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),

ctdFindProfilesRBR 139

setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

ctdFindProfilesRBR Find Profiles Within a ctd Object Read From a RBR File

Description

This uses information about profiles that is contained within the metadata slot of the first param-
eter, x, having been inserted there by read.rsk(). If x was created by reading an .rsk file with
read.rsk(), and if that file contained geographical information (that is, if it had a data table named
geodata) then the first longitude and latitude from each profile is stored in the metadata slot of the
returned value.

Usage

ctdFindProfilesRBR(
x,
direction = "descending",
arr.ind = FALSE,
debug = getOption("oceDebug")

)

Arguments

x either an rsk or a ctd object; in the former case, it is converted to a ctd object
with as.ctd().

direction character value, either "descending" or "ascending", indicating the sampling
direction to be selected. The default, "descending", is the commonly preferred
choice.

arr.ind logical value indicating whether the array indices should be returned; the alter-
native is to return a vector of ctd objects.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Author(s)

Dan Kelley

140 ctdRaw

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), plot,rsk-method,
read.rsk(), rsk, rsk-class, rskPatm(), rskToc(), subset,rsk-method, summary,rsk-method

ctdRaw Sample ctd Data, Not Trimmed of Extraneous Data

Description

This is sample CTD profile provided for testing. It includes not just the (useful) portion of the
dataset during which the instrument was being lowered, but also data from the upcast and from time
spent near the surface. Spikes are also clearly evident in the pressure record. With such real-world
wrinkles, this dataset provides a good example of data that need trimming with ctdTrim().

Usage

data(ctdRaw)

Details

This station was sampled by students enrolled in the Dan Kelley’s Physical Oceanography class at
Dalhousie University. The data were acquired near the centre of the Bedford Basin of the Halifax
Harbour, during an October 2003 field trip of Dalhousie University’s Oceanography 4120/5120
class. (Note that the startTime in the metadata slot was altered from 1903 to 2003, using
oceEdit(). The change was done because the original time was clearly incorrect, perhaps ow-
ing to the use of software that was designed to work in the twentieth only.)

See Also

A similar dataset (trimmed to the downcast) is available as data(ctd).

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),

ctdRepair 141

read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), woceUnit2oceUnit(), write.ctd()

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, echosounder,
landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

ctdRepair Repair a Malformed ctd Object

Description

Make a ctd object adhere more closely with the expected form, e.g. by moving certain things from
the data slot to the metadata slot, where other oce functions may assume they will be located. This
can be handy for objects that were set up incorrectly, perhaps by inappropriate user insertions.

Usage

ctdRepair(x, debug = getOption("oceDebug"))

Arguments

x a ctd object.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The possible changes fall into the following categories.

1. If unit-length values for latitude, longitude, time, or station exist in the data slot, move
them to the metadata slot. However, leave them in data if their length exceeds 1, because
this can arise with towyo data.

2. If the metadata or data slot contains items named time, recoveryTime, startTime, or
systemUploadTime, and if these are not in POSIXt format, then use as.POSIXct() with
tz="UTC" to convert them to POSIXt format. If that conversion fails, owing to an unrecogniz-
able format, then the original value is retained, unaltered.

Value

A ctd object that is based on x, but possibly with some elements changed as described in the “De-
tails” section.

142 ctdTrim

Author(s)

Dan Kelley

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), woceUnit2oceUnit(), write.ctd()

Examples

library(oce)
data(ctd)
Insert location information into 'data' slot, although it belongs in 'metadata'.
ctd@data$latitude <- ctd@metadata$latitude # Done by experts only!
ctd@data$longitude <- ctd@metadata$longitude # Done by experts only!
repaired <- ctdRepair(ctd)

ctdTrim Trim Beginning and Ending of a CTD cast

Description

Often in CTD profiling, the goal is to isolate only the downcast, discarding measurements made
in the air, in an equilibration phase in which the device is held below the water surface, and then
the upcast phase that follows the downcast. This is handled reasonably well by ctdTrim with
method="downcast", although it is almost always best to use plotScan() to investigate the data,
and then use the method="index" or method="scan" method based on visual inspection of the
data.

Usage

ctdTrim(
x,
method,
removeDepthInversions = FALSE,
parameters = NULL,
indices = FALSE,
debug = getOption("oceDebug")

)

ctdTrim 143

Arguments

x a ctd object.

method A string (or a vector of two strings) specifying the trimming method, or a func-
tion to be used to determine data indices to keep. If method is not provided,
"downcast" is assumed. See “Details”.

removeDepthInversions

Logical value indicating whether to remove any levels at which depth is less
than, or equal to, a depth above. (This is needed if the object is to be assem-
bled into a section, unless ctdDecimate() will be used, which will remove the
inversions.

parameters A list whose elements depend on the method; see “Details”.

indices Logical value indicating what to return. If indices=FALSE (the default), then the
return value is a subsetted ctd object. If indices=TRUE, then the return value is a
logical vector that could be used to subset the data with subset,ctd-method()
or to set data-quality flags.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

ctdTrim begins by examining the pressure differences between subsequent samples. If these are
all of the same value, then the input ctd object is returned, unaltered. This handles the case of
pressure-binned data. However, if the pressure difference varies, a variety of approaches are taken
to trimming the dataset.

• If method[1] is "downcast" then an attempt is made to keep only data for which the CTD is
descending. This is done in stages, with variants based on method[2], if supplied.

1. The pressure data are despiked with a smooth() filter with method "3R". This removes
wild spikes that arise from poor instrument connections, etc.

2. Step 2. If no parameters are given, then any data with negative pressures are deleted. If
there is a parameter named pmin, then that pressure (in decibars) is used instead as the
lower limit. This is a commonly-used setup, e.g. ctdTrim(ctd, parameters=list(pmin=1))
removes the top decibar (roughly 1m) from the data. Specifying pmin is a simple way
to remove near-surface data, such as a shallow equilibration phase, and if specified will
cause ctdTrim to skip step 4 below.

3. The maximum pressure is determined, and data acquired subsequent to that point are
deleted. This removes the upcast and any subsequent data.

4. If the pmin parameter is not specified, an attempt is made to remove an initial equilib-
rium phase by a regression of pressure on scan number. There are three variants to this,
depending on the value of the second method element. If method is "A" (or not given),
the procedure is to call nls() to fit a piecewise linear model of pressure as a function of
scan, in which pressure is constant for scan less than a critical value, and then linearly
varying for with scan. This is meant to handle the common situation in which the CTD is

144 ctdTrim

held at roughly constant depth (typically a metre or so) to equilibrate, before it is lowered
through the water column. If method is "B", the procedure is similar, except that the
pressure in the surface region is taken to be zero (this does not make much sense, but it
might help in some cases). Note that, prior to early 2016, method "B" was called method
"C"; the old "B" method was judged useless and so it was removed.

• If method="upcast", a sort of reverse of "downcast" is used. This was added in late April
2017 and has not been well tested yet.

• If method="sbe", a method similar to that described in the SBE Data Processing manual is
used to remove the "soak" period at the beginning of a cast (see Section 6 under subsection
"Loop Edit"). The method is based on the soak procedure whereby the instrument sits at a
fixed depth for a period of time, after which it is raised toward the surface before beginning
the actual downcast. This enables equilibration of the sensors while still permitting reasonably
good near-surface data. Parameters for the method can be passed using the parameters argu-
ment, which include minSoak (the minimum depth for the soak) and maxSoak the maximum
depth of the soak. The method finds the minimum pressure prior to the maxSoak value being
passed, each of which occurring after the scan in which the minSoak value was reached. For
the method to work, the pre-cast pressure minimum must be less than the minSoak value. The
default values of minSoak and maxSoak are 1 and 20 dbar, respectively.

• If method="index" or "scan", then each column of data is subsetted according to the value
of parameters. If the latter is a logical vector of length matching data column length, then it
is used directly for subsetting. If parameters is a numerical vector with two elements, then
the index or scan values that lie between parameters[1] and parameters[2] (inclusive) are
used for subsetting. The two-element method is probably the most useful, with the values
being determined by visual inspection of the results of plotScan(). While this may take a
minute or two, the analyst should bear in mind that a deep-water CTD profile might take 6
hours, corresponding to ship-time costs exceeding a week of salary.

• If method="range" then data are selected based on the value of the column named parameters$item.
This may be by range or by critical value. By range: select values between parameters$from
(the lower limit) and parameters$to (the upper limit) By critical value: select if the named
column exceeds the value. For example, ctd2 <- ctdTrim(ctd, "range", parameters=list(item="scan",
from=5)) starts at scan number 5 and continues to the end, while ctdTrim(ctd,"range",
parameters=list(item="scan", from=5, to=100)) also starts at scan 5, but extends only
to scan 100.

• If method is a function, then it must return a vector of logical() values, computed based on
two arguments: data (a list()), and parameters as supplied to ctdTrim. Both inferWaterDepth
and removeInversions are ignored in the function case. See “Examples”.

Value

Either a ctd object or a logical vector of length matching the data. In the first case, which is the
default, the elements of the data slot will have been trimmed, along with some elements of the
metadata slot (e.g. metadata4flags and, if present and of length matching data$pressure, both
metadata$longitude and metadata$latitude). The second case, achieved by setting indices=FALSE,
may be helpful for advanced users who wish to do things like construct data flags to be inserted into
the object.

ctd_aml_type1.csv.gz 145

Historical Note

The subsetting of longitude and latitude in the metadata slot was introduced on 2022-12-13,
for use with ctd objects created using as.ctd() on rsk objects created by using read.rsk() on
Ruskin files that hold data from RBR CTD instruments linked with phone/tablet devices equipped
with GPS sensors.

Sample of Usage

library(oce)
data(ctdRaw)
Example 1: focus on downcast
plot(ctdTrim(ctdRaw))
Example 2: user-supplied function.
trimByIndex<-function(data, parameters) {

parameters[1] < data$scan & data$scan < parameters[2]
}
trimmed <- ctdTrim(ctdRaw, trimByIndex, parameters=c(130, 380))
plot(trimmed)

Author(s)

Dan Kelley and Clark Richards

References

The Seabird CTD instrument is described at http://www.seabird.com/products/spec_sheets/19plusdata.htm.

Seasoft V2: SBE Data Processing, SeaBird Scientific, 05/26/2016

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), woceUnit2oceUnit(), write.ctd()

ctd_aml_type1.csv.gz Sample ctd File in aml Format 1

Description

This file may be read with read.ctd.aml(). It is based on a file donated by Ashley Stanek, which
was shortened to just 5 points for inclusion in oce, and which had some identifying information
(serial number, IP address, and WEP code) redacted.

146 ctd_aml_type3.csv.gz

See Also

Other raw datasets: CTD_BCD2014666_008_1_DN.ODF.gz, adp_rdi.000, ctd.cnv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, xbt.edf

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

ctd <- read.ctd.aml(system.file("extdata", "ctd_aml_type1.csv.gz", package="oce"))

ctd_aml_type3.csv.gz Sample ctd File in aml Format 3

Description

This file may be read with read.ctd.aml(). It is based on a file created with Sailfish 1.4.8.0
software, as explained in an oce issue at https://github.com/dankelley/oce/issues/2247.
Only the first 5 data points are provided here.

See Also

Other raw datasets: CTD_BCD2014666_008_1_DN.ODF.gz, adp_rdi.000, ctd.cnv.gz, ctd_aml_type1.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, xbt.edf

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

ctd <- read.ctd.aml(system.file("extdata", "ctd_aml_type3.csv.gz", package="oce"))

https://github.com/dankelley/oce/issues/2247

CTD_BCD2014666_008_1_DN.ODF.gz 147

CTD_BCD2014666_008_1_DN.ODF.gz

Sample ctd File in .odf Format

Description

The location is approximately 30km southeast of Halifax Harbour, at "Station 2" of the Halifax Line
on the Scotian Shelf.

See Also

Other raw datasets: adp_rdi.000, ctd.cnv.gz, ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, xbt.edf

Other things related to ctd data: [[,ctd-method, [[<-,ctd-method, as.ctd(), cnvName2oceName(),
ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other things related to odf data: ODF2oce(), ODFListFromHeader(), ODFNames2oceNames(),
[[,odf-method, [[<-,odf-method, odf-class, plot,odf-method, read.ctd.odf(), read.odf(),
subset,odf-method, summary,odf-method

Examples

ctd <- read.ctd(system.file("extdata", "CTD_BCD2014666_008_1_DN.ODF.gz", package="oce"))
plot(ctd)

ctimeToSeconds Interpret a Character String as a Time Interval

Description

Infer a time interval from a character string in the form MM:SS or HH:MM:SS.

Usage

ctimeToSeconds(ctime)

Arguments

ctime a character string (see “Details”.

148 curl

Value

A numeric value, the number of seconds represented by the string.

Author(s)

Dan Kelley

See Also

See secondsToCtime(), the inverse of this.

Other things related to time: julianCenturyAnomaly(), julianDay(), numberAsHMS(), numberAsPOSIXct(),
secondsToCtime(), unabbreviateYear()

Examples

library(oce)
cat("10 = ", ctimeToSeconds("10"), "s\n", sep = "")
cat("01:04 = ", ctimeToSeconds("01:04"), "s\n", sep = "")
cat("1:00:00 = ", ctimeToSeconds("1:00:00"), "s\n", sep = "")

curl Curl of 2D Vector Field

Description

Calculate the z component of the curl of an x-y vector field.

Usage

curl(u, v, x, y, geographical = FALSE, method = 1)

Arguments

u matrix containing the ’x’ component of a vector field

v matrix containing the ’y’ component of a vector field

x the x values for the matrices, a vector of length equal to the number of rows in u
and v.

y the y values for the matrices, a vector of length equal to the number of cols in u
and v.

geographical logical value indicating whether x and y are longitude and latitude, in which
case spherical trigonometry is used.

method A number indicating the method to be used to calculate the first-difference ap-
proximations to the derivatives. See “Details”.

curl 149

Details

The computed component of the curl is defined by ∂v/∂x− ∂u/∂y and the estimate is made using
first-difference approximations to the derivatives. Two methods are provided, selected by the value
of method.

• For method=1, a centred-difference, 5-point stencil is used in the interior of the domain. For
example, ∂v/∂x is given by the ratio of vi+1,j − vi−1,j to the x extent of the grid cell at index
j. (The cell extents depend on the value of geographical.) Then, the edges are filled in
with nearest-neighbour values. Finally, the corners are filled in with the adjacent value along
a diagonal. If geographical=TRUE, then x and y are taken to be longitude and latitude in
degrees, and the earth shape is approximated as a sphere with radius 6371km. The resultant x
and y are identical to the provided values, and the resultant curl is a matrix with dimension
identical to that of u.

• For method=2, each interior cell in the grid is considered individually, with derivatives calcu-
lated at the cell center. For example, ∂v/∂x is given by the ratio of 0.5∗ (vi+1,j +vi+1,j+1)−
0.5 ∗ (vi,j + vi,j+1) to the average of the x extent of the grid cell at indices j and j + 1. (The
cell extents depend on the value of geographical.) The returned x and y values are the mid-
points of the supplied values. Thus, the returned x and y are shorter than the supplied values
by 1 item, and the returned curl matrix dimensions are similarly reduced compared with the
dimensions of u and v.

Value

A list containing vectors x and y, along with matrix curl. See “Details” for the lengths and dimen-
sions, for various values of method.

Author(s)

Dan Kelley and Chantelle Layton

See Also

Other things relating to vector calculus: grad()

Examples

library(oce)
1. Shear flow with uniform curl.
x <- 1:4
y <- 1:10
u <- outer(x, y, function(x, y) y / 2)
v <- outer(x, y, function(x, y) -x / 2)
C <- curl(u, v, x, y, FALSE)

2. Rankine vortex: constant curl inside circle, zero outside
rankine <- function(x, y) {

r <- sqrt(x^2 + y^2)
theta <- atan2(y, x)
speed <- ifelse(r < 1, 0.5 * r, 0.5 / r)
list(u = -speed * sin(theta), v = speed * cos(theta))

150 d200321-001.ctd.gz

}
x <- seq(-2, 2, length.out = 100)
y <- seq(-2, 2, length.out = 50)
u <- outer(x, y, function(x, y) rankine(x, y)$u)
v <- outer(x, y, function(x, y) rankine(x, y)$v)
C <- curl(u, v, x, y, FALSE)
plot results
par(mfrow = c(2, 2))
imagep(x, y, u, zlab = "u", asp = 1)
imagep(x, y, v, zlab = "v", asp = 1)
imagep(x, y, C$curl, zlab = "curl", asp = 1)
hist(C$curl, breaks = 100)

d200321-001.ctd.gz Sample ctd File in .ctd Format

Description

Sample ctd File in .ctd Format

See Also

Other raw datasets: CTD_BCD2014666_008_1_DN.ODF.gz, adp_rdi.000, ctd.cnv.gz, ctd_aml_type1.csv.gz,
ctd_aml_type3.csv.gz, d201211_0011.cnv.gz, xbt.edf

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

read.oce(system.file("extdata", "d200321-001.ctd.gz", package="oce"))

d201211_0011.cnv.gz 151

d201211_0011.cnv.gz Sample ctd File in .cnv Format

Description

Sample ctd File in .cnv Format

See Also

Other raw datasets: CTD_BCD2014666_008_1_DN.ODF.gz, adp_rdi.000, ctd.cnv.gz, ctd_aml_type1.csv.gz,
ctd_aml_type3.csv.gz, d200321-001.ctd.gz, xbt.edf

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

read.oce(system.file("extdata", "d201211_0011.cnv.gz", package="oce"))

dataLabel Associate Data Names With Units

Description

Note that the whole object is not being given as an argument; possibly this will reduce copying and
thus storage impact.

Usage

dataLabel(names, units)

Arguments

names the names of data within an object
units the units from metadata

Value

a vector of strings, with blank entries for data with unknown units

152 decimate

decimate Smooth and Decimate, or Subsample, an oce Object

Description

Later on, other methods will be added, and ctdDecimate() will be retired in favour of this, a more
general, function. The filtering is done with the filter() function of the stats package.

Usage

decimate(x, by = 10, to, filter, debug = getOption("oceDebug"))

Arguments

x an oce object.

by an indication of the subsampling. If this is a single number, then it indicates the
spacing between elements of x that are selected. If it is two numbers (a condition
only applicable if x is an echosounder object, at present), then the first number
indicates the time spacing and the second indicates the depth spacing.

to Indices at which to subsample. If given, this over-rides by.

filter optional list of numbers representing a digital filter to be applied to each vari-
able in the data slot of x, before decimation is done. If not supplied, then the
decimation is done strictly by sub-sampling.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

Value

An oce object that has been subsampled appropriately.

Bugs

Only a preliminary version of this function is provided in the present package. It only works for
objects of class echosounder, for which the decimation is done after applying a running median
filter and then a boxcar filter, each of length equal to the corresponding component of by.

Author(s)

Dan Kelley

See Also

Filter coefficients may be calculated using makeFilter(). (Note that ctdDecimate() will be re-
tired when the present function gains equivalent functionality.)

decodeHeaderNortek 153

Examples

library(oce)
data(adp)
plot(adp)
adpDec <- decimate(adp, by = 2, filter = c(1 / 4, 1 / 2, 1 / 4))
plot(adpDec)

decodeHeaderNortek Decode a Nortek Header

Description

Decode data in a Nortek ADV or ADP header.

Usage

decodeHeaderNortek(
buf,
type = c("aquadoppHR", "aquadoppProfiler", "aquadopp", "aquadoppPlusMagnetometer",

"vector"),
debug = getOption("oceDebug"),
...

)

Arguments

buf a “raw” buffer containing the header

type type of device

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... additional arguments, passed to called routines.

Details

Decodes the header in a binary-format Nortek ADV/ADP file. This function is designed to be used
by read.adp() and read.adv(), but can be used directly as well. The code is based on information
in the Nortek System Integrator Guide (2008) and on postings on the Nortek “knowledge center”
discussion board. One might assume that the latter is less authoritative than the former. For ex-
ample, the inference of cell size follows advice found at https://www.nortekusa.com/en/knowledge-
center/forum/hr-profilers/736804717, which contains a typo in an early posting that is corrected
later on.

Value

A list containing elements hardware, head, user and offset. The easiest way to find the contents
of these is to run this function with debug=3.

154 decodeTime

Author(s)

Dan Kelley and Clark Richards

References

1. Information on Nortek profilers (including the System Integrator Guide, which explains the
data format byte-by-byte) is available at https://www.nortekusa.com/usa?set_language=usa
after login.

2. The Nortek Knowledge Center https://www.nortekusa.com/en/knowledge-center may be of
help if problems arise in dealing with data from Nortek instruments.

3. Nortek, "Classic Integrators Guide: Aquadopp | Aquadopp DW | Aquadopp Profiler | HQ
Aquadopp Profiler | Vector | AWAC." Nortek AS, 2022.

See Also

Most users should employ the functions read.adp() and read.adv() instead of this one.

decodeTime Oce Version of as.POSIXct

Description

Each format in timeFormats is used in turn as the format argument to as.POSIXct(), and the first
that produces a non-NA result is used. If timeFormats is missing, the following formats are tried,
in the stated order:

Usage

decodeTime(time, timeFormats, tz = "UTC")

Arguments

time Character string with an indication of the time.

timeFormats Optional vector of time formats to use, as for as.POSIXct().

tz Time zone.

Details

• "\%b \%d \%Y \%H:\%M:\%S" (e.g. "Jul 1 2013 01:02:03")

• "\%b \%d \%Y" (e.g. "Jul 1 2013")

• "\%B \%d \%Y \%H:\%M:\%S" (e.g. "July 1 2013 01:02:03")

• "\%B \%d \%Y" (e.g. "July 1 2013")

• "\%d \%b \%Y \%H:\%M:\%S" (e.g. "1 Jul 2013 01:02:03")

• "\%d \%b \%Y" (e.g. "1 Jul 2013")

decodeTime 155

• "\%d \%B \%Y \%H:\%M:\%S" (e.g. "1 July 2013 01:02:03")

• "\%d \%B \%Y" (e.g. "1 July 2013")

• "\%Y-\%m-\%d \%H:\%M:\%S" (e.g. "2013-07-01 01:02:03")

• "\%Y-\%m-\%d" (e.g. "2013-07-01")

• "\%Y-\%b-\%d \%H:\%M:\%S" (e.g. "2013-July-01 01:02:03")

• "\%Y-\%b-\%d" (e.g. "2013-Jul-01")

• "\%Y-\%B-\%d \%H:\%M:\%S" (e.g. "2013-July-01 01:02:03")

• "\%Y-\%B-\%d" (e.g. "2013-July-01")

• "\%d-\%b-\%Y \%H:\%M:\%S" (e.g. "01-Jul-2013 01:02:03")

• "\%d-\%b-\%Y" (e.g. "01-Jul-2013")

• "\%d-\%B-\%Y \%H:\%M:\%S" (e.g. "01-July-2013 01:02:03")

• "\%d-\%B-\%Y" (e.g. "01-July-2013")

• "\%Y/\%b/\%d \%H:\%M:\%S" (e.g. "2013/Jul/01 01:02:03")

• "\%Y/\%b/\%d" (e.g. "2013/Jul/01")

• "\%Y/\%B/\%d \%H:\%M:\%S" (e.g. "2013/July/01 01:02:03")

• "\%Y/\%B/\%d" (e.g. "2013/July/01")

• "\%Y/\%m/\%d \%H:\%M:\%S" (e.g. "2013/07/01 01:02:03")

• "\%Y/\%m/\%d" (e.g. "2013/07/01")

Value

A time as returned by as.POSIXct().

Author(s)

Dan Kelley

Examples

decodeTime("July 1 2013 01:02:03")
decodeTime("Jul 1 2013 01:02:03")
decodeTime("1 July 2013 01:02:03")
decodeTime("1 Jul 2013 01:02:03")
decodeTime("2013-07-01 01:02:03")
decodeTime("2013/07/01 01:02:03")
decodeTime("2013/07/01")

156 defaultFlags

defaultFlags Suggest a Default Flag Vector for Bad or Suspicious Data

Description

defaultFlags tries to suggest a reasonable default flag scheme for use by handleFlags(). It does
this by looking for an item named flagScheme in the metadata slot of object. If flagScheme
is found, and if the scheme is recognized, then a numeric vector is returned that indicates bad
or questionable data. If flagScheme$default exists, then that scheme is returned. However, if
that does not exist, and if flagScheme$name is recognized, then a pre-defined (very conservative)
scheme is used, as listed below.

Usage

defaultFlags(object)

Arguments

object An oce object

Details

• for argo, the default is c(0,3,4,6,7,9), meaning to act upon not_assessed (0), probably_bad
(3), bad (4), not_used_6 (6), not_used_7 (7) and missing (9). See Section 3.2.2 of Carval
et al. (2019).

• for BODC, the default is c(0,2,3,4,5,6,7,8,9), i.e. all flags except good.

• for DFO, the default is c(0,2,3,4,5,8,9), i.e. all flags except appears_correct.

• for WHP bottle, the default is c(1,3,4,5,6,7,8,9), i.e. all flags except no_problems_noted.

• for WHP ctd, the default is c(1,3,4,5,6,7,9), i.e. all flags except acceptable.

Value

A vector of one or more flag values, or NULL if object metadata slot lacks a flagScheme as set by
initializeFlagScheme(), or if it has a scheme that is not in the list provide in “Description”.

References

• Carval, Thierry, Bob Keeley, Yasushi Takatsuki, Takashi Yoshida, Stephen Loch Loch, Clau-
dia Schmid, and Roger Goldsmith. Argo User’s Manual V3.3. Ifremer, 2019. doi:10.13155/
29825

https://doi.org/10.13155/29825
https://doi.org/10.13155/29825

despike 157

See Also

Other functions relating to data-quality flags: handleFlags(), handleFlags,adp-method, handleFlags,argo-method,
handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method, initializeFlagScheme(),
initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

despike Remove Spikes From a Time Series

Description

The method identifies spikes with respect to a "reference" time-series, and replaces these spikes
with the reference value, or with NA according to the value of action; see “Details”.

Usage

despike(
x,
reference = c("median", "smooth", "trim"),
n = 4,
k = 7,
min = NA,
max = NA,
replace = c("reference", "NA"),
skip

)

Arguments

x a vector of (time-series) values, a list of vectors, a data frame, or an oce object.
reference indication of the type of reference time series to be used in the detection of

spikes; see “Details”.
n an indication of the limit to differences between x and the reference time series,

used for reference="median" or reference="smooth"; see “Details.”
k length of running median used with reference="median", and ignored for

other values of reference.
min minimum non-spike value of x, used with reference="trim".
max maximum non-spike value of x, used with reference="trim".
replace an indication of what to do with spike values, with "reference" indicating to

replace them with the reference time series, and "NA" indicating to replace them
with NA.

skip optional vector naming columns to be skipped. This is ignored if x is a sim-
ple vector. Any items named in skip will be passed through to the return value
without modification. In some cases, despike will set up reasonable defaults for
skip, e.g. for a ctd object, skip will be set to c("time", "scan","pressure")
if it is not supplied as an argument.

158 despike

Details

Three modes of operation are permitted, depending on the value of reference.

1. For reference="median", the first step is to linearly interpolate across any gaps (spots where
x==NA), using approx() with rule=2. The second step is to pass this through runmed() to
get a running median spanning k elements. The result of these two steps is the "reference"
time-series. Then, the standard deviation of the difference between x and the reference is
calculated. Any x values that differ from the reference by more than n times this standard
deviation are considered to be spikes. If replace="reference", the spike values are replaced
with the reference, and the resultant time series is returned. If replace="NA", the spikes are
replaced with NA, and that result is returned.

2. For reference="smooth", the processing is the same as for "median", except that smooth()
is used to calculate the reference time series.

3. For reference="trim", the reference time series is constructed by linear interpolation across
any regions in which x<min or x>max. (Again, this is done with approx() with rule=2.) In
this case, the value of n is ignored, and the return value is the same as x, except that spikes are
replaced with the reference series (if replace="reference" or with NA, if replace="NA".

Value

A new vector in which spikes are replaced as described above.

Author(s)

Dan Kelley

Examples

n <- 50
x <- 1:n
y <- rnorm(n = n)
y[n / 2] <- 10 # 10 standard deviations
plot(x, y, type = "l")
lines(x, despike(y), col = "red")
lines(x, despike(y, reference = "smooth"), col = "darkgreen")
lines(x, despike(y, reference = "trim", min = -3, max = 3), col = "blue")
legend("topright",

lwd = 1, col = c("black", "red", "darkgreen", "blue"),
legend = c("raw", "median", "smooth", "trim")

)

add a spike to a CTD object
data(ctd)
plot(ctd)
T <- ctd[["temperature"]]
T[10] <- T[10] + 10
ctd[["temperature"]] <- T
CTD <- despike(ctd)
plot(CTD)

detrend 159

detrend Detrend a Set of Observations

Description

Detrends y by subtracting a linear trend in x, to create a vector that is zero for its first and last finite
value. If the second parameter (y) is missing, then x is taken to be y, and a new x is constructed
with seq_along(). Any NA values are left as-is.

Usage

detrend(x, y)

Arguments

x a vector of numerical values. If y is not given, then x is taken for y.

y an optional vector

Details

A common application is to bring the end points of a time series down to zero, prior to applying a
digital filter. (See examples.)

Value

A list containing Y, the detrended version of y, and the intercept a and slope b of the linear function
of x that is subtracted from y to yield Y.

Author(s)

Dan Kelley

Examples

x <- seq(0, 0.9 * pi, length.out = 50)
y <- sin(x)
y[1] <- NA
y[10] <- NA
plot(x, y, ylim = c(0, 1))
d <- detrend(x, y)
points(x, d$Y, pch = 20)
abline(da, db, col = "blue")
abline(h = 0)
points(x, d$Y + d$a + d$b * x, col = "blue", pch = "+")

160 download.amsr

download.amsr Download and Cache an amsr File

Description

If the file is already present in destdir, then it is not downloaded again. The default destdir
is the present directory, but it probably makes more sense to use something like "~/data/amsr"
to make it easy for scripts in other directories to use the cached data. The file is downloaded with
download.file(). Please read the “History” section for important details on how download.amsr()
and also read.amsr() have had be altered over the years, to deal with changes in the directory
structure and file format on the server from which files are downloaded.

Usage

download.amsr(
year = NULL,
month,
day,
destdir = ".",
server = "https://data.remss.com/amsr2/ocean/L3/v08.2",
type = "3day",
debug = 0

)

Arguments

year, month, day a specification of the desired observation time. There are 3 choices for this
specification. (a) If year is an object created by as.Date(), then that specifies
the time, and so month and day are ignored. This scheme can be convenient for
creating a sequence of images, starting at a particular date, because adding 1 to
an object of class Date increases the time by 1 day, saving the user from having
to know how many days are in any given month. (b) If year is an integer,
then it is taken to be the year, and the user must also specify month and day,
also integers. (c) If year is NULL (which is the default), then the focus is set
to the most recent date, but this depends on the value of type (see next). If
type is "3day", "daily" or "weekly", or just the first two of them if type
is "monthly". If these things are provided, then they just match exactly the
values in the sought-after file on the remote server. If year is NULL, then
download.amsr() constructs a URL that ought to be the most recent available
file: 3 days prior to the present date (if type is "3day" or "daily"), the Saturday
two weeks prior to the present date (if type is "weekly"), or two months in the
past (if type is "monthly").

destdir A string naming the directory in which to cache the downloaded file. The default
is to store in the present directory, but many users find it more helpful to use
something like "~/data/amsr" for this, to collect all downloaded amsr files in
one place.

server A string naming the server from which data are to be acquired. See “History”.

download.amsr 161

type character value indicating where to get the data. This may be "3day" (the de-
fault), for a composite covering 3 days of observation, which removes most
viewing-path and cloud blanks, "daily" for a daily reading, "weekly" for a
composite covering a week, "monthly" for a composite covering a month, or
"rt" for what seems to be realtime datasets (which seem to be restricted to the
prior few days only). Note that the "rt" files store SST and related variables in
3D arrays, as opposed to the 2D arrays used for the other file types. This is be-
cause the ascending and descending passes are both available; to select a choice
for plotting, use the pass parameter of plot,amsr-method().

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

download.amsr returns a character value holding the full pathname of the downloaded file.

History

Until 25 March 2017, the default server was "ftp.ssmi.com/amsr2/bmaps_v07.2", but this was
changed when the author discovered that this FTP site had been changed to require users to create
accounts to register for downloads. The default was changed to "http://data.remss.com/amsr2/bmaps_v07.2"
on the named date. This site was found by a web search, but it seems to provide proper data. It is
assumed that users will do some checking on the best source.

On 23 January 2018, it was noticed that the server-url naming convention had changed, e.g. http://data.remss.com/amsr2/bmaps_v07.2/y2017/m01/f34_20170114v7.2.gz
becoming http://data.remss.com/amsr2/bmaps_v08/y2017/m01/f34_20170114v8.gz

On 2023-07-26, it was noticed that the server-url naming convention had changed again, requiring
not only the alteration of the default server value but also the addition of a new parameter named
type. Worse yet the file format had evidently been changed from a gzipped format to a NetCDF
format, which required a complete rewriting of read.amsr().

On 2024-08-17, it was noticed that the server has a directory called rt which seems to hold realtime
data for a few recent days (and a few other isolated 3-day sequences in the past two years). These
files may be of use in analysis of current events.

Sample of Usage

The download may take up to about a minute.
f <- download.amsr(2023, 7, 27, destdir="~/data/amsr")
d <- read.amsr(f)
plot(d)
mtext(d[["filename"]], side=3, line=0, adj=0)

Author(s)

Dan Kelley

162 download.coastline

See Also

Other functions that download files: download.coastline(), download.met(), download.topo()

Other functions that plot oce data: plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method,
plotProfile(), plotScan(), plotTS(), tidem-class

Other things related to amsr data: [[,amsr-method, [[<-,amsr-method, amsr, amsr-class, composite,amsr-method,
plot,amsr-method, read.amsr(), subset,amsr-method, summary,amsr-method

download.coastline Download a coastline File

Description

Constructs a query to the NaturalEarth server (see reference 1) to download coastline data (or lake
data, river data, etc) in any of three resolutions.

Usage

download.coastline(
resolution,
item = "coastline",
destdir = ".",
destfile,
server = "naturalearth",
debug = getOption("oceDebug")

)

Arguments

resolution A character value specifying the desired resolution. The permitted choices are
"10m" (for 1:10M resolution, the most detailed), "50m" (for 1:50M resolution)
and "110m" (for 1:110M resolution). If resolution is not supplied, "50m" will
be used.

item A character value indicating the quantity to be downloaded. This is normally
one of "coastline", "land", "ocean", "rivers_lakes_centerlines", or
"lakes", but the NaturalEarth server has other types, and advanced users can
discover their names by inspecting the URLs of links on the NaturalEarth site,
and use them for item. If item is not supplied, it defaults to "coastline".

destdir Optional string indicating the directory in which to store downloaded files. If not
supplied, "." is used, i.e. the data file is stored in the present working directory.

download.coastline 163

destfile Optional string indicating the name of the file. If not supplied, the file name is
constructed from the other parameters of the function call, so subsequent calls
with the same parameters will yield the same result, thus providing the key to
the caching scheme.

server A character value specifying the server that is to supply the data. At the moment,
the only permitted value is "naturalearth", which is the default if server is
not supplied.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

A character value indicating the filename of the result; if there is a problem of any kind, the result
will be the empty string.

Non-Executable Examples

library(oce)
User must create directory ~/data/coastline first.
As of September 2016, the downloaded file, named
"ne_50m_coastline.zip", occupies 443K bytes.
filename <- download.coastline(destdir="~/data/coastline")
coastline <- read.coastline(filename)
plot(coastline)

Author(s)

Dan Kelley

References

1. The NaturalEarth server is at https://www.naturalearthdata.com

See Also

The work is done with utils::download.file().

Other functions that download files: download.amsr(), download.met(), download.topo()

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineBest(), coastlineCut(), coastlineWorld, plot,coastline-method,
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

164 download.met

download.met Download and Cache a met File

Description

download.met() attempts to download data from Environment Canada’s historical-data website,
and to cache the files locally. Lacking a published API, this function must rely on reverse-engineering
of queries handled by that web server. For that reason, it is brittle.

Usage

download.met(
id,
year,
month,
deltat,
type = "xml",
destdir = ".",
destfile,
force = FALSE,
quiet = FALSE,
debug = getOption("oceDebug")

)

Arguments

id A number giving the "Station ID" of the station of interest. If not provided, id
defaults to 6358, for Halifax International Airport. See “Details”.

year A number giving the year of interest. Ignored unless deltat is "hour". If year
is not given, it defaults to the present year.

month A number giving the month of interest. Ignored unless deltat is "hour". If
month is not given, it defaults to the present month.

deltat Optional character string indicating the time step of the desired dataset. This
may be "hour" or "month". If deltat is not given, it defaults to "hour".

type String indicating which type of file to download, either "xml" (the default) for
an XML file or "csv" for a CSV file.

destdir Optional string indicating the directory in which to store downloaded files. If not
supplied, "." is used, i.e. the data file is stored in the present working directory.

destfile Optional string indicating the name of the file. If not supplied, the file name is
constructed from the other parameters of the function call, so subsequent calls
with the same parameters will yield the same result, thus providing the key to
the caching scheme.

force Logical value indicating whether to force a download, even if the file already
exists locally.

quiet Logical value passed to download.file(); a TRUE value silences output.

download.met 165

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

If this function fails, users might try using Gavin Simpson’s canadaHCD package (reference 2). This
package maintains a copy of the Environment Canada listing of stations, and its find_station()
function provides an easy way to determine Station IDs. After that, its hcd_hourly function (and
related functions) make it easy to read data. These data can then be converted to the met class with
as.met(), although doing so leaves many important metadata blank.

Value

String indicating the full pathname to the downloaded file.

Sample of Usage

library(oce)
Download data for Halifax International Airport, in September
of 2003. This dataset is used for data(met) provided with oce.
Note that requests for data after 2012 month 10 yield all
missing values, for reasons unknown to the author.
metFile <- download.met(6358, 2003, 9, destdir=".")
met <- read.met(metFile)

Author(s)

Dan Kelley

References

1. Environment Canada website for Historical Climate Data https://climate.weather.gc.ca/index_e.html

2. Gavin Simpson’s canadaHCD package on GitHub https://github.com/gavinsimpson/canadaHCD

See Also

The work is done with utils::download.file().

Other functions that download files: download.amsr(), download.coastline(), download.topo()

Other things related to met data: [[,met-method, [[<-,met-method, as.met(), met, met-class,
plot,met-method, read.met(), subset,met-method, summary,met-method

166 download.topo

download.topo Download and Cache a topo File

Description

Topographic data are downloaded from a data server that holds the ETOPO1 dataset (Amante, C.
and B.W. Eakins, 2009), and saved as a netCDF file whose name specifies the data request, if a file
of that name is not already present on the local file system. The return value is the name of the data
file, and its typical use is as the filename for a call to read.topo(). Given the rules on file naming,
subsequent calls to download.topo with identical parameters will simply return the name of the
cached file, assuming the user has not deleted it in the meantime. Note that download.topo uses
the "terra" and "ncdf4" packages, so an error is reported if they are not available.

Usage

download.topo(
west,
east,
south,
north,
resolution = 4,
destdir = ".",
destfile,
format,
server = "https://gis.ngdc.noaa.gov",
debug = getOption("oceDebug")

)

Arguments

west, east numeric values for the limits of the data-selection box, in degrees. These are
converted to the -180 to 180 degree notation, if needed. Then, west is rounded
down to the nearest 1/100th degree, and east is rounded up to the the nearest
1/100th degree. The results of these operations are used in constructing the
query for the NOAA data server.

south, north latitude limits, treated in a way that corresponds to the longitude limits.

resolution numeric value of grid spacing, in geographical minutes. The default value is 4
minutes, corresponding to 4 nautical miles (approx. 7.4km) in the north-south
direction, and less in the east-west direction.

destdir Optional string indicating the directory in which to store downloaded files. If not
supplied, "." is used, i.e. the data file is stored in the present working directory.

destfile Optional string indicating the name of the file. If not supplied, the file name is
constructed from the other parameters of the function call, so subsequent calls
with the same parameters will yield the same result, thus providing the key to
the caching scheme.

download.topo 167

format Deprecated, and ignored, as of June 2020.

server character value specifying the base from which a download URL will be con-
structed. It is unlikely that any value other than the default will work, unless it
is a similarly-constructed mirrored site.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The specified longitude and latitude limits are rounded to 2 digits (corresponding to a footprint of
approximately 1km), and these are used in the server request. If the resultant request would generate
under 1 row or column in the result, download.topo generates an error message and stops.

Value

String indicating the full pathname to the downloaded file.

Historical note relating to NOAA server changes

2022 November 13: updated to new NOAA database, with 1/4-minute resolution (a marked im-
provement over the previous 1-minute resolution). The revision was framed along similar changes
to marmap::getNOAAbathy() made earlier today. Thanks to Clark Richards for pointing this out!

2020 May 31: updated for a change in the NOAA query structure, taking hints from marmap::getNOAAbathy().

Sample of Usage

library(oce)
topoFile <- download.topo(west=-66, east=-60, south=43, north=47,

resolution=1, destdir="~/data/topo")
topo <- read.topo(topoFile)
imagep(topo, zlim=c(-400, 400), col=oceColorsTwo, drawTriangles=TRUE)
if (requireNamespace("ocedata", quietly=TRUE)) {

data(coastlineWorldFine, package="ocedata")
lines(coastlineWorldFine[["longitude"]], coastlineWorldFine[["latitude"]])

}

Author(s)

Dan Kelley

References

• Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures,
Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National
Geophysical Data Center, NOAA. doi:10.7289/V5C8276M

168 drawDirectionField

See Also

Other functions that download files: download.amsr(), download.coastline(), download.met()

Other things related to topo data: [[,topo-method, [[<-,topo-method, as.topo(), plot,topo-method,
read.topo(), subset,topo-method, summary,topo-method, topo-class, topoInterpolate(),
topoWorld

drawDirectionField Draw a Direction Field

Description

The direction field is indicated variously, depending on the value of type:

Usage

drawDirectionField(
x,
y,
u,
v,
scalex,
scaley,
skip,
length = 0.05,
add = FALSE,
type = 1,
col = par("fg"),
pch = 1,
cex = par("cex"),
lwd = par("lwd"),
lty = par("lty"),
xlab = "",
ylab = "",
debug = getOption("oceDebug"),
...

)

Arguments

x, y coordinates at which velocities are specified. The length of x and y depends on
the form of u and v (vectors or matrices).

u, v velocity components in the x and y directions. Can be either vectors with the
same length as x, y, or matrices, of dimension length(x) by length(y).

scalex, scaley scale to be used for the velocity arrows. Exactly one of these must be speci-
fied. Arrows that have u^2+v^2=1 will have length scalex along the x axis, or
scaley along the y axis, according to which argument is given.

drawDirectionField 169

skip either an integer, or a two-element vector indicating the number of points to
skip when plotting arrows (for the matrix u, v case). If a single value, the same
skip is applied to both the x and y directions. If a two-element vector, specifies
different values for the x and y directions.

length indication of width of arrowheads. The somewhat confusing name of this argu-
ment is a consequence of the fact that it is passed to arrows() for drawing ar-
rows. Note that the present default is smaller than the default used by arrows().

add if TRUE, the arrows are added to an existing plot; otherwise, a new plot is started
by calling plot() with x, y and type="n". In other words, the plot will be very
basic. In most cases, the user will probably want to draw a diagram first, and
add the direction field later.

type indication of the style of arrow-like indication of the direction.

col color of line segments or arrows; see par() for meaning

pch, cex plot character and expansion factor, used for type=1; see par() for meanings

lwd, lty line width and type, used for type=2; see par() for meaning

xlab, ylab x and y axis labels

debug debugging value; set to a positive integer to get debugging information.

... other arguments to be passed to plotting functions (e.g. axis labels, etc).

Details

• For type=1, each indicator is drawn with a symbol, according to the value of pch (either
supplied globally, or as an element of the ... list) and of size cex, and color col. Then, a line
segment is drawn for each, and for this lwd and col may be set globally or in the ... list.

• For type=2, the points are not drawn, but arrows are drawn instead of the line segments.
Again, lwd and col control the type of the line.

Value

None.

Author(s)

Dan Kelley and Clark Richards

Examples

library(oce)
plot(c(-1.5, 1.5), c(-1.5, 1.5), xlab = "", ylab = "", type = "n")
drawDirectionField(

x = rep(0, 2), y = rep(0, 2),
u = c(1, 1), v = c(1, -1), scalex = 0.5, add = TRUE

)
plot(c(-1.5, 1.5), c(-1.5, 1.5), xlab = "", ylab = "", type = "n")
drawDirectionField(

x = rep(0, 2), y = rep(0, 2),
u = c(1, 1), v = c(1, -1), scalex = 0.5, add = TRUE, type = 2

170 drawIsopycnals

)

2D example
x <- seq(-2, 2, 0.1)
y <- x
xx <- expand.grid(x, y)[, 1]
yy <- expand.grid(x, y)[, 2]
z <- matrix(xx * exp(-xx^2 - yy^2), nrow = length(x))
gz <- grad(z, x, y)
drawDirectionField(x, y, gzgx, gzgy, scalex = 0.5, type = 2, len = 0.02)
oceContour(x, y, z, add = TRUE)

drawIsopycnals Add Isopycnal Curves to a TS Plot

Description

Adds isopycnal lines to an existing temperature-salinity plot. This is called by plotTS(), and may
be called by the user also, e.g. if an image plot is used to show TS data density.

Usage

drawIsopycnals(
nlevels = 6,
levels,
rotate = TRUE,
rho1000 = FALSE,
digits = 2,
eos = getOption("oceEOS", default = "gsw"),
longitude = NULL,
latitude = NULL,
trimIsopycnals = TRUE,
gridIsopycnals = c(50, 50),
cex = 0.75 * par("cex"),
col = "darkgray",
lwd = par("lwd"),
lty = par("lty"),
debug = getOption("oceDebug")

)

Arguments

nlevels suggested number of density levels (i.e. isopycnal curves); ignored if levels is
supplied. If this is set to 0, no isopycnal are drawn (see also levels, next).

levels optional density levels to draw. If this is NULL, then no isopycnals are drawn.

rotate boolean, set to TRUE to write all density labels horizontally.

drawIsopycnals 171

rho1000 boolean, set to TRUE to write isopycnal labels as e.g. 1024 instead of 24.

digits minimum number of decimal digits to use in label (supplied to round()). If the
density range is very small, drawIsopycnals() will increase value of digits,
to try to make labels be distinct.

eos equation of state to be used, either "unesco" or "gsw". If it is "gsw" then
latitude and longitude must be supplied, since these are needed to computer
density in that formulation.

longitude, latitude
numerical values giving the location to be used in density calculations, if eos is
"gsw".

trimIsopycnals logical value (TRUE by default) that indicates whether to trim isopycnal curves
(if drawn) to the region of temperature-salinity space for which density com-
putations are considered to be valid in the context of the chosen eos; see the
“Details” of the documentation for plotTS().

gridIsopycnals a parameter that controls how the isopycnals are computed. This may be NULL,
or an integer vector of length 2. Case 1: if gridIsopycnals is NULL, then the
isopycnals are drawn by tracing density isopleths in salinity-temperature space.
This method was used as the default prior to version 1.7-11, but it was found to
yield staircase-like isopycnal curves for highly zoomed-in plots (e.g. with mil-
lidegree temperature ranges). Case 2 (the new default): If gridIsopycnals is a
two-element integer vector, then a grid of density is constructed, with gridIsopycnals[1]
salinity levels and gridIsopycnals[2] temperature levels, and then contourLines()
is used to trace the isopycnals. The default value of gridIsopycnals yields a
grid of millimeter-scale spacing for a typical plot.

cex size for labels.

col color for lines and labels.

lwd line width for isopycnal curves

lty line type for isopycnal curves

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The default method of drawing isopycnals was changed in February of 2023, so that even plots that
are zoomed in to have millidegree temperature ranges will have smooth curves. See the discussion
of gridIsopycnals for details.

Value

None.

172 drawPalette

Author(s)

Dan Kelley

References

• Fofonoff, N. P., and R. C. Millard. "Algorithms for Computation of Fundamental Properties
of Seawater." UNESCO Technical Papers in Marine Research. SCOR working group on Eval-
uation of CTD data; UNESCO/ICES/SCOR/IAPSO Joint Panel on Oceanographic Tables and
Standards, 1983. https://unesdoc.unesco.org/ark:/48223/pf0000059832.

• McDougall, Trevor J., David R. Jackett, Daniel G. Wright, and Rainer Feistel. "Accurate
and Computationally Efficient Algorithms for Potential Temperature and Density of Seawa-
ter." Journal of Atmospheric and Oceanic Technology 20, no. 5 (May 1, 2003): 730-41.
https://journals.ametsoc.org/jtech/article/20/5/730/2543/Accurate-and-Computationally-Efficient-Algorithms.

See Also

plotTS(), which calls this.

drawPalette Draw a Palette, Leaving Margins Suitable for an Accompanying Plot

Description

In the normal use, drawPalette() draws an image palette near the right-hand side of the plotting
device, and then adjusts the global margin settings in such a way as to cause the next plot to appear
(with much larger width) to the left of the palette. The function can also be used, if zlim is not
provided, to adjust the margin without drawing anything; this is useful in lining up the x axes of a
stack of plots, some some of which will have palettes and others not.

Usage

drawPalette(
zlim,
zlab = "",
breaks,
col,
colormap,
mai,
cex = par("cex"),
pos = 4,
las = 0,
labels = NULL,
at = NULL,
levels,
drawContours = FALSE,
plot = TRUE,

drawPalette 173

fullpage = FALSE,
drawTriangles = FALSE,
axisPalette,
tformat,
debug = getOption("oceDebug"),
...

)

Arguments

zlim two-element vector containing the lower and upper limits of z. This may also be
a vector of any length exceeding 1, in which case its range is used.

zlab label for the palette scale.

breaks optional numeric vector of the z values for breaks in the color scheme. If
colormap is provided, it takes precedence over breaks and col.

col optional argument, either a vector of colors corresponding to the breaks, of
length 1 less than the number of breaks, or a function specifying colors. If
col is not provided, and if colormap is also not provided, then col defaults
to oceColorsViridis(). If colormap is provided, it takes precedence over
breaks and col.

colormap an optional color map as created by colormap(). If colormap is provided, it
takes precedence over breaks and col.

mai margins for palette, as defined in the usual way; see par(). If not given, reason-
able values are inferred from the existence of a non-blank zlab.

cex numeric character expansion value for text labels

pos an integer indicating the location of the palette within the plotting area, 1 for
near the bottom, 2 for near the left-hand side, 3 for near the top side, and 4 (the
default) for near the right-hand side.

las optional argument, passed to axis(), to control the orientation of numbers along
the axis. As explained in the help for par(), the meaning of las is as follows:
las=0 (the default) means to put labels parallel to the axis, las=1 means hor-
izontal (regardless of axis orientation), las=2 means perpendicular to the axis,
and las=3 means to vertical (regardless of axis orientation). Note that the au-
tomatic computation of margin spacing parameter mai assumes that las=0, and
so for other cases, the user may need to specify the mai argument directly.

labels optional vector of labels for ticks on palette axis (must correspond with at)

at optional vector of positions for the labels

levels optional contour levels, in preference to breaks values, to be added to the image
if drawContours is TRUE.

drawContours logical value indicating whether to draw contours on the palette, at the color
breaks.

plot logical value indicating whether to plot the palette, the default, or whether to
just alter the margins to make space for where the palette would have gone. The
latter case may be useful in lining up plots, as in example 1 of “Examples”.

174 drawPalette

fullpage logical value indicating whether to draw the palette filling the whole plot width
(apart from mai, of course). This can be helpful if the palette panel is to be
created with layout(), as illustrated in the “Examples”.

drawTriangles logical value indicating whether to draw triangles on the top and bottom of the
palette. If a single value is provided, it applies to both ends of the palette. If a
pair is provided, the first refers to the lower range of the palette, and the second
to the upper range.

axisPalette optional replacement function for axis(), e.g. for exponential notation on large
or small values.

tformat optional format for axis labels, if the variable is a time type (ignored otherwise).

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional arguments passed to plotting functions.

Details

The plot positioning is done entirely with margins, not with par(mfrow) or other R schemes for
multi-panel plots. This means that the user is free to use those schemes without worrying about
nesting or conflicts.

Value

None.

Use with multi-panel plots

An important consequence of the margin adjustment is that multi-panel plots require that the initial
margin be stored prior to the first call to drawPalette(), and reset after each palette-plot pair. This
method is illustrated in “Examples”.

Author(s)

Dan Kelley, with help from Clark Richards

See Also

This is used by imagep().

Examples

library(oce)
par(mgp = getOption("oceMgp"))

1. A three-panel plot
par(mfrow = c(3, 1), mar = c(3, 3, 1, 1))
omar <- par("mar") # save initial margin

1a. top panel: simple case with Viridis scheme
drawPalette(zlim = c(0, 1), col = oce.colorsViridis(10))

echosounder 175

plot(1:10, 1:10, col = oce.colorsViridis(10)[1:10], pch = 20, cex = 3, xlab = "x", ylab = "y")
par(mar = omar) # reset margin

1b. middle panel: colormap
cm <- colormap(name = "gmt_globe")
drawPalette(colormap = cm)
icol <- seq_along(cm$col)
plot(icol, cm$breaks[icol],

pch = 20, cex = 2, col = cm$col,
xlab = "Palette index", ylab = "Palette breaks"

)
par(mar = omar) # reset margin

1c. bottom panel: space for palette (to line up graphs)
drawPalette(plot = FALSE)
plot(1:10, 1:10, col = oce.colorsViridis(10)[1:10], pch = 20, cex = 3, xlab = "x", ylab = "y")
par(mar = omar) # reset margin

2. Use layout to mimic the action of imagep(), with the width
of the palette region being 14 percent of figure width.
d <- 0.14
layout(matrix(1:2, nrow = 1), widths = c(1 - d, d))
image(volcano, col = oce.colorsViridis(100), zlim = c(90, 200))
contour(volcano, add = TRUE)
drawPalette(c(90, 200), fullpage = TRUE, col = oce.colorsViridis)

echosounder Sample echosounder Data

Description

This is degraded subsample of measurements that were made with a Biosonics scientific echosounder,
as part of the St Lawrence Internal Wave Experiment (SLEIWEX).

Author(s)

Dan Kelley

Source

This file came from the SLEIWEX-2008 experiment, and was decimated using decimate() with
by=c().

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section, topoWorld,
wind, xbt

176 echosounder-class

Other things related to echosounder data: [[,echosounder-method, [[<-,echosounder-method,
as.echosounder(), echosounder-class, findBottom(), plot,echosounder-method, read.echosounder(),
subset,echosounder-method, summary,echosounder-method

echosounder-class Class to Store Echosounder Data

Description

This class stores echosounder data. Echosounder objects may be read with read.echosounder(),
summarized with summary,echosounder-method(), and plotted with plot,echosounder-method().
The findBottom() function infers the ocean bottom from tracing the strongest reflector from ping
to ping.

Details

• An infrequently updated record of the instrument position, in timeSlow, longitudeSlow and
latitudeSlow. These are used in plotting maps with plot,echosounder-method().

• An interpolated record of the instrument position, in time, longitude, and latitude. Linear
interpolation is used to infer the longitude and latitude from the variables listed above.

• depth, vector of depths of echo samples (measured positive downwards in the water column).
This is calculated from the inter-sample time interval and the sound speed provided as the
soundSpeed argument to read.echosounder(), so altering the value of the latter will alter
the echosounder plots provided by plot,echosounder-method().

• The echosounder signal amplitude a, a matrix whose number of rows matches the length of
time, etc., and number of columns equal to the length of depth. Thus, for example, a[100,]
represents the depth-dependent amplitude at the time of the 100th ping.

• A matrix named b exists for dual-beam and split-beam cases. For dual-beam data, this is the
wide-beam data, whereas a is the narrow-beam data. For split-beam data, this is the x-angle
data.

• A matrix named c exists for split-beam data, containing the y-angle data.

• In addition to these matrices, ad-hoc calculated matrices named Sv and TS may be accessed as
explained in the next section.

Slots

data As with all oce objects, the data slot for echosounder objects is a list containing the main
data for the object.

metadata As with all oce objects, the metadata slot for echosounder objects is a list containing
information about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for echosounder objects is a
list with entries describing the creation and evolution of the object. The contents are up-
dated by various oce functions to keep a record of processing steps. Object summaries and
processingLogShow() both display the log.

eclipticalToEquatorial 177

Modifying slot contents

Although the [[<- operator may permit modification of the contents of echosounder objects (see
[[<-,echosounder-method), it is better to use oceSetData() and oceSetMetadata(), because
those functions save an entry in the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a echosounder object may be retrieved in the
standard R way using slot(). For example slot(o,"data") returns the data slot of an object
named o, and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,echosounder-method operator, as e.g. o[["data"]]
and o[["metadata"]], respectively.

The [[,echosounder-method operator can also be used to retrieve items from within the data and
metadata slots. For example, o[["temperature"]] can be used to retrieve temperature from an
object containing that quantity. The rule is that a named quantity is sought first within the object’s
metadata slot, with the data slot being checked only if metadata does not contain the item. This [[
method can also be used to get certain derived quantities, if the object contains sufficient information
to calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

See Also

Other things related to echosounder data: [[,echosounder-method, [[<-,echosounder-method,
as.echosounder(), echosounder, findBottom(), plot,echosounder-method, read.echosounder(),
subset,echosounder-method, summary,echosounder-method

eclipticalToEquatorial

Convert Ecliptical Coordinate to Equatorial Coordinate

Description

Convert from ecliptical to equatorial coordinates, using equations 8.3 and 8.4 of reference 1, or,
equivalently, equations 12.3 and 12.4 of reference 2.

Usage

eclipticalToEquatorial(lambda, beta, epsilon)

178 enuToOther

Arguments

lambda longitude, in degrees, or a data frame containing lambda, beta, and epsilon, in
which case the next to arguments are ignored

beta geocentric latitude, in degrees

epsilon obliquity of the ecliptic, in degrees

Details

The code is based on reference 1; see moonAngle() for comments on the differences in formulae
found in reference 2. Indeed, reference 2 is only cited here in case readers want to check the ideas of
the formulae; DK has found that reference 2 is available to him via his university library inter-library
loan system, whereas he owns a copy of reference 1.

Value

A data frame containing columns rightAscension and declination both in degrees.

Author(s)

Dan Kelley, based on formulae in references 1 and 2.

References

• Meeus, Jean. Astronomical Formulas for Calculators. Second Edition. Richmond, Virginia,
USA: Willmann-Bell, 1982.

• Meeus, Jean. Astronomical Algorithms. Second Edition. Richmond, Virginia, USA: Willmann-
Bell, 1991.

See Also

Other things related to astronomy: angle2hms(), equatorialToLocalHorizontal(), julianCenturyAnomaly(),
julianDay(), moonAngle(), siderealTime(), sunAngle(), sunDeclinationRightAscension()

enuToOther Rotate Acoustic-Doppler Data to a New Coordinate System

Description

Rotate Acoustic-Doppler Data to a New Coordinate System

Usage

enuToOther(x, ...)

enuToOtherAdp 179

Arguments

x an adp or adv object.

... extra arguments that are passed on to enuToOtherAdp() or enuToOtherAdv().

Value

An object of the same class as x, but with velocities in the rotated coordinate system

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOtherAdp(), handleFlags,adp-method, is.ad2cp(),
plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOtherAdv(), plot,adv-method,
read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

enuToOtherAdp Convert adp Object from ENU Coordinate to Rotated Coordinate

Description

Convert ADP velocity components from an enu-based coordinate system to another system, perhaps
to align axes with the coastline.

Usage

enuToOtherAdp(x, heading = 0, pitch = 0, roll = 0)

Arguments

x an adp object.

heading number or vector of numbers, giving the angle, in degrees, to be added to the
heading. See “Details”.

pitch as heading but for pitch.

roll as heading but for roll.

180 enuToOtherAdp

Details

The supplied angles specify rotations to be made around the axes for which heading, pitch, and roll
are defined. For example, an eastward current will point southeast if heading=45 is used.

The returned value has heading, pitch, and roll matching those of x, so these angles retain their
meaning as the instrument orientation.

NOTE: this function works similarly to xyzToEnuAdp(), except that in the present function, it
makes no difference whether the instrument points up or down, etc.

Value

An object with data$v[,1:3,] altered appropriately, and metadata$oce.coordinate changed
from enu to other.

Author(s)

Dan Kelley

References

1. Teledyne RD Instruments. “ADCP Coordinate Transformation: Formulas and Calculations,”
January 2010. P/N 951-6079-00.

See Also

See read.adp() for other functions that relate to objects of class "adp".

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), handleFlags,adp-method, is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

library(oce)
data(adp)
o <- enuToOtherAdp(adp, heading = -31.5)
plot(o, which = 1:3)

enuToOtherAdv 181

enuToOtherAdv Convert ENU to Other Coordinate

Description

Convert ADV velocity components from an enu-based coordinate system to another system, perhaps
to align axes with the coastline.

Usage

enuToOtherAdv(
x,
heading = 0,
pitch = 0,
roll = 0,
debug = getOption("oceDebug")

)

Arguments

x an adv object.

heading number or vector of numbers, giving the angle, in degrees, to be added to the
heading. If this has length less than the number of velocity sampling times, then
it will be extended using rep().

pitch as heading but for pitch.

roll as heading but for roll.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The supplied angles specify rotations to be made around the axes for which heading, pitch, and roll
are defined. For example, an eastward current will point southeast if heading=45 is used.

The returned value has heading, pitch, and roll matching those of x, so these angles retain their
meaning as the instrument orientation.

NOTE: this function works similarly to xyzToEnuAdv(), except that in the present function, it
makes no difference whether the instrument points up or down, etc.

Author(s)

Dan Kelley

182 equatorialToLocalHorizontal

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), plot,adv-method,
read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

equatorialToLocalHorizontal

Convert Equatorial Coordinate to Local Horizontal Coordinate

Description

Convert from equatorial coordinates to local horizontal coordinates, i.e. azimuth and altitude. The
method is taken from equations 8.5 and 8.6 of reference 1, or, equivalently, from equations 12.5 and
12.6 of reference 2.

Usage

equatorialToLocalHorizontal(
rightAscension,
declination,
t,
longitude,
latitude

)

Arguments

rightAscension right ascension, e.g. calculated with eclipticalToEquatorial().

declination declination, e.g. calculated with eclipticalToEquatorial().

t time of observation.

longitude longitude of observation, positive in eastern hemisphere.

latitude latitude of observation, positive in northern hemisphere.

Value

A data frame containing columns altitude (angle above horizon, in degrees) and azimuth (angle
anticlockwise from south, in degrees).

Author(s)

Dan Kelley, based on formulae in references 1 and 2.

errorbars 183

References

• Meeus, Jean. Astronomical Formulas for Calculators. Second Edition. Richmond, Virginia,
USA: Willmann-Bell, 1982.

• Meeus, Jean. Astronomical Algorithms. Second Edition. Richmond, Virginia, USA: Willmann-
Bell, 1991.

See Also

Other things related to astronomy: angle2hms(), eclipticalToEquatorial(), julianCenturyAnomaly(),
julianDay(), moonAngle(), siderealTime(), sunAngle(), sunDeclinationRightAscension()

errorbars Draw Error Bars on an Existing xy Diagram

Description

Draw Error Bars on an Existing xy Diagram

Usage

errorbars(x, y, xe, ye, percent = FALSE, style = 0, length = 0.025, ...)

Arguments

x, y coordinates of points on the existing plot.

xe, ye errors on x and y coordinates of points on the existing plot, each either a single
number or a vector of length identical to that of the corresponding coordinate.

percent boolean flag indicating whether xe and ye are in terms of percent of the corre-
sponding x and y values.

style indication of the style of error bar. Using style=0 yields simple line segments
(drawn with segments()) and style=1 yields line segments with short perpen-
dicular endcaps.

length length of endcaps, for style=1 only; it is passed to arrows(), which is used to
draw that style of error bars.

... graphical parameters passed to the code that produces the error bars, e.g. to
segments() for style=0.

Author(s)

Dan Kelley

184 fillGap

Examples

library(oce)
data(ctd)
S <- ctd[["salinity"]]
T <- ctd[["temperature"]]
plot(S, T)
errorbars(S, T, 0.05, 0.5)

fillGap Fill a Gap in an oce Object

Description

Sequences of NA values, are filled by linear interpolation between the non-NA values that bound the
gap.

Usage

fillGap(x, method = c("linear"), rule = 1)

Arguments

x an oce object.

method to use; see “Details”.

rule integer controlling behaviour at start and end of x. If rule=1, NA values at the
ends are left in the return value. If rule=2, they are replaced with the nearest
non-NA point.

Value

A new oce object, with gaps removed.

Bugs

1. Eventually, this will be expanded to work with any oce object. But, for now, it only works for
vectors that can be coerced to numeric.

2. If the first or last point is NA, then x is returned unaltered.

3. Only method linear is permitted now.

Author(s)

Dan Kelley

fillGapMatrix 185

Examples

library(oce)
Integers
x <- c(1:2, NA, NA, 5:6)
y <- fillGap(x)
print(data.frame(x, y))
Floats
x <- x + 0.1
y <- fillGap(x)
print(data.frame(x, y))

fillGapMatrix Fill a Gap in a Matrix

Description

Sequences of NA values are replaced with values computed by linear interpolation along rows
and/or columns, provided that the neighbouring values are sufficiently close, as defined by the
fillgap parameter. If interpolation can be done across both the row and column directions, then
the two values are averaged.

Usage

fillGapMatrix(m, fillgap = 1, debug = getOption("oceDebug"))

Arguments

m a numeric matrix.

fillgap a vector containing 1 or 2 integers, indicating the maximum width of gaps to
be filled. If just one number is given, it is repeated to create the pair. The first
element of the pair is the maximum gap height (i.e. row separation in the matrix)
that can be filled, and the second is the maximum gap width. The default value
of 1 means that only gaps of width or height 1 can be filled. As an exception to
these rules, a negative value means to fill gaps regardless of size. It is an error
to specify a fillgap value that is less than 1.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

fillGapMatrix returns matrix, with NA values replaced by interpolated values as dictated by the
function parameters.

186 findBottom

Author(s)

Dan Kelley

Examples

library(oce)
m <- matrix(1:20, nrow = 5)
Example 1: interpolate past across gaps of width/height equal to 1
m[2, 3] <- NA
m[3, 3] <- NA
m[4, 2] <- NA
m
fillGapMatrix(m)
Example 2: cannot interpolate across larger groups by default
m <- matrix(1:20, nrow = 5)
m[2:3, 2:3] <- NA
m
fillGapMatrix(m)
Example 3: increasing gap lets us cover gaps of size 1 or 2
fillGapMatrix(m, fillgap = 2)

findBottom Find the Ocean Bottom in an Echosounder Object

Description

Finds the depth in a Biosonics echosounder file, by finding the strongest reflector and smoothing its
trace.

Usage

findBottom(x, ignore = 5, clean = despike)

Arguments

x an echosounder object.

ignore number of metres of data to ignore, near the surface.

clean a function to clean the inferred depth of spikes.

Value

A list with elements: the time of a ping, the depth of the inferred depth in metres, and the index
of the inferred bottom location, referenced to the object’s depth vector.

Author(s)

Dan Kelley

firstFinite 187

See Also

See the echosounder documentation to learn about the contents of such objects, and about other
functions that deal with them.

Other things related to echosounder data: [[,echosounder-method, [[<-,echosounder-method,
as.echosounder(), echosounder, echosounder-class, plot,echosounder-method, read.echosounder(),
subset,echosounder-method, summary,echosounder-method

firstFinite Get First Finite Value in a Vector or Array.

Description

If x is a vector, this is straightforward. If x is anything else, it is first converted to a vector with
as.vector(), so the first value will be with respect to storage by columns, for a matrix, etc.

Usage

firstFinite(v)

Arguments

v A numerical vector or array.

Value

The first finite value, or NULL if there are no finite values.

formatCI Format a Confidence Interval

Description

This formats a confidence interval in either the +/- notation or the parenthetic notation. For example,
if a quantity has mean 1 with uncertainty 0.05, which means a CI of 0.95 to 1.05, the "+-" style
yields "1+/-0.05", and the "parentheses" style yields ‘""’.

Usage

formatCI(
ci,
style = c("+/-", "parentheses"),
model,
digits = 2,
debug = getOption("oceDebug", 0)

)

188 formatCI

Arguments

ci optional vector of length 2 or 3.

style string indicating notation to be used.

model optional regression model, e.g. returned by lm() or nls().

digits optional number of digits to use. This is ignored if style is "parentheses".

debug integer value indicating debugging level. If 0, then formatCI() works silently.
If greater than 0, then some debugging messages are printed during processing.

Details

If a model is given, then ci is ignored, and a confidence interval is calculated using confint() with
level set to 0.6914619. This level corresponds to a range of plus or minus one standard deviation,
for the t distribution and a large number of degrees of freedom (since qt(0.6914619, 100000) is
0.5).

If model is missing, ci must be provided. If it contains 3 elements, then first and third elements are
taken as the range of the confidence interval (which by convention should use the level stated in
the previous paragraph), and the second element is taken as the central value. Alternatively, if ci
has 2 elements, they are taken to be bounds of the confidence interval and their mean is taken to be
the central value.

In the +/- notation, e.g. a± b indicates that the true value lies between a− b and a+ b with a high
degree of certainty. Mills et al. (1993, section 4.1 on page 83) suggest that b should be set equal
to 2 times the standard uncertainty or standard deviation. JCGM (2008, section 7.2.2 on pages 25
and 26), however, suggest that b should be set to the standard uncertainty, while also recommending
that the ± notation (and presumably the parentheses notation also) be avoided altogether, in favour
of writing sentences that explains uncertainties in clear terms.

The parentheses notation is often called the compact notation. In it, the digits in parentheses
indicate the uncertainty in the corresponding digits to their left, e.g. 12.34(3) means that the last
digit (4) has an uncertainty of 3. However, as with the ± notation, different authorities offer different
advice on defining this uncertainty; Mills et al. (1993) provide an example in which the parenthetic
value is half the ± value, whereas JCM (2008) suggest using the same values.

The JCM(2008) convention is used by formatCI() for the parentheses notation, as illustrated in
Examples 1 and 2. Note, however, that if the confidence range exceeds the value, then a request for
parentheses format reverts to +/- format.

Value

If ci is given, the result is a character string with the estimate and its uncertainty, in plus/minus or
parenthetic notation. If model is given, the result is a 1-column matrix holding character strings,
with row names corresponding to the parameters of the model.

Author(s)

Dan Kelley

formatPosition 189

References

1. JCGM, 2008. Evaluation of measurement data - Guide to the expression of uncertainty in mea-
surement (JCGM 100:2008), published by the Joint Committee for Guides in Metrology, avail-
able (as of November 2023) at https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf.
See section 7.2.2 on Page 25, for a summary of notation, including an illustration of the use
of equal values for both the +- and the parentheses notations.

2. Mills, I., T. Cvitas, K. Homann, N. Kallay, and K. Kuchitsu, 1993. Quantities, Units and
Symbols in Physical Chemistry, published Blackwell Science for the International Union of
Pure and Applied Chemistry. (See section 4.1, page 83, for a summary of notation, which
shows that a value to the right of a +- sign is to be halved if put in in parentheses, which is not
done in the present function, because of a choice to follow the recommendation of reference
1.

Examples

library(oce)

Example 1: mean=1, uncertainty=0.05, in +/- notation.
formatCI(c(0.95, 1.05)) # "1+/-0.05"

Example 2: save mean and uncertainty, but in parentheses notation.
formatCI(c(0.95, 1.05), style = "parentheses") # "1.00(5)"

example 3: using t.test to find a CI.
a <- rnorm(100, mean = 10, sd = 1)
CI <- t.test(a)$conf.int
formatCI(CI)
formatCI(CI, style = "parentheses")

example 4: specifying a model
x <- seq(0, 10, 0.1)
y <- 2 + 3 * x + rnorm(x, sd = 0.1)
m <- lm(y ~ x)
formatCI(model = m)
formatCI(model = m, style = "parentheses")

formatPosition Format Geographical Position in Degrees and Minutes

Description

Format geographical positions to degrees, minutes, and hemispheres

Usage

formatPosition(
latlon,

190 fullFilename

isLat = TRUE,
type = c("list", "string", "expression"),
showHemi = TRUE

)

Arguments

latlon a vector of latitudes or longitudes

isLat a boolean that indicates whether the quantity is latitude or longitude

type a string indicating the type of return value (see below)

showHemi a boolean that indicates whether to indicate the hemisphere

Value

A list containing degrees, minutes, seconds, and hemispheres, or a vector of strings or (broken)
a vector of expressions.

Author(s)

Dan Kelley

See Also

Other functions related to maps: lonlat2map(), lonlat2utm(), map2lonlat(), mapArrows(),
mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
formatPosition(10 + 1:10 / 60 + 2.8 / 3600)
formatPosition(10 + 1:10 / 60 + 2.8 / 3600, type = "string")

fullFilename Full Name of File, Including Path

Description

Determines the full name of a file, including the path. Used by many read.X routines, where X is
the name of a class of object. This is a wrapper around normalizePath(), with warnings turned
off so that messages are not printed for files that are not found (e.g. URLs).

Usage

fullFilename(filename)

g1sst-class 191

Arguments

filename name of file

Value

Full file name

Author(s)

Dan Kelley

g1sst-class Class to Store G1SST Satellite/Model Data

Description

This class stores G1SST model-satellite products.

Details

G1SST is an acronym for global 1-km sea surface temperature, a product that combines satellite
data with the model output. It is provided by the JPO ROMS (Regional Ocean Modelling System)
modelling group. See the JPL website (reference 1) to learn more about the data, and see the
read.g1sst() documentation for an example of downloading and plotting.

It is important not to regard G1SST data in the same category as, say, amsr data, because the two
products differ greatly with respect to cloud cover. The satellite used by amsr has the ability to
sense water temperature even if there is cloud cover, whereas g1sst fills in cloud gaps with model
simulations. It can be helpful to consult reference 1 for a given time, clicking and then unclicking
the radio button that turns off the model-based filling of cloud gaps.

Slots

data As with all oce objects, the data slot for g1sst objects is a list containing the main data for
the object.

metadata As with all oce objects, the metadata slot for g1sst objects is a list containing infor-
mation about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for g1sst objects is a list with
entries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of g1sst objects (see [[<-,g1sst-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

192 gappyIndex

Retrieving slot contents

The full contents of the data and metadata slots of a g1sst object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,g1sst-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,g1sst-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

References

1. JPO OurOcean Portal https://ourocean.jpl.nasa.gov/SST/ (link worked in 2016 but
was seen to fail 2017 Feb 2).

See Also

Other classes holding satellite data: amsr-class, landsat-class, satellite-class

Other things related to g1sst data: [[,g1sst-method, [[<-,g1sst-method, read.g1sst()

gappyIndex Create a Possibly Gappy Indexing Vector

Description

This is used internally to construct indexing arrays, mainly for adv and adp functions, in which
readBin() is used to access isolated regions within a raw vector. The work is done in C++, for
speed. Since this function is designed for use within oce, it does not offer many safeguards on
the parameters, beyond detecting an overlapping situation that would occur if length exceeded the
space between starts elements. Also, users ought to be aware that the behaviour of gappyIndex()
might change at any time; simply stated, it is not intended for direct use except by the package
developers.

geodDist 193

Usage

gappyIndex(starts, offset = 0L, length = 4L)

Arguments

starts integer vector of one or more values.

offset integer value indicating the value to be added to each of the starts value, as
the beginning of the sequence.

length integer value indicating the number of elements of that sequence.

Details

For example, suppose data elements in a buffer named buf start at bytes 1000 and 2000, and that
the goal is to skip the first 4 bytes of each of these sequences, and then to read the next 2 bytes as
an unsigned 16-bit integer. This could be accomplished as follows.

library(oce)
buf <- readBin("filename", "raw", n=5000, size=1)
i <- gappyIndex(c(1000, 2000, 3000), 4, 2)
i is 1004,1005, 2004,2005, 3004,3005
values <- readBin(buf[i], "integer", size=2, n=3, endian="little")

Author(s)

Dan Kelley

geodDist Compute Geodesic Distance on Surface of Earth

Description

This calculates geodesic distance, in km, between points on the earth, i.e. distance measured along
the (presumed ellipsoidal) surface. The method involves the solution of the geodetic inverse prob-
lem, using Vincenty’s (1975) modification of Rainsford’s method with Helmert’s elliptical terms.

Usage

geodDist(
longitude1,
latitude1 = NULL,
longitude2 = NULL,
latitude2 = NULL,
alongPath = FALSE

)

194 geodDist

Arguments

longitude1 longitude or a vector of longitudes, or a section object, from which longitude
and latitude are extracted and used instead of the next three arguments

latitude1 latitude or vector of latitudes (ignored if longitude1 is a section object)

longitude2 optional longitude or vector of longitudes (ignored if alongPath=TRUE)

latitude2 optional latitude or vector of latitudes (ignored if alongPath=TRUE)

alongPath boolean indicating whether to compute distance along the path, as opposed to
distance from the reference point. If alongPath=TRUE, any values provided for
latitude2 and longitude2 will be ignored.

Details

The function may be used in several different ways.

Case 1: longitude1 is a section object. The values of latitude1, longitude2, and latitude2
arguments are ignored, and the behaviour depends on the value of the alongPath argument. If
alongPath=FALSE, the return value contains the geodetic distances of each station from the first
one. If alongPath=TRUE, the return value is the geodetic distance along the path connecting the
stations, in the order in which they are stored in the section.

Case 2: longitude1 is a vector. If longitude2 and latitude2 are not given, then the return value
is a vector containing the distances of each point from the first one, or the distance along the path
connecting the points, according to the value of alongPath. On the other hand, if both longitude2
and latitude2 are specified, then the return result depends on the length of these arguments. If
they are each of length 1, then they are taken as a reference point, from which the distances to
longitude1 and latitude1 are calculated (ignoring the value of alongPath). However, if they
are of the same length as longitude1 and latitude1, then the return value is the distance between
corresponding (longitude1,latitude1) and (longitude2,latitude2) values.

Value

Vector of distances in kilometres.

Author(s)

Dan Kelley based this on R code sent to him by Darren Gillis, who in 2003 had modified Fortran
code that, according to comments in the source, had been written in 1974 by L. Pfeifer and J. G.
Gergen.

References

Vincenty, T. "Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested
Equations." Survey Review 23, no. 176 (April 1, 1975): 88-93. https://doi.org/10.1179/sre.1975.23.176.88.

See Also

geodXy()

Other functions relating to geodesy: geodGc(), geodXy(), geodXyInverse()

geodGc 195

Examples

library(oce)
km <- geodDist(100, 45, 100, 46)
data(section)
geodDist(section)
geodDist(section, alongPath = TRUE)

geodGc Great-circle Segments Between Points on Earth

Description

Each pair in the longitude and latitude vectors is considered in turn. For long vectors, this may
be slow.

Usage

geodGc(longitude, latitude, dmax)

Arguments

longitude vector of longitudes, in degrees east

latitude vector of latitudes, in degrees north

dmax maximum angular separation to tolerate between sub-segments, in degrees.

Value

Data frame of longitude and latitude.

Author(s)

Dan Kelley, based on code from Clark Richards, in turn based on formulae provided by Ed Williams
(see reference 1)].

References

1. http://williams.best.vwh.net/avform.htm#Intermediate (link worked for years but
failed 2017-01-16).

See Also

Other functions relating to geodesy: geodDist(), geodXy(), geodXyInverse()

196 geodXy

Examples

library(oce)
data(coastlineWorld)
mapPlot(coastlineWorld,

type = "l",
longitudelim = c(-80, 10), latitudelim = c(35, 80),
projection = "+proj=merc"

)
Great circle from New York to Paris (Lindberg's flight)
l <- geodGc(c(-73.94, 2.35), c(40.67, 48.86), 1)
mapLines(l$longitude, l$latitude, col = "red", lwd = 2)

geodXy Convert From Geographical to Geodesic Coordinates

Description

The method, which may be useful in determining coordinate systems for a mooring array or a ship
transects, calculates (x,y) from distance calculations along geodesic curves. See “Caution”.

Usage

geodXy(
longitude,
latitude,
longitudeRef,
latitudeRef,
debug = getOption("oceDebug")

)

Arguments

longitude, latitude
vector of longitude and latitude

longitudeRef, latitudeRef
numeric reference location. Poor results will be returned if these values are
not close to the locations described by longitude and latitude. A sensible
approach might be to set longitudeRef to longitude[1], etc.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

geodXy 197

Details

The calculation is as follows. Consider the i-th point in the longitude and latitude vectors.
To calculate x[i], geodDist() is used is to find the distance along a geodesic curve connect-
ing (longitude[i], latitude[i]) with (longitudeRef, latitude[i]). The resultant distance is
multiplied by -1 if longitude[i]-longitudeRef is negative, and the result is assigned to x[i]. A
similar procedure is used for y[i].

Value

geodXy returns a data frame of x and y, geodesic distance components, measured in metres.

Caution

This scheme is without known precedent in the literature, and users should read the documentation
carefully before deciding to use it.

Change history

On 2015-11-02, the names of the arguments were changed from lon, etc., to longitude, etc., to be
in keeping with other oce functions.

On 2017-04-05, four changes were made.

1. Default values of longitudeRef and latitudeRef were removed, since the old defaults were
inappropriate to most work.

2. The argument called rotate was eliminated, because it only made sense if the mean resultant
x and y were zero.

3. The example was made more useful.

4. Pointers were made to lonlat2utm(), which may be more useful.

Author(s)

Dan Kelley

See Also

geodDist()

Other functions relating to geodesy: geodDist(), geodGc(), geodXyInverse()

Examples

Develop a transect-based axis system for final data(section) stations
library(oce)
data(section)
lon <- tail(section[["longitude", "byStation"]], 26)
lat <- tail(section[["latitude", "byStation"]], 26)
lonR <- tail(lon, 1)
latR <- tail(lat, 1)
data(coastlineWorld)
mapPlot(coastlineWorld,

198 geodXyInverse

projection = "+proj=merc",
longitudelim = c(-75, -65), latitudelim = c(35, 43), col = "gray"

)
mapPoints(lon, lat)
XY <- geodXy(lon, lat, mean(lon), mean(lat))
angle <- 180 / pi * atan(coef(lm(y ~ x, data = XY))[2])
mapCoordinateSystem(lonR, latR, 500, angle, col = 2)
Compare UTM calculation
UTM <- lonlat2utm(lon, lat, zone = 18) # we need to set the zone for this task!
angleUTM <- 180 / pi * atan(coef(lm(northing ~ easting, data = UTM))[2])
mapCoordinateSystem(lonR, latR, 500, angleUTM, col = 3)
legend("topright",

lwd = 1, col = 2:3, bg = "white", title = "Axis Rotation Angle",
legend = c(

sprintf("geod: %.1f deg", angle),
sprintf("utm: %.1f deg", angleUTM)

)
)

geodXyInverse Inverse Geodesic Calculation

Description

The calculation is done by finding a minimum value of a cost function that is the vector difference
between (x,y) and the corresponding values returned by geodXy(). See “Caution”.

Usage

geodXyInverse(x, y, longitudeRef, latitudeRef, debug = getOption("oceDebug"))

Arguments

x value of x in metres, as given by geodXy()

y value of y in metres, as given by geodXy()

longitudeRef reference longitude, as supplied to geodXy()

latitudeRef reference latitude, as supplied to geodXy()

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

GMTOffsetFromTz 199

Details

The minimum is calculated in C for speed, using the nmmin function that is the underpinning for the
Nelder-Meade version of the R function optim(). If you find odd results, try setting debug=1 and
rerunning, to see whether this optimizer is having difficulty finding a minimum of the mismatch
function.

Value

a data frame containing longitude and latitude

Caution

This scheme is without known precedent in the literature, and users should read the documentation
carefully before deciding to use it.

See Also

Other functions relating to geodesy: geodDist(), geodGc(), geodXy()

GMTOffsetFromTz Determine Time Offset From Timezone

Description

The data are from https://www.timeanddate.com/time/zones/ and were hand-edited to de-
velop this code, so there may be errors. Also, note that some of these contradict; if you examine
the code, you’ll see some commented-out portions that represent solving conflicting definitions by
choosing the more common timezone abbreviation over a the less common one.

Usage

GMTOffsetFromTz(tz)

Arguments

tz a timezone, e.g. UTC.

Value

Number of hours in offset, e.g. AST yields 4.

Author(s)

Dan Kelley

Examples

library(oce)
cat("Atlantic Standard Time is ", GMTOffsetFromTz("AST"), "hours after UTC")

200 gps-class

gps-class Class to Store GPS Data

Description

This class stores GPS data. These objects may be read with read.gps() or assembled with
as.gps().

Slots

data As with all oce objects, the data slot for gps objects is a list containing the main data for the
object.

metadata As with all oce objects, the metadata slot for gps objects is a list containing information
about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for gps objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of gps objects (see [[<-,gps-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a gps object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,gps-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,gps-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

grad 201

See Also

Other things related to gps data: [[,gps-method, [[<-,gps-method, as.gps(), plot,gps-method,
read.gps(), summary,gps-method

grad Calculate Matrix Gradient

Description

In the interior of the matrix, centred second-order differences are used to infer the components of
the grad. Along the edges, first-order differences are used.

Usage

grad(
h,
x = seq(0, 1, length.out = nrow(h)),
y = seq(0, 1, length.out = ncol(h))

)

Arguments

h a matrix of values

x vector of coordinates along matrix columns (defaults to integers)

y vector of coordinates along matrix rows (defaults to integers)

Value

A list containing |∇h| as g, ∂h/∂x as gx, and ∂h/∂y as gy, each of which is a matrix of the same
dimension as h.

Author(s)

Dan Kelley, based on advice of Clark Richards, and mimicking a matlab function.

See Also

Other things relating to vector calculus: curl()

Examples

1. Built-in volcano dataset
g <- grad(volcano)
par(mfrow = c(2, 2), mar = c(3, 3, 1, 1), mgp = c(2, 0.7, 0))
imagep(volcano, zlab = "h")
imagep(g$g, zlab = "|grad(h)|")
zlim <- c(-1, 1) * max(g$g)

202 gravity

imagep(g$gx, zlab = "dh/dx", zlim = zlim)
imagep(g$gy, zlab = "dh/dy", zlim = zlim)

2. Geostrophic flow around an eddy
library(oce)
dx <- 5e3
dy <- 10e3
x <- seq(-200e3, 200e3, dx)
y <- seq(-200e3, 200e3, dy)
R <- 100e3
h <- outer(x, y, function(x, y) 500 * exp(-(x^2 + y^2) / R^2))
grad <- grad(h, x, y)
par(mfrow = c(2, 2), mar = c(3, 3, 1, 1), mgp = c(2, 0.7, 0))
contour(x, y, h, asp = 1, main = expression(h))
f <- 1e-4
gprime <- 9.8 * 1 / 1024
u <- -(gprime / f) * grad$gy
v <- (gprime / f) * grad$gx
contour(x, y, u, asp = 1, main = expression(u))
contour(x, y, v, asp = 1, main = expression(v))
contour(x, y, sqrt(u^2 + v^2), asp = 1, main = expression(speed))

gravity Acceleration Due to Earth Gravity

Description

Compute g, the acceleration due to gravity, as a function of latitude.

Usage

gravity(latitude = 45, degrees = TRUE)

Arguments

latitude Latitude in ◦N or radians north of the equator.

degrees Flag indicating whether degrees are used for latitude; if set to FALSE, radians are
used.

Details

Value not verified yet, except roughly.

Value

Acceleration due to gravity, in m2/s.

handleFlags 203

Author(s)

Dan Kelley

References

Gill, A.E., 1982. Atmosphere-ocean Dynamics, Academic Press, New York, 662 pp.

Caution: Fofonoff and Millard (1983 UNESCO) use a different formula.

Examples

g <- gravity(45) # 9.8

handleFlags Handle Flags in oce Objects (Generic)

Description

Data-quality flags are stored in the metadata slot of oce objects in a list named flags. The present
function (a generic that has specialized versions for various data classes) provides a way to ma-
nipulate the contents of the data slot, based on such data-quality flags. For example, a common
operation is to replace erroneous data with NA.

If the flags within object’s metadata slot is empty, then object is returned, unaltered. Otherwise,
handleFlags examines object@metadata$flags in the context of the flags argument, and then
carries out actions that are specified by the actions argument. By default, this sets the returned
data entries to NA, wherever the corresponding metadata$flag values signal unreliable data. To
maintain a hint as to why data were changed, metadata$flags in the returned value is a direct
copy of the corresponding entry in object.

Usage

handleFlags(
object = "oce",
flags = NULL,
actions = NULL,
where = NULL,
debug = getOption("oceDebug")

)

Arguments

object an oce object.

flags A list specifying flag values upon which actions will be taken. This can take two
forms.

204 handleFlags

• In the first form, the list has named elements each containing a vector of
integers. For example, salinities flagged with values of 1 or 3:9 would be
specified by flags=list(salinity=c(1,3:9)). Several data items can be
specified, e.g. flags=list(salinity=c(1,3:9), temperature=c(1,3:9))
indicates that the actions are to take place for both salinity and temperature.

• In the second form, flags is a list holding a single unnamed vector, and this
means to apply the actions to all the data entries. For example, flags=list(c(1,3:9))
means to apply not just to salinity and temperature, but to everything within
the data slot.

If flags is not provided, then defaultFlags() is called, to try to determine a
reasonable default.

actions an optional list that contains items with names that match those in the flags ar-
gument. If actions is not supplied, the default will be to set all values identified
by flags to NA; this can also be specified by specifying actions=list("NA").
It is also possible to specify functions that calculate replacement values. These
are provided with object as the single argument, and must return a replacement
for the data item in question. See “Details” for the default that is used if actions
is not supplied.

where an optional character value that permits the function to work with objects that
store flags in e.g. object@metadata$flags$where instead of in object@metadata$flags,
and data within object@data$where instead of within object@data. The de-
fault value of NULL means to look withing object@metadata itself, and this is
the default within oce. (The purpose of where is to make oce extensible by other
packages, which may choose to store data two levels deep in the data slot.)

debug An optional integer specifying the degree of debugging, with value 0 meaning
to skip debugging and 1 or higher meaning to print some information about the
arguments and the data. It is usually a good idea to set this to 1 for initial work
with a dataset, to see which flags are being handled for each data item. If not
supplied, this defaults to the value of getOption("oceDebug").

Details

Each specialized variant of this function has its own defaults for flags and actions.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags,adp-method, handleFlags,argo-method,
handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method, initializeFlagScheme(),
initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

handleFlags,adp-method 205

handleFlags,adp-method

Handle Flags in adp Objects

Description

Data-quality flags are stored in the metadata slot of oce objects in a list named flags. The present
function (a generic that has specialized versions for various data classes) provides a way to ma-
nipulate the contents of the data slot, based on such data-quality flags. For example, a common
operation is to replace erroneous data with NA.

If the flags within object’s metadata slot is empty, then object is returned, unaltered. Otherwise,
handleFlags examines object@metadata$flags in the context of the flags argument, and then
carries out actions that are specified by the actions argument. By default, this sets the returned
data entries to NA, wherever the corresponding metadata$flag values signal unreliable data. To
maintain a hint as to why data were changed, metadata$flags in the returned value is a direct
copy of the corresponding entry in object.

Usage

S4 method for signature 'adp'
handleFlags(
object = "oce",
flags = NULL,
actions = NULL,
where = NULL,
debug = getOption("oceDebug")

)

Arguments

object an adp object.

flags A list specifying flag values upon which actions will be taken. This can take two
forms.

• In the first form, the list has named elements each containing a vector of
integers. For example, salinities flagged with values of 1 or 3:9 would be
specified by flags=list(salinity=c(1,3:9)). Several data items can be
specified, e.g. flags=list(salinity=c(1,3:9), temperature=c(1,3:9))
indicates that the actions are to take place for both salinity and temperature.

• In the second form, flags is a list holding a single unnamed vector, and this
means to apply the actions to all the data entries. For example, flags=list(c(1,3:9))
means to apply not just to salinity and temperature, but to everything within
the data slot.

If flags is not provided, then defaultFlags() is called, to try to determine a
reasonable default.

206 handleFlags,adp-method

actions an optional list that contains items with names that match those in the flags ar-
gument. If actions is not supplied, the default will be to set all values identified
by flags to NA; this can also be specified by specifying actions=list("NA").
It is also possible to specify functions that calculate replacement values. These
are provided with object as the single argument, and must return a replacement
for the data item in question. See “Details” for the default that is used if actions
is not supplied.

where an optional character value that permits the function to work with objects that
store flags in e.g. object@metadata$flags$where instead of in object@metadata$flags,
and data within object@data$where instead of within object@data. The de-
fault value of NULL means to look withing object@metadata itself, and this is
the default within oce. (The purpose of where is to make oce extensible by other
packages, which may choose to store data two levels deep in the data slot.)

debug An optional integer specifying the degree of debugging, with value 0 meaning
to skip debugging and 1 or higher meaning to print some information about the
arguments and the data. It is usually a good idea to set this to 1 for initial work
with a dataset, to see which flags are being handled for each data item. If not
supplied, this defaults to the value of getOption("oceDebug").

Details

If flags and actions are not provided, the default is to consider a flag value of 1 to indicate bad
data, and 0 to indicate good data. Note that it only makes sense to use velocity (v) flags, because
other flags are, at least for some instruments, stored as raw quantities, and such quantities may not
be set to NA.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,argo-method,
handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method, initializeFlagScheme(),
initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), is.ad2cp(), plot,adp-method,
read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

Flag low "goodness" or high "error beam" values.
library(oce)
data(adp)
Same as Example 2 of ?'setFlags,adp-method'

handleFlags,argo-method 207

v <- adp[["v"]]
i2 <- array(FALSE, dim = dim(v))
g <- adp[["g", "numeric"]]
Set thresholds on percent "goodness" and error "velocity".
G <- 25
V4 <- 0.45
for (k in 1:3) {

i2[, , k] <- ((g[, , k] + g[, , 4]) < G) | (v[, , 4] > V4)
}
adpQC <- initializeFlags(adp, "v", 2)
adpQC <- setFlags(adpQC, "v", i2, 3)
adpClean <- handleFlags(adpQC, flags = list(3), actions = list("NA"))
Demonstrate (subtle) change graphically.
par(mfcol = c(2, 1))
plot(adp, which = "u1", drawTimeRange = FALSE)
plot(adpClean, which = "u1", drawTimeRange = FALSE)
t0 <- 1214510000 # from locator()
arrows(t0, 20, t0, 35, length = 0.1, lwd = 3, col = "magenta")
mtext("Slight change above arrow", col = "magenta", font = 2)

handleFlags,argo-method

Handle Flags in argo Objects

Description

Data-quality flags are stored in the metadata slot of oce objects in a list named flags. The present
function (a generic that has specialized versions for various data classes) provides a way to ma-
nipulate the contents of the data slot, based on such data-quality flags. For example, a common
operation is to replace erroneous data with NA.

If the flags within object’s metadata slot is empty, then object is returned, unaltered. Otherwise,
handleFlags examines object@metadata$flags in the context of the flags argument, and then
carries out actions that are specified by the actions argument. By default, this sets the returned
data entries to NA, wherever the corresponding metadata$flag values signal unreliable data. To
maintain a hint as to why data were changed, metadata$flags in the returned value is a direct
copy of the corresponding entry in object.

Usage

S4 method for signature 'argo'
handleFlags(
object = "oce",
flags = NULL,
actions = NULL,
where = NULL,
debug = getOption("oceDebug")

)

208 handleFlags,argo-method

Arguments

object an argo object.

flags A list specifying flag values upon which actions will be taken. This can take two
forms.

• In the first form, the list has named elements each containing a vector of
integers. For example, salinities flagged with values of 1 or 3:9 would be
specified by flags=list(salinity=c(1,3:9)). Several data items can be
specified, e.g. flags=list(salinity=c(1,3:9), temperature=c(1,3:9))
indicates that the actions are to take place for both salinity and temperature.

• In the second form, flags is a list holding a single unnamed vector, and this
means to apply the actions to all the data entries. For example, flags=list(c(1,3:9))
means to apply not just to salinity and temperature, but to everything within
the data slot.

If flags is not provided, then defaultFlags() is called, to try to determine a
reasonable default.

actions an optional list that contains items with names that match those in the flags ar-
gument. If actions is not supplied, the default will be to set all values identified
by flags to NA; this can also be specified by specifying actions=list("NA").
It is also possible to specify functions that calculate replacement values. These
are provided with object as the single argument, and must return a replacement
for the data item in question. See “Details” for the default that is used if actions
is not supplied.

where an optional character value that permits the function to work with objects that
store flags in e.g. object@metadata$flags$where instead of in object@metadata$flags,
and data within object@data$where instead of within object@data. The de-
fault value of NULL means to look withing object@metadata itself, and this is
the default within oce. (The purpose of where is to make oce extensible by other
packages, which may choose to store data two levels deep in the data slot.)

debug An optional integer specifying the degree of debugging, with value 0 meaning
to skip debugging and 1 or higher meaning to print some information about the
arguments and the data. It is usually a good idea to set this to 1 for initial work
with a dataset, to see which flags are being handled for each data item. If not
supplied, this defaults to the value of getOption("oceDebug").

Author(s)

Dan Kelley

References

1. Wong, Annie, Robert Keeley, Thierry Carval, and Argo Data Management Team. "Argo Qual-
ity Control Manual for CTD and Trajectory Data," January 1, 2020. https://archimer.ifremer.fr/doc/00228/33951/.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method, initializeFlagScheme(),

handleFlags,ctd-method 209

initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoGrid(),
argoNames2oceNames(), as.argo(), plot,argo-method, read.argo(), read.argo.copernicus(),
subset,argo-method, summary,argo-method

Examples

library(oce)
data(argo)
argoNew <- handleFlags(argo)
Demonstrate replacement, looking at the second profile
f <- argo[["salinityFlag"]][, 2]
df <- data.frame(flag = f, orig = argo[["salinity"]][, 2], new = argoNew[["salinity"]][, 2])
df[11:15,] # notice line 13

handleFlags,ctd-method

Handle Flags in ctd Objects

Description

Data-quality flags are stored in the metadata slot of oce objects in a list named flags. The present
function (a generic that has specialized versions for various data classes) provides a way to ma-
nipulate the contents of the data slot, based on such data-quality flags. For example, a common
operation is to replace erroneous data with NA.

If the flags within object’s metadata slot is empty, then object is returned, unaltered. Otherwise,
handleFlags examines object@metadata$flags in the context of the flags argument, and then
carries out actions that are specified by the actions argument. By default, this sets the returned
data entries to NA, wherever the corresponding metadata$flag values signal unreliable data. To
maintain a hint as to why data were changed, metadata$flags in the returned value is a direct
copy of the corresponding entry in object.

Usage

S4 method for signature 'ctd'
handleFlags(
object = "oce",
flags = NULL,
actions = NULL,
where = NULL,
debug = getOption("oceDebug")

)

210 handleFlags,ctd-method

Arguments

object a ctd object.

flags A list specifying flag values upon which actions will be taken. This can take two
forms.

• In the first form, the list has named elements each containing a vector of
integers. For example, salinities flagged with values of 1 or 3:9 would be
specified by flags=list(salinity=c(1,3:9)). Several data items can be
specified, e.g. flags=list(salinity=c(1,3:9), temperature=c(1,3:9))
indicates that the actions are to take place for both salinity and temperature.

• In the second form, flags is a list holding a single unnamed vector, and this
means to apply the actions to all the data entries. For example, flags=list(c(1,3:9))
means to apply not just to salinity and temperature, but to everything within
the data slot.

If flags is not provided, then defaultFlags() is called, to try to determine a
reasonable default.

actions an optional list that contains items with names that match those in the flags ar-
gument. If actions is not supplied, the default will be to set all values identified
by flags to NA; this can also be specified by specifying actions=list("NA").
It is also possible to specify functions that calculate replacement values. These
are provided with object as the single argument, and must return a replacement
for the data item in question. See “Details” for the default that is used if actions
is not supplied.

where an optional character value that permits the function to work with objects that
store flags in e.g. object@metadata$flags$where instead of in object@metadata$flags,
and data within object@data$where instead of within object@data. The de-
fault value of NULL means to look withing object@metadata itself, and this is
the default within oce. (The purpose of where is to make oce extensible by other
packages, which may choose to store data two levels deep in the data slot.)

debug An optional integer specifying the degree of debugging, with value 0 meaning
to skip debugging and 1 or higher meaning to print some information about the
arguments and the data. It is usually a good idea to set this to 1 for initial work
with a dataset, to see which flags are being handled for each data item. If not
supplied, this defaults to the value of getOption("oceDebug").

References

The following link used to work, but failed as of December 2020.

1. https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,oce-method, handleFlags,section-method, initializeFlagScheme(),
initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

handleFlags,ctd-method 211

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

library(oce)
data(section)
stn <- section[["station", 100]]
1. Default: anything not flagged as 2 is set to NA, to focus
solely on 'good', in the World Hydrographic Program scheme.
STN1 <- handleFlags(stn, flags = list(c(1, 3:9)))
data.frame(old = stn[["salinity"]], new = STN1[["salinity"]], salinityFlag = stn[["salinityFlag"]])

2. Use bottle salinity, if it is good and ctd is bad
replace <- 2 == stn[["salinityBottleFlag"]] & 2 != stn[["salinityFlag"]]
S <- ifelse(replace, stn[["salinityBottle"]], stn[["salinity"]])
STN2 <- oceSetData(stn, "salinity", S)

3. Use smoothed TS relationship to nudge questionable data.
f <- function(x) {

S <- x[["salinity"]]
T <- x[["temperature"]]
df <- 0.5 * length(S) # smooths a bit
sp <- smooth.spline(T, S, df = df)
0.5 * (S + predict(sp, T)$y)

}
par(mfrow = c(1, 2))
STN3 <- handleFlags(stn, flags = list(salinity = c(1, 3:9)), action = list(salinity = f))
plotProfile(stn, "salinity", mar = c(3, 3, 3, 1))
p <- stn[["pressure"]]
par(mar = c(3, 3, 3, 1))
plot(STN3[["salinity"]] - stn[["salinity"]], p, ylim = rev(range(p)))

4. Single-variable flags (vector specification)
data(section)
Multiple-flag scheme: one per data item
A <- section[["station", 100]]
deep <- A[["pressure"]] > 1500
flag <- ifelse(deep, 7, 2)
for (flagName in names(A[["flags"]])) {

A[[paste(flagName, "Flag", sep = "")]] <- flag
}
Af <- handleFlags(A)
stopifnot(all.equal(is.na(Af[["salinity"]]), deep))

212 handleFlags,oce-method

5. Single-variable flags (list specification)
B <- section[["station", 100]]
B[["flags"]] <- list(flag)
Bf <- handleFlags(B)
stopifnot(all.equal(is.na(Bf[["salinity"]]), deep))

handleFlags,oce-method

Handle Flags in oce Objects

Description

Data-quality flags are stored in the metadata slot of oce objects in a list named flags. The present
function (a generic that has specialized versions for various data classes) provides a way to ma-
nipulate the contents of the data slot, based on such data-quality flags. For example, a common
operation is to replace erroneous data with NA.

If the flags within object’s metadata slot is empty, then object is returned, unaltered. Otherwise,
handleFlags examines object@metadata$flags in the context of the flags argument, and then
carries out actions that are specified by the actions argument. By default, this sets the returned
data entries to NA, wherever the corresponding metadata$flag values signal unreliable data. To
maintain a hint as to why data were changed, metadata$flags in the returned value is a direct
copy of the corresponding entry in object.

Usage

S4 method for signature 'oce'
handleFlags(
object = "oce",
flags = NULL,
actions = NULL,
where = NULL,
debug = getOption("oceDebug")

)

Arguments

object an oce object.

flags A list specifying flag values upon which actions will be taken. This can take two
forms.

• In the first form, the list has named elements each containing a vector of
integers. For example, salinities flagged with values of 1 or 3:9 would be
specified by flags=list(salinity=c(1,3:9)). Several data items can be
specified, e.g. flags=list(salinity=c(1,3:9), temperature=c(1,3:9))
indicates that the actions are to take place for both salinity and temperature.

handleFlags,section-method 213

• In the second form, flags is a list holding a single unnamed vector, and this
means to apply the actions to all the data entries. For example, flags=list(c(1,3:9))
means to apply not just to salinity and temperature, but to everything within
the data slot.

If flags is not provided, then defaultFlags() is called, to try to determine a
reasonable default.

actions an optional list that contains items with names that match those in the flags ar-
gument. If actions is not supplied, the default will be to set all values identified
by flags to NA; this can also be specified by specifying actions=list("NA").
It is also possible to specify functions that calculate replacement values. These
are provided with object as the single argument, and must return a replacement
for the data item in question. See “Details” for the default that is used if actions
is not supplied.

where an optional character value that permits the function to work with objects that
store flags in e.g. object@metadata$flags$where instead of in object@metadata$flags,
and data within object@data$where instead of within object@data. The de-
fault value of NULL means to look withing object@metadata itself, and this is
the default within oce. (The purpose of where is to make oce extensible by other
packages, which may choose to store data two levels deep in the data slot.)

debug An optional integer specifying the degree of debugging, with value 0 meaning
to skip debugging and 1 or higher meaning to print some information about the
arguments and the data. It is usually a good idea to set this to 1 for initial work
with a dataset, to see which flags are being handled for each data item. If not
supplied, this defaults to the value of getOption("oceDebug").

Details

Base-level handling of flags.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,section-method, initializeFlagScheme(),
initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

handleFlags,section-method

Handle flags in section Objects

Description

Data-quality flags are stored in the metadata slot of oce objects in a list named flags. The present
function (a generic that has specialized versions for various data classes) provides a way to ma-
nipulate the contents of the data slot, based on such data-quality flags. For example, a common
operation is to replace erroneous data with NA.

214 handleFlags,section-method

If the flags within object’s metadata slot is empty, then object is returned, unaltered. Otherwise,
handleFlags examines object@metadata$flags in the context of the flags argument, and then
carries out actions that are specified by the actions argument. By default, this sets the returned
data entries to NA, wherever the corresponding metadata$flag values signal unreliable data. To
maintain a hint as to why data were changed, metadata$flags in the returned value is a direct
copy of the corresponding entry in object.

Usage

S4 method for signature 'section'
handleFlags(
object = "oce",
flags = NULL,
actions = NULL,
where = where,
debug = getOption("oceDebug")

)

Arguments

object A section object.

flags A list specifying flag values upon which actions will be taken. This can take two
forms.

• In the first form, the list has named elements each containing a vector of
integers. For example, salinities flagged with values of 1 or 3:9 would be
specified by flags=list(salinity=c(1,3:9)). Several data items can be
specified, e.g. flags=list(salinity=c(1,3:9), temperature=c(1,3:9))
indicates that the actions are to take place for both salinity and temperature.

• In the second form, flags is a list holding a single unnamed vector, and this
means to apply the actions to all the data entries. For example, flags=list(c(1,3:9))
means to apply not just to salinity and temperature, but to everything within
the data slot.

If flags is not provided, then defaultFlags() is called, to try to determine a
reasonable default.

actions an optional list that contains items with names that match those in the flags ar-
gument. If actions is not supplied, the default will be to set all values identified
by flags to NA; this can also be specified by specifying actions=list("NA").
It is also possible to specify functions that calculate replacement values. These
are provided with object as the single argument, and must return a replacement
for the data item in question. See “Details” for the default that is used if actions
is not supplied.

where an optional character value that permits the function to work with objects that
store flags in e.g. object@metadata$flags$where instead of in object@metadata$flags,
and data within object@data$where instead of within object@data. The de-
fault value of NULL means to look withing object@metadata itself, and this is
the default within oce. (The purpose of where is to make oce extensible by other
packages, which may choose to store data two levels deep in the data slot.)

handleFlags,vector-method 215

debug An optional integer specifying the degree of debugging, with value 0 meaning
to skip debugging and 1 or higher meaning to print some information about the
arguments and the data. It is usually a good idea to set this to 1 for initial work
with a dataset, to see which flags are being handled for each data item. If not
supplied, this defaults to the value of getOption("oceDebug").

Details

The default for flags is based on calling defaultFlags() based on the metadata in the first
station in the section. If the other stations have different flag schemes (which seems highly unlikely
for archived data), this will not work well, and indeed the only way to proceed would be to use
handleFlags,ctd-method() on the stations, individually.

References

The following link used to work, but was found to fail in December 2020.

1. https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, initializeFlagScheme(),
initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
initializeFlagScheme,section-method, plot,section-method, read.section(), section,
section-class, sectionAddStation(), sectionGrid(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

Examples

library(oce)
data(section)
section2 <- handleFlags(section, flags = c(1, 3:9))
par(mfrow = c(2, 1))
plotTS(section)
plotTS(section2)

handleFlags,vector-method

Signal Erroneous Application to non-oce Objects

Description

Signal Erroneous Application to non-oce Objects

216 handleFlagsInternal

Usage

S4 method for signature 'vector'
handleFlags(
object = "oce",
flags = list(),
actions = list(),
where = list(),
debug = getOption("oceDebug")

)

Arguments

object A vector, which cannot be the case for oce objects.
flags Ignored.
actions Ignored.
where Ignored.
debug Ignored.

handleFlagsInternal Low-Level Function for Handling Data-Quality Flags

Description

This function is designed for internal use within the oce package. Its purpose is to carry out
low-level processing relating to data-quality flags, as a support for higher-level functions such
handleFlags,ctd-method for ctd objects, handleFlags,adp-method for adp objects, etc.

Usage

handleFlagsInternal(object, flags, actions, where, debug = 0)

Arguments

object an oce object.
flags a named list of numeric values.
actions A character vector indicating actions to be carried out for the corresponding

flags values. This will be lengthened with rep() if necessary, to be of the
same length as flags. A common value for actions is "NA", which means that
data values that are flagged are replaced by NA in the returned result.

where An optional string that permits the function to work with objects that store flags
in e.g. object@metadata$flags$where instead of in object@metadata$flags,
and data within object@data$where instead of within object@data. The ap-
propriate value for where within the oce package is the default, NULL, which
means that this extra subdirectory is not being used.

debug An integer indicating the degree of debugging requested, with value 0 meaning
to act silently, and value 1 meaning to print some information about the steps in
processing.

head.oce 217

Value

A copy of object, possibly with modifications to its data slot, if object contains flag values that
have actions that alter the data.

head.oce Extract The Start of an Oce Object

Description

Extract The Start of an Oce Object

This function handles the following object classes directly: adp, adv, argo (selection by profile),
coastline, ctd, echosounder (selection by ping), section (selection by station) and topo (selection
by longitude and latitude). It does not handle amsr or landsat yet, instead issuing a warning and
returning x in those cases. For all other classes, it calls head() with n as provided, for each item
in the data slot, issuing a warning if that item is not a vector; the author is quite aware that this
may not work well for all classes. The plan is to handle all appropriate classes by July 2018. Please
contact the author if there is a class you need handled before that date.

Usage

S3 method for class 'oce'
head(x, n = 6L, ...)

Arguments

x an oce object.

n Number of elements to extract, as for head().

... ignored

Author(s)

Dan Kelley

See Also

tail.oce(), which yields the end of an oce object.

218 imagep

imagep Plot an Image with a Color Palette

Description

Plot an image with a color palette, in a way that does not conflict with par("mfrow") or layout().
To plot just a palette, e.g. to get an x-y plot with points colored according to a palette, use
drawPalette() and then draw the main diagram.

Usage

imagep(
x,
y,
z,
xlim,
ylim,
zlim,
zclip = FALSE,
flipy = FALSE,
xlab = "",
ylab = "",
zlab = "",
zlabPosition = c("top", "side"),
las.palette = 0,
decimate = TRUE,
quiet = FALSE,
breaks,
col,
colormap,
labels = NULL,
at = NULL,
drawContours = FALSE,
drawPalette = TRUE,
drawTriangles = FALSE,
tformat,
drawTimeRange = getOption("oceDrawTimeRange"),
filledContour = FALSE,
missingColor = NULL,
useRaster,
mgp = getOption("oceMgp"),
mar,
mai.palette,
xaxs = "i",
yaxs = "i",
asp = NA,
cex = par("cex"),

imagep 219

cex.axis = cex,
cex.lab = cex,
cex.main = cex,
axes = TRUE,
main = "",
axisPalette,
add = FALSE,
debug = getOption("oceDebug"),
...

)

Arguments

x, y These have different meanings in different modes of operation.
Mode 1. One mode has them meaning the locations of coordinates along which
values matrix z are defined. In this case, both x and y must be supplied and,
within each, the values must be finite and distinct; if values are out of order,
they (and z) will be transformed to put them in order. ordered in a matching
way).
Mode 2. If z is provided but not x and y, then the latter are constructed to
indicate the indices of the matrix, in contrast to the range of 0 to 1, as is the case
for image().
Mode 3. If x is a list, its components x$x and x$y are used for x and y, respec-
tively. If the list has component z this is used for z. (NOTE: these arguments are
meant to mimic those of image(), which explains the same description here.)
Mode 4. There are also some special cases, e.g. if x is a topographic object such
as can be created with read.topo() or as.topo(), then longitude and latitude
are used for axes, and topographic height is drawn.

z A matrix containing the values to be plotted (NAs are allowed). Note that x
can be used instead of z for convenience. (NOTE: these arguments are meant to
mimic those of image(), which explains the same description here.)

xlim, ylim Limits on x and y axes.

zlim If missing, the z scale is determined by the range of the data. If provided, zlim
may take several forms. First, it may be a pair of numbers that specify the lim-
its for the color scale. Second, it could be the string "histogram", to yield
a flattened histogram (i.e. to increase contrast). Third, it could be the string
"symmetric", to yield limits that are symmetric about zero, which can be help-
ful in drawing velocity fields, for which a zero value has a particular meaning
(in which case, a good color scheme might be col=oceColorsTwo).

zclip Logical, indicating whether to clip the colors to those corresponding to zlim.
This only works if zlim is provided. Clipped regions will be colored with
missingColor. Thus, clipping an image is somewhat analogous to clipping
in an xy plot, with clipped data being ignored, which in an image means to be
be colored with missingColor.

flipy Logical, with TRUE indicating that the graph should have the y axis reversed, i.e.
with smaller values at the bottom of the page. (Historical note: until 2019 March
26, the meaning of flipy was different; it meant to reverse the range of the y

220 imagep

axis, so that if ylim were given as a reversed range, then setting flipy=TRUE
would reverse the flip, yielding a conventional axis with smaller values at the
bottom.)

xlab, ylab, zlab Names for x axis, y axis, and the image values.

zlabPosition String indicating where to put the label for the z axis, either at the top-right of
the main image, or on the side, in the axis for the palette.

las.palette Parameter controlling the orientation of labels on the image palette, passed as the
las argument to drawPalette(). See the documentation for drawPalette()
for details.

decimate Controls whether the image will be decimated before plotting, in three possible
cases.

1. If decimate=FALSE then every grid cell in the matrix will be represented
by a pixel in the image.

2. If decimate=TRUE (the default), then decimation will be done in the hori-
zontal or vertical direction (or both) if the length of the corresponding edge
of the z matrix exceeds 800. (This also creates a warning message.) The
decimation factor is computed as the integer just below the ratio of z di-
mension to 400. Thus, no decimation is done if the dimension is less than
800, but if the dimension s between 800 and 1199, only every second grid
point is mapped to a pixel in the image.

3. If decimate is an integer, then that z is subsampled at seq.int(1L, dim(z)[1],
by=decimate) (as is x), and the same is done for the y direction.

4. If decimate is a vector of two integers, the first is used for the first index of
z, and the second is used for the second index.

quiet logical value indicating whether to silence warnings that might occur if the im-
age is being decimated.

breaks The z values for breaks in the color scheme. If this is of length 1, the value
indicates the desired number of breaks, which is supplied to pretty(), in de-
termining clean break points. If colormap is provided, it takes precedence over
breaks and col.

col Either a vector of colors corresponding to the breaks, of length 1 plus the num-
ber of breaks, or a function specifying colors. If col is not provided, and if
colormap is also not provided, then col defaults to oceColorsViridis(). If
colormap is provided, it takes precedence over breaks and col.

colormap A color map as created by colormap(). If provided, then colormap$breaks
and colormap$col take precedence over the present arguments breaks and col.
(All of the other contents of colormap are ignored, though.) If colormap is
provided, it takes precedence over breaks and col.

labels Optional vector of labels for ticks on palette axis (must correspond with at).

at Optional vector of positions for the labels.

drawContours Logical value indicating whether to draw contours on the image, and palette, at
the color breaks. Images with a great deal of high-wavenumber variation look
poor with contours.

imagep 221

drawPalette Indication of the type of palette to draw, if any. If drawPalette=TRUE, a palette
is drawn at the right-hand side of the main image. If drawPalette=FALSE,
no palette is drawn, and the right-hand side of the plot has a thin margin. If
drawPalette="space", then no palette is drawn, but space is put in the right-
hand margin to occupy the region in which the palette would have been drawn.
This last form is useful for producing stacked plots with uniform left and right
margins, but with palettes on only some of the images.

drawTriangles Logical value indicating whether to draw triangles on the top and bottom of the
palette. This is passed to drawPalette().

tformat Optional argument passed to oce.plot.ts(), for plot types that call that func-
tion. (See strptime() for the format used.)

drawTimeRange Logical, only used if the x axis is a time. If TRUE, then an indication of the time
range of the data (not the axis) is indicated at the top-left margin of the graph.
This is useful because the labels on time axes only indicate hours if the range is
less than a day, etc.

filledContour Boolean value indicating whether to use filled contours to plot the image.

missingColor A color to be used to indicate missing data, or NULL for transparent (to see this,
try setting par("bg")<-"red").

useRaster A logical value passed to image(), in cases where filledContour is FALSE.
Setting useRaster=TRUE can alleviate some anti-aliasing effects on some plot
devices; see the documentation for image().

mgp A 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar A 4-element Value to be used with par("mar"). If not given, a reasonable value
is calculated based on whether xlab and ylab are empty strings.

mai.palette Palette margin corrections (in inches), added to the mai value used for the palette.
Use with care.

xaxs Character indicating whether image should extend to edge of x axis (with value
"i") or not; see par("xaxs").

yaxs As xaxs but for y axis.

asp Aspect ratio of the plot, as for plot.default(). If x inherits from topo and
asp=NA (the default) then asp is redefined to be the reciprocal of the mean lat-
itude in x, as a way to reduce geographical distortion. Otherwise, if asp is not
NA, then it is used directly.

cex numeric character expansion factor, used for cex.axis, cex.lab and cex.main,
if those values are not supplied.

cex.axis, cex.lab, cex.main
numeric character expansion factors for axis numbers, axis names and plot titles;
see par().

axes Logical, set TRUE to get axes on the main image.

main Title for plot.

axisPalette Optional replacement function for axis(), passed to drawPalette().

222 imagep

add Logical value indicating whether to add to an existing plot. The default value,
FALSE indicates that a new plot is to be created. However, if add is TRUE, the idea
is to add an image (but not its palette or its axes) to an existing plot. Clearly,
then, arguments such xlim are to be ignored. Indeed, if add=TRUE, the only
arguments examined are x (which must be a vector; the mode of providing a
matrix or oce object does not work), y, z, decimate, plus either colormap or
both breaks and col.

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... Optional arguments passed to plotting functions.

Details

By default, creates an image with a color palette to the right. The effect is similar to filled.contour()
except that with imagep it is possible to set the layout() outside the function, which enables the
creation of plots with many image-palette panels. Note that the contour lines may not coincide with
the color transitions, in the case of coarse images.

Note that this does not use layout() or any of the other screen splitting methods. It simply manip-
ulates margins, and draws two plots together. This lets users employ their favourite layout schemes.

NOTE: imagep is an analogue of image(), and from that it borrows a the convention that the number
of rows in the matrix corresponds to to x axis, not the y axis. (Actually, image() permits the length
of x to match either nrow(z) or 1+nrow(z), but here only the first is permitted.)

Value

A list is silently returned, containing xat and yat, values that can be used by oce.grid() to add a
grid to the plot.

Author(s)

Dan Kelley and Clark Richards

See Also

This uses drawPalette(), and is used by plot,adp-method(), plot,landsat-method(), and
other image-generating functions.

Examples

library(oce)

1. simplest use
imagep(volcano)

2. something oceanographic (internal-wave speed)
h <- seq(0, 50, length.out = 100)
drho <- seq(1, 3, length.out = 200)
speed <- outer(h, drho, function(drho, h) sqrt(9.8 * drho * h / 1024))
imagep(h, drho, speed,

initialize,ctd-method 223

xlab = "Equivalent depth [m]",
ylab = expression(paste(Delta * rho, " [kg/m^3]")),
zlab = "Internal-wave speed [m/s]"

)

3. fancy labelling on atan() function
x <- seq(0, 1, 0.01)
y <- seq(0, 1, 0.01)
angle <- outer(x, y, function(x, y) atan2(y, x))
imagep(x, y, angle,

filledContour = TRUE, breaks = c(0, pi / 4, pi / 2),
col = c("lightgray", "darkgray"),
at = c(0, pi / 4, pi / 2),
labels = c(0, expression(pi / 4), expression(pi / 2))

)

5. y-axis flipping
par(mfrow = c(2, 2))
data(adp)
d <- adp[["distance"]]
t <- adp[["time"]]
u <- adp[["v"]][, , 1]
imagep(t, d, u, drawTimeRange = FALSE)
mtext("normal")
imagep(t, d, u, flipy = TRUE, drawTimeRange = FALSE)
mtext("flipy")
imagep(t, d, u, ylim = rev(range(d)), drawTimeRange = FALSE)
mtext("ylim")
imagep(t, d, u, ylim = rev(range(d)), flipy = TRUE, drawTimeRange = FALSE)
mtext("flipy and ylim")
par(mfrow = c(1, 1))

6. a colormap case
data(topoWorld)
cm <- colormap(name = "gmt_globe")
imagep(topoWorld, colormap = cm)

initialize,ctd-method Initialize Storage for a ctd Object

Description

This function creates ctd objects. It is mainly used by oce functions such as read.ctd() and
as.ctd(), and it is not intended for novice users, so it may change at any time, without following
the usual rules for transitioning to deprecated and defunct status (see oce-deprecated).

Usage

S4 method for signature 'ctd'

224 initialize,ctd-method

initialize(
.Object,
pressure,
salinity,
temperature,
conductivity,
units,
pressureType,
deploymentType,
...

)

Arguments

.Object the string "ctd"

pressure optional numerical vector of pressures.

salinity optional numerical vector of salinities.

temperature optional numerical vector of temperatures.

conductivity optional numerical vector of conductivities.

units optional list indicating units for the quantities specified in the previous argu-
ments. If this is not supplied, a default is set up, based on which of the pressure
to conductivity arguments were specified. If all of those 4 arguments were
specified, then units is set up as if the call included the following: units=list(temperature=list(unit=expression(degree*C),
scale="ITS-90"), salinity=list(unit=expression(), scale="PSS-78"),
conductivity=list(unit=expression(), scale=""), pressure=list(unit=expression(dbar),
scale=""), depth=list(unit=expression(m), scale="")). This list is trimmed
of any of the 4 items that were not specified in the previous arguments. Note that
if units is specified, then it is just copied into the metadata slot of the returned
object, so the user must be careful to set up values that will make sense to other
oce functions.

pressureType optional character string indicating the type of pressure; if not supplied, this
defaults to "sea", which indicates the excess of pressure over the atmospheric
value, in dbar.

deploymentType optional character string indicating the type of deployment, which may be "unknown",
"profile", "towyo", or "thermosalinograph". If this is not set, the value de-
faults to "unknown".

... Ignored.

Details

To save storage, this function has arguments only for quantities that are often present in data files
all cases. For example, not all data files will have oxygen, so that’s not present here. Extra data
may be added after the object is created, using oceSetData(). Similarly, oceSetMetadata() may
be used to add metadata (station ID, etc), while bearing in mind that other functions look for such
information in very particular places (e.g. the station ID is a string named station within the
metadata slot). See ctd for more information on elements stored in ctd objects.

initializeFlags 225

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

1. empty
new("ctd")

2. fake data with no location information, so can only
plot with the UNESCO equation of state.
NOTE: always name arguments, in case the default order gets changed
ctd <- new("ctd", salinity = 35 + 1:3 / 10, temperature = 10 - 1:3 / 10, pressure = 1:3)
summary(ctd)
plot(ctd, eos = "unesco")

3. as 2, but insert location and plot with GSW equation of state.
ctd <- oceSetMetadata(ctd, "latitude", 44)
ctd <- oceSetMetadata(ctd, "longitude", -63)
plot(ctd, eos = "gsw")

initializeFlags Create and Initialize oce Flags

Description

This function creates an item for a named variable within the flags entry in the object’s metadata
slot. The purpose is both to document a flag scheme and to make it so that initializeFlags() and
setFlags() can specify flags by name, in addition to number. A generic function, it is specialized
for some classes via interpretation of the scheme argument (see “Details”, for those object classes
that have such specializations).

Usage

initializeFlags(object, name = NULL, value = NULL, debug = 0)

226 initializeFlags,adp-method

Arguments

object An oce object.

name Character value indicating the name of a variable within the data slot of object.

value Numerical or character value to be stored in the newly-created entry within
flags. (A character value will only work if initializeFlags() has been used
first on object.)

debug Integer set to 0 for quiet action or to 1 for some debugging.

Details

If object already contains a flags entry with the indicated name, then it is returned unaltered, and
a warning is issued.

Value

An object with the flags item within the metadata slot set up as indicated.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlagSchemeInternal(), initializeFlags,adp-method,
initializeFlags,oce-method, initializeFlagsInternal(), setFlags(), setFlags,adp-method,
setFlags,ctd-method, setFlags,oce-method

initializeFlags,adp-method

Create and Initialize adp Flags

Description

This function creates an item for a named variable within the flags entry in the object’s metadata
slot. The purpose is both to document a flag scheme and to make it so that initializeFlags() and
setFlags() can specify flags by name, in addition to number. A generic function, it is specialized
for some classes via interpretation of the scheme argument (see “Details”, for those object classes
that have such specializations).

Usage

S4 method for signature 'adp'
initializeFlags(
object,
name = NULL,
value = NULL,
debug = getOption("oceDebug")

)

initializeFlags,oce-method 227

Arguments

object An oce object.

name Character value indicating the name of a variable within the data slot of object.

value Numerical or character value to be stored in the newly-created entry within
flags. (A character value will only work if initializeFlags() has been used
first on object.)

debug Integer set to 0 for quiet action or to 1 for some debugging.

Details

If object already contains a flags entry with the indicated name, then it is returned unaltered, and
a warning is issued.

Value

An object with the flags item within the metadata slot set up as indicated.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlagSchemeInternal(), initializeFlags(),
initializeFlags,oce-method, initializeFlagsInternal(), setFlags(), setFlags,adp-method,
setFlags,ctd-method, setFlags,oce-method

initializeFlags,oce-method

Create and Initialize oce Flags

Description

This function creates an item for a named variable within the flags entry in the object’s metadata
slot. The purpose is both to document a flag scheme and to make it so that initializeFlags() and
setFlags() can specify flags by name, in addition to number. A generic function, it is specialized
for some classes via interpretation of the scheme argument (see “Details”, for those object classes
that have such specializations).

Usage

S4 method for signature 'oce'
initializeFlags(
object,
name = NULL,
value = NULL,
debug = getOption("oceDebug")

)

228 initializeFlagScheme

Arguments

object An oce object.

name Character value indicating the name of a variable within the data slot of object.

value Numerical or character value to be stored in the newly-created entry within
flags. (A character value will only work if initializeFlags() has been used
first on object.)

debug Integer set to 0 for quiet action or to 1 for some debugging.

Details

If object already contains a flags entry with the indicated name, then it is returned unaltered, and
a warning is issued.

Value

An object with the flags item within the metadata slot set up as indicated.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlagSchemeInternal(), initializeFlags(),
initializeFlags,adp-method, initializeFlagsInternal(), setFlags(), setFlags,adp-method,
setFlags,ctd-method, setFlags,oce-method

initializeFlagScheme Establish a Data-Quality Scheme for a oce Object

Description

This function adds an item named flagScheme to the metadata slot of an object inheriting from oce.
This is a list containing two items: name and mapping, as provided in the function arguments. The
purpose is both to document a flag scheme and to make it so that initializeFlags(), setFlags()
and handleFlags() can specify flags by name, as opposed to number. This is a generic function,
that may be specialized to the class of object (see “Details”).

Usage

initializeFlagScheme(
object,
name = NULL,
mapping = NULL,
default = NULL,
update = NULL,
debug = 0

)

initializeFlagScheme 229

Arguments

object An oce object.

name a character value naming the scheme. If this refers to a pre-defined scheme,
then mapping must not be provided, because doing so would contradict the pre-
defined scheme, defeating its purpose of providing concreteness and clarity.

mapping a list of named items describing the mapping from flag meaning to flag numeri-
cal value, e.g list(good=1, bad=2) might be used for a hypothetical class.

default an integer vector of flag values that are not considered to be good. If this is not
provided, but if name is "argo", "BODC", "DFO", "WHP bottle", or "WHP CTD",
then a conservative value will be set automatically, equal to the list of flag values
that designate bad or questionable data. For example, for name="WHP CTD", the
setting will be c(1,3,4,5,6,7,9), leaving only value 2, which corresponds
with "acceptable" in the notation used for that flag scheme.

update a logical value indicating whether the scheme provided is to update an existing
scheme. The default value, FALSE, prevents such an attempt to alter an existing
flag scheme, if one is already embedded in object.

debug an integer set to 0 for quiet action or to 1 for some debugging.

Details

The following pre-defined schemes are available (note that the names are simplified from the
phrases used in defining documentation):

• name="argo" defaults mapping to OLD (prior to June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, averaged=7,
interpolated=8, missing=9)

NEW (after June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, changed=5, not_used_6=6, not_used_7=7,
estimated=8, missing=9)

See reference 1 for a deeper explanation of the meanings of these codes.

• name="BODC" defaults mapping to

list(no_quality_control=0, good=1, probably_good=2,
probably_bad=3, bad=4, changed=5,
below_detection=6, in_excess=7, interpolated=8,
missing=9)

See reference 2 for a deeper explanation of the meanings of these codes, and note that codes A and
Q are not provided in oce.

230 initializeFlagScheme

• name="DFO" defaults mapping to

list(no_quality_control=0, appears_correct=1, appears_inconsistent=2,
doubtful=3, erroneous=4, changed=5,
qc_by_originator=8, missing=9)

See reference 3 for a deeper explanation of the meanings of these codes.

• name="WHP bottle" defaults mapping to

list(no_information=1, no_problems_noted=2, leaking=3,
did_not_trip=4, not_reported=5, discrepency=6,
unknown_problem=7, did_not_trip=8, no_sample=9)

See reference 4 for a deeper explanation of the meanings of these codes.

• name="WHP CTD" defaults mapping to

list(not_calibrated=1, acceptable=2, questionable=3,
bad=4, not_reported=5, interpolated=6,
despiked=7, missing=9)

See reference 4 for a deeper explanation of the meanings of these codes.

Value

An object with the metadata slot containing flagScheme.

References

1. The codes for "argo" are derived from information in Table 4.1 of Wong, Annie, Robert Kee-
ley, Thierry Carval, and Argo Data Management Team (8 January 2020), "Argo Quality Con-
trol Manual for CTD and Trajectory Data, Version 3.3," available at https://archimer.ifremer.fr/doc/00228/33951/
as of June 2020.

2. The codes for "BODC" are defined at http://seadatanet.maris2.nl/v_bodc_vocab_v2/browse.asp?order=conceptid&formname=search&screen=0&lib=l20

3. The codes for "DFO" are defined at http://www.dfo-mpo.gc.ca/science/data-donnees/code/list/014-
eng.html

4. The codes for "WHP CTD" and "WHP bottle" are defined at https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

Other things related to oce data: initializeFlagScheme,oce-method, initializeFlagSchemeInternal()

initializeFlagScheme,ctd-method 231

initializeFlagScheme,ctd-method

Establish a Data-Quality Scheme for a ctd Object

Description

This function adds an item named flagScheme to the metadata slot of an object inheriting from ctd.
This is a list containing two items: name and mapping, as provided in the function arguments. The
purpose is both to document a flag scheme and to make it so that initializeFlags(), setFlags()
and handleFlags() can specify flags by name, as opposed to number. This is a generic function,
that may be specialized to the class of object (see “Details”).

Usage

S4 method for signature 'ctd'
initializeFlagScheme(
object,
name = NULL,
mapping = NULL,
default = NULL,
update = NULL,
debug = 0

)

Arguments

object An oce object.

name a character value naming the scheme. If this refers to a pre-defined scheme,
then mapping must not be provided, because doing so would contradict the pre-
defined scheme, defeating its purpose of providing concreteness and clarity.

mapping a list of named items describing the mapping from flag meaning to flag numeri-
cal value, e.g list(good=1, bad=2) might be used for a hypothetical class.

default an integer vector of flag values that are not considered to be good. If this is not
provided, but if name is "argo", "BODC", "DFO", "WHP bottle", or "WHP CTD",
then a conservative value will be set automatically, equal to the list of flag values
that designate bad or questionable data. For example, for name="WHP CTD", the
setting will be c(1,3,4,5,6,7,9), leaving only value 2, which corresponds
with "acceptable" in the notation used for that flag scheme.

update a logical value indicating whether the scheme provided is to update an existing
scheme. The default value, FALSE, prevents such an attempt to alter an existing
flag scheme, if one is already embedded in object.

debug an integer set to 0 for quiet action or to 1 for some debugging.

232 initializeFlagScheme,ctd-method

Details

The following pre-defined schemes are available (note that the names are simplified from the
phrases used in defining documentation):

• name="argo" defaults mapping to OLD (prior to June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, averaged=7,
interpolated=8, missing=9)

NEW (after June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, changed=5, not_used_6=6, not_used_7=7,
estimated=8, missing=9)

See reference 1 for a deeper explanation of the meanings of these codes.

• name="BODC" defaults mapping to

list(no_quality_control=0, good=1, probably_good=2,
probably_bad=3, bad=4, changed=5,
below_detection=6, in_excess=7, interpolated=8,
missing=9)

See reference 2 for a deeper explanation of the meanings of these codes, and note that codes A and
Q are not provided in oce.

• name="DFO" defaults mapping to

list(no_quality_control=0, appears_correct=1, appears_inconsistent=2,
doubtful=3, erroneous=4, changed=5,
qc_by_originator=8, missing=9)

See reference 3 for a deeper explanation of the meanings of these codes.

• name="WHP bottle" defaults mapping to

list(no_information=1, no_problems_noted=2, leaking=3,
did_not_trip=4, not_reported=5, discrepency=6,
unknown_problem=7, did_not_trip=8, no_sample=9)

See reference 4 for a deeper explanation of the meanings of these codes.

• name="WHP CTD" defaults mapping to

list(not_calibrated=1, acceptable=2, questionable=3,
bad=4, not_reported=5, interpolated=6,
despiked=7, missing=9)

See reference 4 for a deeper explanation of the meanings of these codes.

initializeFlagScheme,oce-method 233

Value

An object with the metadata slot containing flagScheme.

References

1. The codes for "argo" are derived from information in Table 4.1 of Wong, Annie, Robert Kee-
ley, Thierry Carval, and Argo Data Management Team (8 January 2020), "Argo Quality Con-
trol Manual for CTD and Trajectory Data, Version 3.3," available at https://archimer.ifremer.fr/doc/00228/33951/
as of June 2020.

2. The codes for "BODC" are defined at http://seadatanet.maris2.nl/v_bodc_vocab_v2/browse.asp?order=conceptid&formname=search&screen=0&lib=l20

3. The codes for "DFO" are defined at http://www.dfo-mpo.gc.ca/science/data-donnees/code/list/014-
eng.html

4. The codes for "WHP CTD" and "WHP bottle" are defined at https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,oce-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

initializeFlagScheme,oce-method

Establish a Data-Quality Scheme for a oce Object

Description

This function adds an item named flagScheme to the metadata slot of an object inheriting from oce.
This is a list containing two items: name and mapping, as provided in the function arguments. The
purpose is both to document a flag scheme and to make it so that initializeFlags(), setFlags()
and handleFlags() can specify flags by name, as opposed to number. This is a generic function,
that may be specialized to the class of object (see “Details”).

234 initializeFlagScheme,oce-method

Usage

S4 method for signature 'oce'
initializeFlagScheme(
object,
name = NULL,
mapping = NULL,
default = NULL,
update = NULL,
debug = 0

)

Arguments

object An oce object.

name a character value naming the scheme. If this refers to a pre-defined scheme,
then mapping must not be provided, because doing so would contradict the pre-
defined scheme, defeating its purpose of providing concreteness and clarity.

mapping a list of named items describing the mapping from flag meaning to flag numeri-
cal value, e.g list(good=1, bad=2) might be used for a hypothetical class.

default an integer vector of flag values that are not considered to be good. If this is not
provided, but if name is "argo", "BODC", "DFO", "WHP bottle", or "WHP CTD",
then a conservative value will be set automatically, equal to the list of flag values
that designate bad or questionable data. For example, for name="WHP CTD", the
setting will be c(1,3,4,5,6,7,9), leaving only value 2, which corresponds
with "acceptable" in the notation used for that flag scheme.

update a logical value indicating whether the scheme provided is to update an existing
scheme. The default value, FALSE, prevents such an attempt to alter an existing
flag scheme, if one is already embedded in object.

debug an integer set to 0 for quiet action or to 1 for some debugging.

Details

The following pre-defined schemes are available (note that the names are simplified from the
phrases used in defining documentation):

• name="argo" defaults mapping to OLD (prior to June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, averaged=7,
interpolated=8, missing=9)

NEW (after June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, changed=5, not_used_6=6, not_used_7=7,
estimated=8, missing=9)

initializeFlagScheme,oce-method 235

See reference 1 for a deeper explanation of the meanings of these codes.

• name="BODC" defaults mapping to

list(no_quality_control=0, good=1, probably_good=2,
probably_bad=3, bad=4, changed=5,
below_detection=6, in_excess=7, interpolated=8,
missing=9)

See reference 2 for a deeper explanation of the meanings of these codes, and note that codes A and
Q are not provided in oce.

• name="DFO" defaults mapping to

list(no_quality_control=0, appears_correct=1, appears_inconsistent=2,
doubtful=3, erroneous=4, changed=5,
qc_by_originator=8, missing=9)

See reference 3 for a deeper explanation of the meanings of these codes.

• name="WHP bottle" defaults mapping to

list(no_information=1, no_problems_noted=2, leaking=3,
did_not_trip=4, not_reported=5, discrepency=6,
unknown_problem=7, did_not_trip=8, no_sample=9)

See reference 4 for a deeper explanation of the meanings of these codes.

• name="WHP CTD" defaults mapping to

list(not_calibrated=1, acceptable=2, questionable=3,
bad=4, not_reported=5, interpolated=6,
despiked=7, missing=9)

See reference 4 for a deeper explanation of the meanings of these codes.

Value

An object with the metadata slot containing flagScheme.

References

1. The codes for "argo" are derived from information in Table 4.1 of Wong, Annie, Robert Kee-
ley, Thierry Carval, and Argo Data Management Team (8 January 2020), "Argo Quality Con-
trol Manual for CTD and Trajectory Data, Version 3.3," available at https://archimer.ifremer.fr/doc/00228/33951/
as of June 2020.

2. The codes for "BODC" are defined at http://seadatanet.maris2.nl/v_bodc_vocab_v2/browse.asp?order=conceptid&formname=search&screen=0&lib=l20

3. The codes for "DFO" are defined at http://www.dfo-mpo.gc.ca/science/data-donnees/code/list/014-
eng.html

4. The codes for "WHP CTD" and "WHP bottle" are defined at https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm

236 initializeFlagScheme,section-method

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,section-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

Other things related to oce data: initializeFlagScheme(), initializeFlagSchemeInternal()

initializeFlagScheme,section-method

Establish a Data-Quality Scheme for a section Object

Description

This function adds an item named flagScheme to the metadata slot of an object inheriting from
section. This is a list containing two items: name and mapping, as provided in the function argu-
ments. The purpose is both to document a flag scheme and to make it so that initializeFlags(),
setFlags() and handleFlags() can specify flags by name, as opposed to number. This is a
generic function, that may be specialized to the class of object (see “Details”).

Usage

S4 method for signature 'section'
initializeFlagScheme(
object,
name = NULL,
mapping = NULL,
default = NULL,
update = NULL,
debug = getOption("oceDebug")

)

Arguments

object An oce object.

name a character value naming the scheme. If this refers to a pre-defined scheme,
then mapping must not be provided, because doing so would contradict the pre-
defined scheme, defeating its purpose of providing concreteness and clarity.

mapping a list of named items describing the mapping from flag meaning to flag numeri-
cal value, e.g list(good=1, bad=2) might be used for a hypothetical class.

default an integer vector of flag values that are not considered to be good. If this is not
provided, but if name is "argo", "BODC", "DFO", "WHP bottle", or "WHP CTD",
then a conservative value will be set automatically, equal to the list of flag values
that designate bad or questionable data. For example, for name="WHP CTD", the
setting will be c(1,3,4,5,6,7,9), leaving only value 2, which corresponds
with "acceptable" in the notation used for that flag scheme.

initializeFlagScheme,section-method 237

update a logical value indicating whether the scheme provided is to update an existing
scheme. The default value, FALSE, prevents such an attempt to alter an existing
flag scheme, if one is already embedded in object.

debug an integer set to 0 for quiet action or to 1 for some debugging.

Details

The following pre-defined schemes are available (note that the names are simplified from the
phrases used in defining documentation):

• name="argo" defaults mapping to OLD (prior to June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, averaged=7,
interpolated=8, missing=9)

NEW (after June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, changed=5, not_used_6=6, not_used_7=7,
estimated=8, missing=9)

See reference 1 for a deeper explanation of the meanings of these codes.

• name="BODC" defaults mapping to

list(no_quality_control=0, good=1, probably_good=2,
probably_bad=3, bad=4, changed=5,
below_detection=6, in_excess=7, interpolated=8,
missing=9)

See reference 2 for a deeper explanation of the meanings of these codes, and note that codes A and
Q are not provided in oce.

• name="DFO" defaults mapping to

list(no_quality_control=0, appears_correct=1, appears_inconsistent=2,
doubtful=3, erroneous=4, changed=5,
qc_by_originator=8, missing=9)

See reference 3 for a deeper explanation of the meanings of these codes.

• name="WHP bottle" defaults mapping to

list(no_information=1, no_problems_noted=2, leaking=3,
did_not_trip=4, not_reported=5, discrepency=6,
unknown_problem=7, did_not_trip=8, no_sample=9)

See reference 4 for a deeper explanation of the meanings of these codes.

238 initializeFlagScheme,section-method

• name="WHP CTD" defaults mapping to

list(not_calibrated=1, acceptable=2, questionable=3,
bad=4, not_reported=5, interpolated=6,
despiked=7, missing=9)

See reference 4 for a deeper explanation of the meanings of these codes.

Value

An object with the metadata slot containing flagScheme.

Sample of Usage

data(section)
section <- read.section("a03_hy1.csv", sectionId="a03", institute="SIO",

ship="R/V Professor Multanovskiy", scientist="Vladimir Tereschenov")
sectionWithFlags <- initializeFlagScheme(section, "WHP bottle")
station1 <- sectionWithFlags[["station", 1]]
str(station1[["flagScheme"]])

References

1. The codes for "argo" are derived from information in Table 4.1 of Wong, Annie, Robert Kee-
ley, Thierry Carval, and Argo Data Management Team (8 January 2020), "Argo Quality Con-
trol Manual for CTD and Trajectory Data, Version 3.3," available at https://archimer.ifremer.fr/doc/00228/33951/
as of June 2020.

2. The codes for "BODC" are defined at http://seadatanet.maris2.nl/v_bodc_vocab_v2/browse.asp?order=conceptid&formname=search&screen=0&lib=l20

3. The codes for "DFO" are defined at http://www.dfo-mpo.gc.ca/science/data-donnees/code/list/014-
eng.html

4. The codes for "WHP CTD" and "WHP bottle" are defined at https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagSchemeInternal(), initializeFlags(), initializeFlags,adp-method, initializeFlags,oce-method,
initializeFlagsInternal(), setFlags(), setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, plot,section-method, read.section(), section, section-class,
sectionAddStation(), sectionGrid(), sectionSmooth(), sectionSort(), subset,section-method,
summary,section-method

initializeFlagSchemeInternal 239

initializeFlagSchemeInternal

Establish a Data-Quality Scheme for a oce Object

Description

This function adds an item named flagScheme to the metadata slot of an object inheriting from oce.
This is a list containing two items: name and mapping, as provided in the function arguments. The
purpose is both to document a flag scheme and to make it so that initializeFlags(), setFlags()
and handleFlags() can specify flags by name, as opposed to number. This is a generic function,
that may be specialized to the class of object (see “Details”).

Usage

initializeFlagSchemeInternal(
object,
name = NULL,
mapping = NULL,
default = NULL,
update = NULL,
debug = 0

)

Arguments

object An oce object.

name a character value naming the scheme. If this refers to a pre-defined scheme,
then mapping must not be provided, because doing so would contradict the pre-
defined scheme, defeating its purpose of providing concreteness and clarity.

mapping a list of named items describing the mapping from flag meaning to flag numeri-
cal value, e.g list(good=1, bad=2) might be used for a hypothetical class.

default an integer vector of flag values that are not considered to be good. If this is not
provided, but if name is "argo", "BODC", "DFO", "WHP bottle", or "WHP CTD",
then a conservative value will be set automatically, equal to the list of flag values
that designate bad or questionable data. For example, for name="WHP CTD", the
setting will be c(1,3,4,5,6,7,9), leaving only value 2, which corresponds
with "acceptable" in the notation used for that flag scheme.

update a logical value indicating whether the scheme provided is to update an existing
scheme. The default value, FALSE, prevents such an attempt to alter an existing
flag scheme, if one is already embedded in object.

debug an integer set to 0 for quiet action or to 1 for some debugging.

Details

The following pre-defined schemes are available (note that the names are simplified from the
phrases used in defining documentation):

240 initializeFlagSchemeInternal

• name="argo" defaults mapping to OLD (prior to June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, averaged=7,
interpolated=8, missing=9)

NEW (after June 10, 2020)

list(not_assessed=0, passed_all_tests=1, probably_good=2,
probably_bad=3, bad=4, changed=5, not_used_6=6, not_used_7=7,
estimated=8, missing=9)

See reference 1 for a deeper explanation of the meanings of these codes.

• name="BODC" defaults mapping to

list(no_quality_control=0, good=1, probably_good=2,
probably_bad=3, bad=4, changed=5,
below_detection=6, in_excess=7, interpolated=8,
missing=9)

See reference 2 for a deeper explanation of the meanings of these codes, and note that codes A and
Q are not provided in oce.

• name="DFO" defaults mapping to

list(no_quality_control=0, appears_correct=1, appears_inconsistent=2,
doubtful=3, erroneous=4, changed=5,
qc_by_originator=8, missing=9)

See reference 3 for a deeper explanation of the meanings of these codes.

• name="WHP bottle" defaults mapping to

list(no_information=1, no_problems_noted=2, leaking=3,
did_not_trip=4, not_reported=5, discrepency=6,
unknown_problem=7, did_not_trip=8, no_sample=9)

See reference 4 for a deeper explanation of the meanings of these codes.

• name="WHP CTD" defaults mapping to

list(not_calibrated=1, acceptable=2, questionable=3,
bad=4, not_reported=5, interpolated=6,
despiked=7, missing=9)

See reference 4 for a deeper explanation of the meanings of these codes.

initializeFlagsInternal 241

Value

An object with the metadata slot containing flagScheme.

References

1. The codes for "argo" are derived from information in Table 4.1 of Wong, Annie, Robert Kee-
ley, Thierry Carval, and Argo Data Management Team (8 January 2020), "Argo Quality Con-
trol Manual for CTD and Trajectory Data, Version 3.3," available at https://archimer.ifremer.fr/doc/00228/33951/
as of June 2020.

2. The codes for "BODC" are defined at http://seadatanet.maris2.nl/v_bodc_vocab_v2/browse.asp?order=conceptid&formname=search&screen=0&lib=l20

3. The codes for "DFO" are defined at http://www.dfo-mpo.gc.ca/science/data-donnees/code/list/014-
eng.html

4. The codes for "WHP CTD" and "WHP bottle" are defined at https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlags(), initializeFlags,adp-method,
initializeFlags,oce-method, initializeFlagsInternal(), setFlags(), setFlags,adp-method,
setFlags,ctd-method, setFlags,oce-method

Other things related to oce data: initializeFlagScheme(), initializeFlagScheme,oce-method

initializeFlagsInternal

Create and Initialize oce Flags

Description

This function creates an item for a named variable within the flags entry in the object’s metadata
slot. The purpose is both to document a flag scheme and to make it so that initializeFlags() and
setFlags() can specify flags by name, in addition to number. A generic function, it is specialized
for some classes via interpretation of the scheme argument (see “Details”, for those object classes
that have such specializations).

Usage

initializeFlagsInternal(
object,
name = NULL,
value = NULL,
debug = getOption("oceDebug")

)

242 integerToAscii

Arguments

object An oce object.

name Character value indicating the name of a variable within the data slot of object.

value Numerical or character value to be stored in the newly-created entry within
flags. (A character value will only work if initializeFlags() has been used
first on object.)

debug Integer set to 0 for quiet action or to 1 for some debugging.

Details

If object already contains a flags entry with the indicated name, then it is returned unaltered, and
a warning is issued.

Value

An object with the flags item within the metadata slot set up as indicated.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlagSchemeInternal(), initializeFlags(),
initializeFlags,adp-method, initializeFlags,oce-method, setFlags(), setFlags,adp-method,
setFlags,ctd-method, setFlags,oce-method

integerToAscii Infer ASCII Code From an Integer Value

Description

Infer ASCII Code From an Integer Value

Usage

integerToAscii(i)

Arguments

i an integer, or integer vector.

Value

A character, or character vector.

integrateTrapezoid 243

Author(s)

Dan Kelley

Examples

library(oce)
A <- integerToAscii(65)
cat("A=", A, "\n")

integrateTrapezoid Trapezoidal Integration

Description

Estimate the integral of one-dimensional function using the trapezoidal rule.

Usage

integrateTrapezoid(x, y, type = c("A", "dA", "cA"), xmin, xmax)

Arguments

x, y vectors of x and y values. In the normal case, these vectors are both supplied, and
of equal length. There are also two special cases. First, if y is missing, then x is
taken to be y, and a new x is constructed as seq_along(y)1. Second, if length(x)is 1 andlength(y)exceeds 1, thenxis replaced byx*[seq_along](y)‘.

type Flag indicating the desired return value (see “Value”).

xmin, xmax Optional numbers indicating the range of the integration. These values may be
used to restrict the range of integration, or to extend it; in either case, approx()
with rule=2 is used to create new x and y vectors.

Value

If type="A" (the default), a single value is returned, containing the estimate of the integral of
y=y(x). If type="dA", a numeric vector of the same length as x, of which the first element is
zero, the second element is the integral between x[1] and x[2], etc. If type="cA", the result is
the cumulative sum (as in cumsum()) of the values that would be returned for type="dA". See
“Examples”.

Bugs

There is no handling of NA values.

Author(s)

Dan Kelley

244 interpBarnes

Examples

x <- seq(0, 1, length.out = 10) # try larger length.out to see if area approaches 2
y <- 2 * x + 3 * x^2
A <- integrateTrapezoid(x, y)
dA <- integrateTrapezoid(x, y, "dA")
cA <- integrateTrapezoid(x, y, "cA")
print(A)
print(sum(dA))
print(tail(cA, 1))
print(integrateTrapezoid(diff(x[1:2]), y))
print(integrateTrapezoid(y))

interpBarnes Grid Data Using the Barnes Algorithm

Description

The algorithm follows that described by Koch et al. (1983), except that interpBarnes adds (1) the
ability to blank out the grid where data are sparse, using the trim argument, and (2) the ability to
pre-grid, with the pregrid argument.

Usage

interpBarnes(
x,
y,
z,
w,
xg,
yg,
xgl,
ygl,
xr,
yr,
gamma = 0.5,
iterations = 2,
trim = 0,
pregrid = FALSE,
debug = getOption("oceDebug")

)

Arguments

x, y a vector of x and y locations.

z a vector of z values, one at each (x,y) location.

interpBarnes 245

w a optional vector of weights at the (x,y) location. If not supplied, then a weight
of 1 is used for each point, which means equal weighting. Higher weights give
data points more influence. If pregrid is TRUE, then any supplied value of w is
ignored, and instead each of the pregriddd points is given equal weight.

xg, yg optional vectors defining the x and y grids. If not supplied, these values are
inferred from the data, using e.g. pretty(x, n=50).

xgl, ygl optional lengths of the x and y grids, to be constructed with seq() spanning the
data range. These values xgl are only examined if xg and yg are not supplied.

xr, yr optional values defining the x and y radii of the weighting ellipse. If not sup-
plied, these are calculated as the span of x and y over the square root of the
number of data.

gamma grid-focussing parameter. At each successive iteration, xr and yr are reduced
by a factor of sqrt(gamma).

iterations number of iterations. Set this to 1 to perform just one iteration, using the radii
as described at xr,yr above.

trim a number between 0 and 1, indicating the quantile of data weight to be used as
a criterion for blanking out the gridded value (using NA). If 0, the whole zg grid
is returned. If >0, any spots on the grid where the data weight is less than the
trim-th quantile() are set to NA. See examples.

pregrid an indication of whether to pre-grid the data. If FALSE, this is not done, i.e.
conventional Barnes interpolation is performed. Otherwise, then the data are
first averaged within grid cells using binMean2D(). If pregrid is TRUE or 4, then
this averaging is done within a grid that is 4 times finer than the grid that will be
used for the Barnes interpolation. Otherwise, pregrid may be a single integer
indicating the grid refinement (4 being the result if TRUE had been supplied), or
a vector of two integers, for the grid refinement in x and y. The purpose of using
pregrid is to speed processing on large datasets, and to remove spatial bias (e.g.
with a single station that is repeated frequently in an otherwise seldom-sampled
region). A form of pregridding is done in the World Ocean Atlas, for example.

debug a flag that turns on debugging. Set to 0 for no debugging information, to 1 for
more, etc; the value is reduced by 1 for each descendent function call.

Value

A list containing: xg, a vector holding the x-grid); yg, a vector holding the y-grid; zg, a matrix
holding the gridded values; wg, a matrix holding the weights used in the interpolation at its final
iteration; and zd, a vector of the same length as x, which holds the interpolated values at the data
points.

Author(s)

Dan Kelley

References

S. E. Koch and M. DesJardins and P. J. Kocin, 1983. “An interactive Barnes objective map analysis
scheme for use with satellite and conventional data,” J. Climate Appl. Met., vol 22, p. 1487-1503.

246 is.ad2cp

See Also

See wind().

Examples

library(oce)

1. contouring example, with wind-speed data from Koch et al. (1983)
data(wind)
u <- interpBarnes(wind$x, wind$y, wind$z)
contour(uxg, uyg, u$zg, labcex = 1)
text(wind$x, wind$y, wind$z, cex = 0.7, col = "blue")
title("Numbers are the data")

2. As 1, but blank out spots where data are sparse
u <- interpBarnes(wind$x, wind$y, wind$z, trim = 0.1)
contour(uxg, uyg, u$zg, level = seq(0, 30, 1))
points(wind$x, wind$y, cex = 1.5, pch = 20, col = "blue")

3. As 1, but interpolate back to points, and display the percent mismatch
u <- interpBarnes(wind$x, wind$y, wind$z)
contour(uxg, uyg, u$zg, labcex = 1)
mismatch <- 100 * (wind$z - u$zd) / wind$z
text(wind$x, wind$y, round(mismatch), col = "blue")
title("Numbers are percent mismatch between grid and data")

4. As 3, but contour the mismatch
mismatchGrid <- interpBarnes(wind$x, wind$y, mismatch)
contour(mismatchGrid$xg, mismatchGrid$yg, mismatchGrid$zg, labcex = 1)

5. One-dimensional example, smoothing a salinity profile
data(ctd)
p <- ctd[["pressure"]]
y <- rep(1, length(p)) # fake y data, with arbitrary value
S <- ctd[["salinity"]]
pg <- pretty(p, n = 100)
g <- interpBarnes(p, y, S, xg = pg, xr = 1)
plot(S, p, cex = 0.5, col = "blue", ylim = rev(range(p)))
lines(gzg, gxg, col = "red")

is.ad2cp Test Whether Item is a ad2cp-Type adp Object

Description

Test Whether Item is a ad2cp-Type adp Object

Usage

is.ad2cp(x)

julianCenturyAnomaly 247

Arguments

x an oce object.

Value

Logical value indicating whether x is an adp object, with fileType in its metadata slot equal to
"AD2CP".

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to ad2cp data: ad2cpCodeToName(), ad2cpHeaderValue(), adpAd2cpFileTrim(),
read.adp.ad2cp()

julianCenturyAnomaly Convert Julian-Day-Number to Julian Century

Description

Convert a Julian-Day number to a time in julian centuries since noon on January 1, 1900. The
method follows Equation 15.1 in Reference 1. The example reproduces the Example 15.a of the
same source, with fractional error 3e-8.

Usage

julianCenturyAnomaly(jd)

Arguments

jd a julian day number, e.g. as given by julianDay().

Value

Julian century since noon on January 1, 1900.

248 julianDay

Author(s)

Dan Kelley

References

1. Meeus, Jean. Astronomical Formulas for Calculators. Second Edition. Richmond, Virginia,
USA: Willmann-Bell, 1982.

See Also

Other things related to astronomy: angle2hms(), eclipticalToEquatorial(), equatorialToLocalHorizontal(),
julianDay(), moonAngle(), siderealTime(), sunAngle(), sunDeclinationRightAscension()

Other things related to time: ctimeToSeconds(), julianDay(), numberAsHMS(), numberAsPOSIXct(),
secondsToCtime(), unabbreviateYear()

Examples

t <- ISOdatetime(1978, 11, 13, 4, 35, 0, tz = "UTC")
jca <- julianCenturyAnomaly(julianDay(t))
cat(format(t), "is Julian Century anomaly", format(jca, digits = 8), "\n")

julianDay Convert a Time to a Julian Day

Description

Convert a POSIXt time (given as either the t argument or as the year, month, and other arguments)
to a Julian day, using the method provided in Chapter 3 of Meeus (1982). It should be noted that
Meeus and other astronomical treatments use fractional days, whereas the present code follows the
R convention of specifying days in whole numbers, with hours, minutes, and seconds also provided
as necessary. Conversion is simple, as illustrated in the example for 1977 April 26.4, for which
Meeus calculates julian day 2443259.9. Note that the R documentation for julian() suggests
another formula, but the point of the present function is to match the other Meeus formulae, so that
suggestion is ignored here.

Usage

julianDay(
t,
year = NA,
month = NA,
day = NA,
hour = NA,
min = NA,
sec = NA,
tz = "UTC"

)

julianDay 249

Arguments

t a time, in POSIXt format, e.g. as created by as.POSIXct(), as.POSIXlt(), or
numberAsPOSIXct(), or a character string that can be converted to a time using
as.POSIXct(). If t is provided, the other arguments are ignored.

year year, to be provided along with month, etc., if t is not provided.

month numerical value for the month, with January being 1. (This is required if t is not
provided.)

day numerical value for day in month, starting at 1. (This is required if t is not
provided.)

hour numerical value for hour of day, in range 0 to 24. (This is required if t is not
provided.)

min numerical value of the minute of the hour. (This is required if t is not provided.)

sec numerical value for the second of the minute. (This is required if t is not pro-
vided.)

tz timezone

Value

A Julian-Day number, in astronomical convention as explained in Meeus.

Author(s)

Dan Kelley

References

• Meeus, Jean. Astronomical Formulas for Calculators. Second Edition. Richmond, Virginia,
USA: Willmann-Bell, 1982.

See Also

Other things related to astronomy: angle2hms(), eclipticalToEquatorial(), equatorialToLocalHorizontal(),
julianCenturyAnomaly(), moonAngle(), siderealTime(), sunAngle(), sunDeclinationRightAscension()

Other things related to time: ctimeToSeconds(), julianCenturyAnomaly(), numberAsHMS(),
numberAsPOSIXct(), secondsToCtime(), unabbreviateYear()

Examples

library(oce)
example from Meeus
t <- ISOdatetime(1977, 4, 26, hour = 0, min = 0, sec = 0, tz = "UTC") + 0.4 * 86400
stopifnot(all.equal(julianDay(t), 2443259.9))

250 labelWithUnit

labelWithUnit Create Label With Unit

Description

labelWithUnit creates a label with a unit, for graphical display, e.g. by plot,section-method.
The unit is enclosed in square brackets, although setting options(oceUnitBracket="(") will
cause parentheses to be used, instead. This function is intended mainly for use within the pack-
age, and users should not rely on its behaviour being unchangeable.

Usage

labelWithUnit(name, unit = NULL)

Arguments

name character value naming a quantity.

unit a list containing items unit and (optionally) scale, only the first of which, an
expression(), is used. If unit is not provided, then a default will be used (see
“Details”).

Details

If name is in a standard list, then alterations are made as appropriate, e.g. "SA" or "Absolute
Salinity" yields an S with subscript A; "CT" or "Conservative Temperature" yields an upper-
case Theta, sigmaTheta yields a sigma with subscript theta, sigma0 yields sigma with subscript
0 (with similar for 1 through 4), "N2" yields "N" with superscript 2, and "pressure" yields "p".
These basic hydrographic quantities have default units that will be used if unit is not supplied (see
“Examples”).

In addition to the above, several chemical names are recognized, but no unit is guessed for them,
because the oceanographic community lacks agreed-upon standards.

If name is not recognized, then it is simply repeated in the return value.

Value

labelWithUnit returns a language object, created with bquote(), that that may supplied as a text
string to legend(), mtext(), text(), etc.

Author(s)

Dan Kelley

See Also

Other functions that create labels: resizableLabel()

ladp-class 251

Examples

library(oce)
1. temperature has a predefined unit, but this can be overruled
labelWithUnit("temperature")
labelWithUnit(

"temperature",
list(unit = expression(m / s), scale = "erroneous")

)
2. phosphate lacks a predefined unit
labelWithUnit("phosphate")
data(section)
labelWithUnit(

"phosphate",
section[["station", 1]][["phosphateUnit"]]

)

ladp-class Class to Store Lowered-adp Data

Description

This class stores data measured with a lowered ADP (also known as ADCP) device.

Slots

data As with all oce objects, the data slot for ladp objects is a list containing the main data for
the object.

metadata As with all oce objects, the metadata slot for ladp objects is a list containing informa-
tion about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for ladp objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of ladp objects (see [[<-,ladp-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a ladp object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

252 landsat

The slots may also be obtained with the [[,ladp-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,ladp-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

See Also

Other things related to ladp data: [[,ladp-method, [[<-,ladp-method, as.ladp(), plot,ladp-method,
summary,ladp-method

landsat Sample landsat Data

Description

This is a subset of the Landsat-8 image designated LC80080292014065LGN00, an image from
March 2014 that covers Nova Scotia and portions of the Bay of Fundy and the Scotian Shelf. The
image is decimated to reduce the memory requirements of this package, yielding a spatial resolution
of about 2km.

Details

The original data were downloaded from the USGS earthexplorer website, although other sites can
also be used to uncover it by name. The original data were decimated by a factor of 100 in longitude
and latitude, to reduce the file size from 1G to 100K.

See Also

Other satellite datasets provided with oce: amsr

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section,
topoWorld, wind, xbt

Other things related to landsat data: [[,landsat-method, [[<-,landsat-method, landsat-class,
landsatAdd(), landsatTrim(), plot,landsat-method, read.landsat(), summary,landsat-method

landsat-class 253

landsat-class Class to Store Landsat Satellite Data

Description

This class holds landsat data. Such are available at several websites (e.g. reference 1). Although
the various functions may work for other satellites, the discussion here focusses on Landsat 8 and
Landsat 7.

Slots

data As with all oce objects, the data slot for landsat objects is a list containing the main data
for the object.

metadata As with all oce objects, the metadata slot for landsat objects is a list containing infor-
mation about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for landsat objects is a list with
entries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of landsat objects (see [[<-,landsat-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a landsat object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,landsat-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,landsat-method operator can also be used to retrieve items from within the data and
metadata slots. For example, o[["temperature"]] can be used to retrieve temperature from an
object containing that quantity. The rule is that a named quantity is sought first within the object’s
metadata slot, with the data slot being checked only if metadata does not contain the item. This [[
method can also be used to get certain derived quantities, if the object contains sufficient information
to calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

254 landsat-class

Data storage

The data are stored with 16-bit resolution. Oce breaks these 16 bits up into most-significant and
least-significant bytes. For example, the aerosol band of a Landsat object named x are contained
within x@data$aerosol$msb and x@data$aerosol$lsb, each of which is a matrix of raw values.
The results may be combined as e.g.

256L*as.integer(x@data[[i]]$msb) + as.integer(x@data[[i]]$lsb)

and this is what is returned by executing x[["aerosol"]].

Landsat data files typically occupy approximately a gigabyte of storage. That means that corre-
sponding Oce objects are about the same size, and this can pose significant problems on computers
with less than 8GB of memory. It is sensible to specify bands of interest when reading data with
read.landsat(), and also to use landsatTrim() to isolate geographical regions that need pro-
cessing.

Experts may need to get direct access to the data, and this is easy because all Landsat objects
(regardless of satellite) use a similar storage form. Band information is stored in byte form, to
conserve space. Two bytes are used for each pixel in Landsat-8 objects, with just one for other
objects. For example, if a Landsat-8 object named L contains the tirs1 band, the most- and least-
significant bytes will be stored in matrices L@data$tirs1$msb and L@data$tirs1$lsb. A similar
Landsat-7 object would have the same items, but msb would be just the value 0x00.

Derived bands, which may be added to a landsat object with landsatAdd(), are not stored in byte
matrices. Instead they are stored in numerical matrices, which means that they use 4X more storage
space for Landsat-8 images, and 8X more storage space for other satellites. A computer needs at
least 8GB of RAM to work with such data.

Landsat 8

The Landsat 8 satellite has 11 frequency bands, listed below (see reference 2]).

.--.
| Band | Band | Band | Wavelength | Resolution |
| No. | Contents | Name | (micrometers) | (meters) |
|------+---------------------------+--------------+---------------+------------|
1	Coastal aerosol	aerosol	0.43 - 0.45	30
2	Blue	blue	0.45 - 0.51	30
3	Green	green	0.53 - 0.59	30
4	Red	red	0.64 - 0.67	30
5	Near Infrared (NIR)	nir	0.85 - 0.88	30
6	SWIR 1	swir1	1.57 - 1.65	30
7	SWIR 2	swir2	2.11 - 2.29	30
8	Panchromatic	panchromatic	0.50 - 0.68	15
9	Cirrus	cirrus	1.36 - 1.38	30
10	Thermal Infrared (TIRS) 1	tirs1	10.60 - 11.19	100
11	Thermal Infrared (TIRS) 2	tirs2	11.50 - 12.51	100
.--.

In addition to the above, setting band="terralook" may be used as an abbreviation for band=c("red",
"green", "nir").

landsat-class 255

Band 8 is panchromatic, and has the highest resolution. For convenience of programming, read.landsat()
subsamples the tirs1 and tirs2 bands to the 30m resolution of the other bands. See Reference 3
for information about the evolution of Landsat 8 calibration coefficients, which as of summer 2014
are still subject to change.

Landsat 7

Band information is as follows (from reference 8). The names are not official, but are set up to
roughly correspond with Landsat-8 names, according to wavelength. An exception is the Landsat-7
bands named tirs1 and tirs2, which are at two different gain settings, with identical wavelength
span for each, which roughly matches the range of the Landsat-8 bands tirs1 and tirs2 com-
bined. This may seem confusing, but it lets code like plot(im, band="tirs1") to work with both
Landsat-8 and Landsat-7.

.--.
| Band | Band | Band | Wavelength | Resolution |
| No. | Contents | Name | (micrometers) | (meters) |
|------+---------------------------+--------------+---------------+------------|
1	Blue	blue	0.45 - 0.52	30
2	Green	green	0.52 - 0.60	30
3	Red	red	0.63 - 0.69	30
4	Near IR	nir	0.77 - 0.90	30
5	SWIR	swir1	1.55 - 1.75	30
6	Thermal IR	tirs1	10.4 - 12.50	30
7	Thermal IR	tirs2	10.4 - 12.50	30
8	SWIR	swir2	2.09 - 2.35	30
9	Panchromatic	panchromatic	0.52 - 0.90	15
.--.

Author(s)

Dan Kelley and Clark Richards

References

1. See the USGS "glovis" web site.

2. see landsat.gsfc.nasa.gov/?page_id=5377

3. see landsat.usgs.gov/calibration_notices.php
4. https://dankelley.github.io/r/2014/07/01/landsat.html

5. https://scienceofdoom.com/2010/12/27/emissivity-of-the-ocean/

6. see landsat.usgs.gov/Landsat8_Using_Product.php

7. see landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf

8. see landsat.usgs.gov/band_designations_landsat_satellites.php

9. Yu, X. X. Guo and Z. Wu., 2014. Land Surface Temperature Retrieval from Landsat 8 TIRS-
Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm
and Single Channel Method, Remote Sensing, 6, 9829-9652. https://www.mdpi.com/2072-4292/6/10/9829

256 landsatAdd

10. Rajeshwari, A., and N. D. Mani, 2014. Estimation of land surface temperature of Dindigul dis-
trict using Landsat 8 data. International Journal of Research in Engineering and Technology,
3(5), 122-126. http://www.academia.edu/7655089/ESTIMATION_OF_LAND_SURFACE_TEMPERATURE_OF_DINDIGUL_DISTRICT_USING_LANDSAT_8_DATA

11. Konda, M. Imasato N., Nishi, K., and T. Toda, 1994. Measurement of the Sea Surface Emis-
sivity. Journal of Oceanography, 50, 17:30. doi:10.1007/BF02233853

See Also

Data from AMSR satellites are handled with amsr.

A file containing Landsat data may be read with read.landsat() or read.oce(), and one such
file is provided by the ocedata package as a dataset named landsat.

Plots may be made with plot,landsat-method(). Since plotting can be quite slow, decimation
is available both in the plotting function and as the separate function decimate(). Images may be
subsetted with landsatTrim().

Other classes holding satellite data: amsr-class, g1sst-class, satellite-class

Other things related to landsat data: [[,landsat-method, [[<-,landsat-method, landsat, landsatAdd(),
landsatTrim(), plot,landsat-method, read.landsat(), summary,landsat-method

landsatAdd Add a Band to a landsat Object

Description

Add a band to a landsat object. Note that it will be stored in numeric form, not raw form, and
therefore it will require much more storage than data read with read.landsat().

Usage

landsatAdd(x, data, name, debug = getOption("oceDebug"))

Arguments

x a landsat object.

data A matrix of data, with dimensions matching that of entries already in x.

name The name to be used for the data, i.e. the data can later be accessed with
d[[name]] where d is the name of the return value from the present function.

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or a higher value for more debugging.

Value

A landsat object, with a new data band.

Author(s)

Dan Kelley

https://doi.org/10.1007/BF02233853
https://CRAN.R-project.org/package=ocedata

landsatTrim 257

See Also

The documentation for the landsat class explains the structure of landsat objects, and also outlines
the other functions dealing with them.

Other things related to landsat data: [[,landsat-method, [[<-,landsat-method, landsat, landsat-class,
landsatTrim(), plot,landsat-method, read.landsat(), summary,landsat-method

landsatTrim Trim a landsat Image to a Geographical Region

Description

Trim a landsat image to a latitude-longitude box. This is only an approximate operation, because
landsat images are provided in x-y coordinates, not longitude-latitude coordinates.

Usage

landsatTrim(x, ll, ur, box, debug = getOption("oceDebug"))

Arguments

x a landsat object.

ll A list containing longitude and latitude, for the lower-left corner of the por-
tion of the image to retain, or a vector with first element longitude and second
element latitude. If provided, then ur must also be provided, but box cannot.

ur A list containing longitude and latitude, for the upper-right corner of the
portion of the image to retain, or a vector with first element longitude and second
element latitude. If provided, then ll must also be provided, but box cannot.

box A list containing x and y (each of length 2), corresponding to the values for ll
and ur, such as would be produced by a call to locator(2). If provided, neither
ll nor ur may be provided.

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or a higher value for more debugging.

Details

As of June 25, 2015, the matrices storing the image data are trimmed to indices determined by linear
interpolation based on the location of the ll and ur corners within the lon-lat corners specified in
the image data. (A previous version trimmed in UTM space, and in fact this may be done in future
also, if a problem in lonlat/utm conversion is resolved.) An error results if there is no intersection
between the trimming box and the image box.

Value

A landsat object, with data having been trimmed as specified.

258 latFormat

Author(s)

Dan Kelley and Clark Richards

See Also

The documentation for the landsat class explains the structure of landsat objects, and also outlines
the other functions dealing with them.

Other things related to landsat data: [[,landsat-method, [[<-,landsat-method, landsat, landsat-class,
landsatAdd(), plot,landsat-method, read.landsat(), summary,landsat-method

latFormat Format a Latitude

Description

Format a latitude, using "S" for negative latitude.

Usage

latFormat(lat, digits = max(6, getOption("digits") - 1))

Arguments

lat latitude in ◦N north of the equator.

digits the number of significant digits to use when printing.

Value

A character string.

Author(s)

Dan Kelley

See Also

lonFormat() and latlonFormat().

latlonFormat 259

latlonFormat Format a Latitude-Longitude Pair

Description

Format a latitude-longitude pair, using "S" for negative latitudes, etc.

Usage

latlonFormat(lat, lon, digits = max(6, getOption("digits") - 1))

Arguments

lat latitude in ◦N north of the equator.

lon longitude in ◦N east of Greenwich.

digits the number of significant digits to use when printing.

Value

A character string.

Author(s)

Dan Kelley

See Also

latFormat() and lonFormat().

lisst Sample lisst Data

Description

LISST (Laser in-situ scattering and transmissometry) dataset, constructed artificially.

Usage

data(lisst)

Author(s)

Dan Kelley

260 lisst-class

Source

This was constructed artificially using as.lisst(), to approximately match values that might be
measured in the field.

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section,
topoWorld, wind, xbt

lisst-class Class to Store LISST Data

Description

This class stores LISST (Laser in-situ scattering and transmissometry) data.

Slots

data As with all oce objects, the data slot for lisst objects is a list containing the main data for
the object.

metadata As with all oce objects, the metadata slot for lisst objects is a list containing infor-
mation about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for lisst objects is a list with
entries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of lisst objects (see [[<-,lisst-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a lisst object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,lisst-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,lisst-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to

lobo 261

calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

References

Information about LISST instruments is provided at the manufacturer’s website, https://www.sequoiasci.com.

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lobo-class, met-class, oce-class, odf-class, rsk-class,
sealevel-class, section-class, topo-class, windrose-class, xbt-class

Other things related to lisst data: [[,lisst-method, [[<-,lisst-method, as.lisst(), plot,lisst-method,
read.lisst(), summary,lisst-method

lobo Sample lobo Data

Description

This is sample lobo dataset obtained in the Northwest Arm of Halifax by Satlantic.

Author(s)

Dan Kelley

Source

The data were downloaded from a web interface at Satlantic LOBO web server and then read with
read.lobo().

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section,
topoWorld, wind, xbt

Other things related to lobo data: [[,lobo-method, [[<-,lobo-method, as.lobo(), lobo-class,
plot,lobo-method, read.lobo(), subset,lobo-method, summary,lobo-method

262 lobo-class

Examples

library(oce)
data(lobo)
summary(lobo)
plot(lobo)

lobo-class Class to Store LOBO Data

Description

This class stores LOBO data.

Slots

data As with all oce objects, the data slot for lobo objects is a list containing the main data for
the object.

metadata As with all oce objects, the metadata slot for lobo objects is a list containing informa-
tion about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for lobo objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of lobo objects (see [[<-,lobo-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a lobo object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,lobo-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,lobo-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

locationForGsw 263

Author(s)

Dan Kelley

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, met-class, oce-class, odf-class, rsk-class,
sealevel-class, section-class, topo-class, windrose-class, xbt-class

Other things related to lobo data: [[,lobo-method, [[<-,lobo-method, as.lobo(), lobo, plot,lobo-method,
read.lobo(), subset,lobo-method, summary,lobo-method

locationForGsw Alter Longitude and Latitude for gsw Computations

Description

This function repeats location information as required by some seawater functions, e.g. swAbsoluteSalinity(),
that use the gsw package to compute seawater properties in the Gibbs Seawater formulation. It
seems unlikely that users will need to call this function directly in routine work.

Usage

locationForGsw(x)

Arguments

x an oce object.

Details

Several gsw functions require location information to be matched up with hydrographic information.
The scheme depends on the dimensionality of the hydrographic variables and the location variables.
For example, the ctd stores salinity etc in vectors, an stores just one longitude-latitude pair for
each vector. By contrast, the argo stores salinity etc as matrices, and stores e.g. longitude as a
vector of length matching the first dimension of salinity.

Value

locationForGsw returns a list containing longitude and latitude, with dimensionality matching
pressure in the data slot of x. If x lacks location information (in either its metadata or data slot)
or lacks pressure in its data slot, then the returned list will hold NULL values for both longitude
and latitude.

Author(s)

Dan Kelley

264 lonFormat

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(), swBeta(),
swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

lon360 Change Longitude From -180:180 to 0:360 Convention

Description

For numerical input, including vectors, matrices and arrays, lon360() simply calls ifelse() to
add 360 to any negative values. For section objects, it changes longitude in the metadata slot and
then calls itself to handle the ctd objects stored as as the entries in station within the data slot. For
this ctd object, and indeed for all non-section objects, lon360() changes longitude values in the
metadata slot (if present) and also in the data slot (again, if present). This function is not useful
for dealing with coastline data; see coastlineCut() for such data.

Usage

lon360(x)

Arguments

x either a numeric vector or array, or an oce object.

Examples

lon360(c(179, -179))

lonFormat Format a Longitude

Description

Format a longitude, using "W" for west longitude.

Usage

lonFormat(lon, digits = max(6, getOption("digits") - 1))

longitudeTighten 265

Arguments

lon longitude in ◦N east of Greenwich.
digits the number of significant digits to use when printing.

Value

A character string.

Author(s)

Dan Kelley

See Also

latFormat() and latlonFormat().

longitudeTighten Try to Reduce Section Longitude Range

Description

longitudeTighten shifts some longitudes in its first argument by 360 degrees, if doing so will reduce
the overall longitude span.

Usage

longitudeTighten(section)

Arguments

section a section object.

Details

This function can be helpful in cases where the CTD stations within a section cross the cut point
of the longitude convention, which otherwise might yield ugly plots if plot,section-method() is
used with xtype="longitude". This problem does occur with CTD objects ordered by time of sam-
pling, but was observed in December 2020 for a GO-SHIPS dataset downloaded from https://cchdo.ucsd.edu/data/15757/a10_1992_ct1.

Value

A section object based on its first argument, but with longitudes shifted in its metadata slot, and
also in the metadata slots of each of the ctd objects that are stored in the station item in its data
slot.

Author(s)

Dan Kelley

266 lonlat2map

lonlat2map Convert Longitude and Latitude to X and Y

Description

If a projection is already being used (e.g. as set by mapPlot()) then only longitude and latitude
should be given, and the other arguments will be inferred by lonlat2map. This is important because
otherwise, if a new projection is called for, it will ruin any additions to the existing plot.

Usage

lonlat2map(longitude, latitude, projection = "", debug = getOption("oceDebug"))

Arguments

longitude a numeric vector containing decimal longitudes, or a list containing items named
longitude and latitude, in which case the indicated values are used, and next
argument is ignored.

latitude a numeric vector containing decimal latitude (ignored if longitude is a list, as
described above).

projection optional indication of projection. This must be character string in the format
used by the sf package; see mapPlot().)

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

A list containing x and y.

Author(s)

Dan Kelley

See Also

mapLongitudeLatitudeXY is a safer alternative, if a map has already been drawn with mapPlot(),
because that function cannot alter an existing projection. map2lonlat() is an inverse to map2lonlat.

Other functions related to maps: formatPosition(), lonlat2utm(), map2lonlat(), mapArrows(),
mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

https://CRAN.R-project.org/package=sf

lonlat2utm 267

Examples

library(oce)
Cape Split, in the Minas Basin of the Bay of Fundy
cs <- list(longitude = -64.49657, latitude = 45.33462)
xy <- lonlat2map(cs, projection = "+proj=merc")
map2lonlat(xy)

lonlat2utm Convert Longitude and Latitude to UTM

Description

Convert Longitude and Latitude to UTM

Usage

lonlat2utm(longitude, latitude, zone, km = FALSE)

Arguments

longitude numeric vector of decimal longitude. May also be a list containing items named
longitude and latitude, in which case the indicated values are used, and next
argument is ignored.

latitude numeric vector of decimal latitude (ignored if longitude is a list containing
both coordinates)

zone optional indication of UTM zone. Normally this is inferred from the longitude,
but specifying it can be helpful in dealing with Landsat images, which may cross
zones and which therefore are described by a single zone.

km logical value indicating whether easting and northing are in kilometers or
meters.

Value

lonlat2utm returns a list containing easting, northing, zone and hemisphere.

Author(s)

Dan Kelley

References
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system, down-
loaded May 31, 2014.

268 lookWithin

See Also

utm2lonlat() does the inverse operation. For general projections and their inverses, use lonlat2map()
and map2lonlat().

Other functions related to maps: formatPosition(), lonlat2map(), map2lonlat(), mapArrows(),
mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
Cape Split, in the Minas Basin of the Bay of Fundy
lonlat2utm(-64.496567, 45.334626)

lookWithin Look Within the First Element of a List for Replacement Values

Description

This is a helper function used by some seawater functions (with names starting with sw) to facilitate
the specification of water properties either with distinct arguments, or with data stored within an
oce object that is the first argument.

Usage

lookWithin(list)

Arguments

list A list of elements, typically arguments that will be used in sw functions.

Details

If list[1] is not an oce object, then the return value of lookWithin is the same as the input value,
except that (a) eos is completed to either "gsw" or "unesco" and (b) if longitude and latitude
are within list[1], then they are possibly lengthened, to have the same length as the first item in
the data slot of list[1].

The examples may clarify this somewhat.

Value

A list with elements of the same names but possibly filled in from the first element.

lowpass 269

Examples

1. If first item is not a CTD object, just return the input
lookWithin(list(a = 1, b = 2)) # returns a list
2. Extract salinity from a CTD object
data(ctd)
str(lookWithin(list(salinity = ctd)))
3. Extract salinity and temperature. Note that the
value specified for temperature is ignored; all that matters
is that temperature is named.
str(lookWithin(list(salinity = ctd, temperature = NULL)))
4. How it is used by swRho()
rho1 <- swRho(ctd, eos = "unesco")
rho2 <- swRho(ctd[["salinity"]], ctd[["temperature"]], ctd[["pressure"]], eos = "unesco")
stopifnot(all.equal(rho1, rho2))

lowpass Lowpass Digital Filtering

Description

The filter coefficients are constructed using standard definitions, and then stats::filter() is used
to filter the data. This leaves NA values within half the filter length of the ends of the time series, but
these may be replaced with the original x values, if the argument replace is set to TRUE.

Usage

lowpass(x, filter = "hamming", n, replace = TRUE, coefficients = FALSE)

Arguments

x a vector to be smoothed

filter name of filter; at present, "hamming", "hanning", and "boxcar" are permitted.

n length of filter (must be an odd integer exceeding 1)

replace a logical value indicating whether points near the ends of x should be copied into
the end regions, replacing the NA values that would otherwise be placed there by
stats::filter().

coefficients logical value indicating whether to return the filter coefficients, instead of the
filtered values. In accordance with conventions in the literature, the returned
values are not normalized to sum to 1, although of course that normalization is
done in the actual filtering.

Value

By default, lowpass returns a filtered version of x, but if coefficients is TRUE then it returns the
filter coefficients.

270 magneticField

Caution

This function was added in June of 2017, and it may be extended during the rest of 2017. New
arguments may appear between n and replace, so users are advised to call this function with
named arguments, not positional arguments.

Author(s)

Dan Kelley

Examples

library(oce)
par(mfrow = c(1, 2), mar = c(4, 4, 1, 1))
coef <- lowpass(n = 5, coefficients = TRUE)
plot(-2:2, coef, ylim = c(0, 1), xlab = "Lag", ylab = "Coefficient")
x <- seq(-5, 5) + rnorm(11)
plot(1:11, x, type = "o", xlab = "time", ylab = "x and X")
X <- lowpass(x, n = 5)
lines(1:11, X, col = 2)
points(1:11, X, col = 2)

magneticField Earth Magnetic Declination, Inclination, and Intensity

Description

Implements the 12th and 13th generations of the International Geomagnetic Reference Field (IGRF),
based on a reworked version of a Fortran program downloaded from a NOAA website (see “Refer-
ences”).

Usage

magneticField(longitude, latitude, time, version = 13)

Arguments

longitude longitude in degrees east (negative for degrees west), as a number, a vector, or a
matrix.

latitude latitude in degrees north, as a number, vector, or matrix. The shape (length or
dimensions) must conform to the dimensions of longitude.

time The time at which the field is desired. This may be a single value or a vector or
matrix that is structured to match longitude and latitude. The value may a
decimal year, a POSIXt time, or a Date time.

version an integer that must be either 12 or 13, to specify the version number of the
formulae. Note that 13 became the default on 2020 March 3, so to old code will
need to specify version=12 to work as it did before that date.

magneticField 271

Details

The code (subroutines igrf12syn and igrf13syn) seem to have been written by Susan Macmillan
of the British Geological Survey. Comments in the source code igrf13syn (the current default used
here) indicate that its coefficients were agreed to in December 2019 by the IAGA Working Group
V-MOD. Other comments in that code suggest that the proposed application time interval is from
years 1900 to 2025, inclusive, but that only dates from 1945 to 2015 are to be considered definitive.

Value

A list containing declination, inclination, and intensity.

Historical Notes

For about a decade, magneticField used the version 12 formulae provided by IAGA, but the code
was updated on March 3, 2020, to version 13. Example 3 shows that the differences in declination
are typically under 2 degrees (with 95 percent of the data lying between -1.7 and 0.7 degrees).

Author(s)

Dan Kelley wrote the R code and a fortran wrapper to the igrf12.f subroutine, which was written
by Susan Macmillan of the British Geological Survey and distributed “without limitation” (email
from SM to DK dated June 5, 2015). This version was updated subsequent to that date; see “His-
torical Notes”.

References

1. The underlying Fortran code for version 12 is from igrf12.f, downloaded the NOAA website
(https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html) on June 7,

2. That for version 13 is igrf13.f, downloaded from the NOAA website (https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
on March 3, 2020.

3. Witze, Alexandra. “Earth’s Magnetic Field Is Acting up and Geologists Don’t Know Why.”
Nature 565 (January 9, 2019): 143. doi:10.1038/d41586019000071

4. Alken, P., E. Thébault, C. D. Beggan, H. Amit, J. Aubert, J. Baerenzung, T. N. Bondar, et al.
"International Geomagnetic Reference Field: The Thirteenth Generation." Earth, Planets and
Space 73, no. 1 (December 2021): 49. doi:10.1186/s4062302001288x.

See Also

Other things related to magnetism: applyMagneticDeclination(), applyMagneticDeclination,adp-method,
applyMagneticDeclination,adv-method, applyMagneticDeclination,cm-method, applyMagneticDeclination,oce-method

Examples

library(oce)
1. Today's value at Halifax NS
magneticField(-(63 + 36 / 60), 44 + 39 / 60, Sys.Date())

2. World map of declination in year 2000.

https://doi.org/10.1038/d41586-019-00007-1
https://doi.org/10.1186/s40623-020-01288-x

272 magneticField

data(coastlineWorld)
par(mar = rep(0.5, 4)) # no axes on whole-world projection
mapPlot(coastlineWorld, projection = "+proj=robin", col = "lightgray")
Construct matrix holding declination
lon <- seq(-180, 180)
lat <- seq(-90, 90)
dec2000 <- function(lon, lat) {

magneticField(lon, lat, 2000)$declination
}
dec <- outer(lon, lat, dec2000) # hint: outer() is very handy!
Contour, unlabelled for small increments, labeled for
larger increments.
mapContour(lon, lat, dec,

col = "blue", levels = seq(-180, -5, 5),
lty = 3, drawlabels = FALSE

)
mapContour(lon, lat, dec, col = "blue", levels = seq(-180, -20, 20))
mapContour(lon, lat, dec,

col = "red", levels = seq(5, 180, 5),
lty = 3, drawlabels = FALSE

)
mapContour(lon, lat, dec, col = "red", levels = seq(20, 180, 20))
mapContour(lon, lat, dec, levels = 180, col = "black", lwd = 2, drawlabels = FALSE)
mapContour(lon, lat, dec, levels = 0, col = "black", lwd = 2)

3. Declination differences between versions 12 and 13

lon <- seq(-180, 180)
lat <- seq(-90, 90)
decDiff <- function(lon, lat) {

old <- magneticField(lon, lat, 2020, version = 13)$declination
new <- magneticField(lon, lat, 2020, version = 12)$declination
new - old

}
decDiff <- outer(lon, lat, decDiff)
decDiff <- ifelse(decDiff > 180, decDiff - 360, decDiff)
Overall (mean) shift -0.1deg
t.test(decDiff)
View histogram, narrowed to small differences
par(mar = c(3.5, 3.5, 2, 2), mgp = c(2, 0.7, 0))
hist(decDiff,

breaks = seq(-180, 180, 0.05), xlim = c(-2, 2),
xlab = "Declination difference [deg] from version=12 to version=13",
main = "Predictions for year 2020"

)
print(quantile(decDiff, c(0.025, 0.975)))
Note that the large differences are at high latitudes
imagep(lon, lat, decDiff, zlim = c(-1, 1) * max(abs(decDiff)))
lines(coastlineWorld[["longitude"]], coastlineWorld[["latitude"]])

makeFilter 273

makeFilter Make a Digital Filter

Description

The filter is suitable for use by filter(), convolve() or (for the asKernal=TRUE case) with
kernapply(). Note that convolve() should be faster than filter(), but it cannot be used if the
time series has missing values. For the Blackman-Harris filter, the half-power frequency is at 1/m
cycles per time unit, as shown in the “Examples” section. When using filter() or kernapply()
with these filters, use circular=TRUE.

Usage

makeFilter(
type = c("blackman-harris", "rectangular", "hamming", "hann"),
m,
asKernel = TRUE

)

Arguments

type a string indicating the type of filter to use. (See Harris (1978) for a comparison
of these and similar filters.)

• "blackman-harris" yields a modified raised-cosine filter designated as
"4-Term (-92 dB) Blackman-Harris" by Harris (1978; coefficients given in
the table on page 65). This is also called "minimum 4-sample Blackman
Harris" by that author, in his Table 1, which lists figures of merit as follows:
highest side lobe level -92dB; side lobe fall off -6 db/octave; coherent gain
0.36; equivalent noise bandwidth 2.00 bins; 3.0-dB bandwidth 1.90 bins;
scallop loss 0.83 dB; worst case process loss 3.85 dB; 6.0-db bandwidth
2.72 bins; overlap correlation 46 percent for 75\ for 50\ a spectral peak, so
that a value of 2 indicates a cutoff frequency of 1/m, where m is as given
below.

• "rectangular" for a flat filter. (This is just for convenience. Note that
kernel("daniell",....) gives the same result, in kernel form.) "hamming"
for a Hamming filter (a raised-cosine that does not taper to zero at the ends)

• "hann" (a raised cosine that tapers to zero at the ends).
m length of filter. This should be an odd number, for any non-rectangular filter.
asKernel boolean, set to TRUE to get a smoothing kernel for the return value.

Value

If asKernel is FALSE, this returns a list of filter coefficients, symmetric about the midpoint and
summing to 1. These may be used with filter(), which should be provided with argument
circular=TRUE to avoid phase offsets. If asKernel is TRUE, the return value is a smoothing kernel,
which can be applied to a timeseries with kernapply(), whose bandwidth can be determined with
bandwidth.kernel(), and which has both print and plot methods.

274 makeFilter

Sample of Usage

need signal package for this example
r <- rnorm(2048)
rh <- stats::filter(r, H)
rh <- rh[is.finite(rh)] # kludge to remove NA at start/end
sR <- spectrum(r, plot=FALSE, spans=c(11, 5, 3))
sRH <- spectrum(rh, plot=FALSE, spans=c(11, 5, 3))
par(mfrow=c(2, 1), mar=c(3, 3, 1, 1), mgp=c(2, 0.7, 0))
plot(sR$freq, sRH$spec/sR$spec, xlab="Frequency", ylab="Power Transfer",

type="l", lwd=5, col="gray")
theory <- freqz(H, n=seq(0,pi,length.out=100))
Note we must square the modulus for the power spectrum
lines(theory$f/pi/2, Mod(theory$h)^2, lwd=1, col="red")
grid()
legend("topright", col=c("gray", "red"), lwd=c(5, 1), cex=2/3,

legend=c("Practical", "Theory"), bg="white")
plot(log10(sR$freq), log10(sRH$spec/sR$spec),

xlab="log10 Frequency", ylab="log10 Power Transfer",
type="l", lwd=5, col="gray")

theory <- freqz(H, n=seq(0,pi,length.out=100))
Note we must square the modulus for the power spectrum
lines(log10(theory$f/pi/2), log10(Mod(theory$h)^2), lwd=1, col="red")
grid()
legend("topright", col=c("gray", "red"), lwd=c(5, 1), cex=2/3,

legend=c("Practical", "Theory"), bg="white")

Author(s)

Dan Kelley

References

F. J. Harris, 1978. On the use of windows for harmonic analysis with the discrete Fourier Transform.
Proceedings of the IEEE, 66(1), 51-83 (http://web.mit.edu/xiphmont/Public/windows.pdf.)

Examples

library(oce)

1. Demonstrate step-function response
y <- c(rep(1, 10), rep(-1, 10))
x <- seq_along(y)
plot(x, y, type = "o", ylim = c(-1.05, 1.05))
BH <- makeFilter("blackman-harris", 11, asKernel = FALSE)
H <- makeFilter("hamming", 11, asKernel = FALSE)
yBH <- stats::filter(y, BH)
points(x, yBH, col = 2, type = "o")
yH <- stats::filter(y, H)
points(yH, col = 3, type = "o")
legend("topright",

map2lonlat 275

col = 1:3, cex = 2 / 3, pch = 1,
legend = c("input", "Blackman Harris", "Hamming")

)

2. Show theoretical and practical filter gain, where
the latter is based on random white noise, and
includes a particular value for the spans
argument of spectrum(), etc.

map2lonlat Convert X and Y to Longitude and Latitude

Description

Convert from x-y coordinates to longitude and latitude. This is normally called internally within
oce; see “Bugs”. A projection must already have been set up, by a call to mapPlot() or lonlat2map().
It should be noted that not all projections are handled well; see “Bugs”.

Usage

map2lonlat(x, y, init = NULL, debug = getOption("oceDebug"))

Arguments

x vector containing the x component of points in the projected space, or a list
containing items named x and y, in which case the next argument is ignored.

y vector containing the y coordinate of points in the projected space (ignored if x
is a list, as described above).

init vector containing the initial guesses for longitude and latitude, presently ig-
nored.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

A list containing longitude and latitude, with NA values indicating points that are off the globe
as displayed.

Bugs

oce uses the sf::sf_project() function to handle projections. Only those projections that have
inverses are permitted within oce, and of that subset, some are omitted because the oce developers
have experienced problems with them.

276 mapArrows

Author(s)

Dan Kelley

See Also

lonlat2map() does the inverse operation.

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), mapArrows(),
mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
Cape Split, in the Minas Basin of the Bay of Fundy
cs <- list(longitude = -64.49657, latitude = 45.33462)
xy <- lonlat2map(cs, projection = "+proj=merc")
map2lonlat(xy)

mapArrows Add Arrows to a Map

Description

Plot arrows on an existing map, e.g. to indicate a place location. This is not well-suited for drawing
direction fields, e.g. of velocities; for that, see mapDirectionField(). Adds arrows to an existing
map, by analogy to arrows().

Usage

mapArrows(
longitude0,
latitude0,
longitude1 = longitude0,
latitude1 = latitude0,
length = 0.25,
angle = 30,
code = 2,
col = par("fg"),
lty = par("lty"),
lwd = par("lwd"),
...

)

mapArrows 277

Arguments

longitude0, latitude0
starting points for arrows.

longitude1, latitude1
ending points for arrows.

length length of the arrow heads, passed to arrows().

angle angle of the arrow heads, passed to arrows().

code numerical code indicating the type of arrows, passed to arrows().

col arrow color, passed to arrows().

lty arrow line type, passed to arrows().

lwd arrow line width, passed to arrows().

... optional arguments passed to arrows().

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
data(coastlineWorld)
mapPlot(coastlineWorld,

longitudelim = c(-120, -60), latitudelim = c(30, 60),
col = "lightgray", projection = "+proj=lcc +lat_1=45 +lon_0=-100"

)
lon <- seq(-120, -75, 15)
n <- length(lon)
lat <- 45 + rep(0, n)
Draw meridional arrows in N America, from 45N to 60N.
mapArrows(lon, lat, lon, lat + 15, length = 0.05, col = "blue")

278 mapAxis

mapAxis Add Axis Labels to an Existing Map

Description

Plot axis labels on an existing map. This is an advanced function, requiring coordination with
mapPlot() and (possibly) also with mapGrid(), and so it is best avoided by novices, who may be
satisfied with the defaults used by mapPlot().

Usage

mapAxis(
side = 1:2,
longitude = TRUE,
latitude = TRUE,
axisStyle = 1,
tick = TRUE,
line = NA,
pos = NA,
outer = FALSE,
font = NA,
las = c(0, 0),
lty = "solid",
lwd = 1,
lwd.ticks = lwd,
col = NULL,
col.ticks = NULL,
hadj = NA,
padj = NA,
tcl = -0.3,
cex.axis = 1,
mgp = c(0, 0.5, 0),
debug = getOption("oceDebug")

)

Arguments

side the side at which labels are to be drawn. If not provided, sides 1 and 2 will be
used (i.e. bottom and left-hand sides).

longitude either a logical value or a numeric vector of longitudes. There are three possi-
ble cases: (1) If longitude=TRUE (the default) then ticks and nearby numbers
will occur at the longitude grid established by the previous call to mapPlot();
(2) if longitude=FALSE then no longitude ticks or numbers are drawn; (3) if
longitude is a vector of numerical values, then those ticks are placed at those
values, and numbers are written beside them. Note that in cases 1 and 3, efforts
are made to avoid overdrawing text, so some longitude values might get ticks
but not numbers. To get ticks but not numbers, set cex.axis=0.

mapAxis 279

latitude similar to longitude but for latitude.

axisStyle an integer specifying the style of labels for the numbers on axes. The choices
are: 1 for signed numbers without additional labels; 2 (the default) for unsigned
numbers followed by letters indicating the hemisphere; 3 for signed numbers
followed by a degree sign; 4 for unsigned numbers followed by a degree sign;
and 5 for signed numbers followed by a degree sign and letters indicating the
hemisphere.

tick parameter passed to axis().

line parameter passed to axis().

pos parameter passed to axis().

outer parameter passed to axis().

font axis font, passed to axis().

las two-element axis label orientation, passed to axis(). The first value is for the
horizontal axis, and the second is for the vertical axis. See par() for the mean-
ings of the permitted values, namely 0, 1, 2 and 3.

lty axis line type, passed to axis().

lwd axis line width, passed to axis()).

lwd.ticks tick line width, passed to axis().

col axis color, passed to axis().

col.ticks axis tick color, passed to axis().

hadj an argument that is transmitted to axis().

padj an argument that is transmitted to axis().

tcl axis-tick size (see par()).

cex.axis axis-label expansion factor (see par()); set to 0 to prevent numbers from being
placed in axes.

mgp three-element numerical vector describing axis-label placement (see par()). It
usually makes sense to set the first and third elements to zero.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

280 mapContour

Examples

library(oce)
data(coastlineWorld)
par(mar = c(2, 2, 1, 1))
lonlim <- c(-180, 180)
latlim <- c(70, 110)
In mapPlot() call, note axes and grid args, to
prevent over-plotting of defaults. Some adjustments
might be required to the mapGrid() arguments, to
get agreement with the axis. This is why both
mapGrid() and mapAxis() are best avoided; it is
simpler to let mapPlot() handle these things.
mapPlot(coastlineWorld,

projection = "+proj=stere +lat_0=90",
longitudelim = lonlim, latitudelim = latlim,
col = "tan", axes = FALSE, grid = FALSE

)
mapGrid(15, 15)
mapAxis(axisStyle = 5)

mapContour Add Contours on a Existing map

Description

Draw contour lines to an existing map, using mapLines(). Note that label placement in mapContour
is handled differently than in contour().

Usage

mapContour(
longitude,
latitude,
z,
nlevels = 10,
levels = pretty(range(z, na.rm = TRUE), nlevels),
labcex = 0.6,
drawlabels = TRUE,
underlay = "erase",
col = par("fg"),
lty = par("lty"),
lwd = par("lwd"),
debug = getOption("oceDebug")

)

mapContour 281

Arguments

longitude numeric vector of longitudes of points to be plotted, or an object of class topo
(see topo), in which case longitude, latitude and z are inferred from that ob-
ject. Importantly, the longitude system must match that of the mapPlot() call
that made the underlying plot. If not, the contours can have spurious lines that
run across the plot. See “Dealing with longitude conventions” for a method of
handling conflicting longitude conventions between mapPlot() and mapContour().

latitude numeric vector of latitudes of points to be plotted.

z matrix to be contoured. The number of rows and columns in z must equal the
lengths of longitude and latitude, respectively.

nlevels number of contour levels, if and only if levels is not supplied.

levels vector of contour levels.

labcex cex value used for contour labelling. As with contour(), this is an absolute
size, not a multiple of par("cex").

drawlabels logical value or vector indicating whether to draw contour labels. If the length
of drawlabels is less than the number of levels specified, then rep() is used to
increase the length, providing a value for each contour line. For those levels that
are thus indicated, labels are added, at a spot where the contour line is closest
to horizontal on the page. First, though, the region underneath the label is filled
with the colour given by par("bg"). See “Limitations” for notes on the status
of contour labelling, and its limitations.

underlay character value relating to handling labels. If this equals "erase" (which is the
default), then the contour line is drawn first, then the area under the label is
erased (filled with white ’ink’), and then the label is drawn. This can be useful
in drawing coarsely-spaced labelled contours on top of finely-spaced unlabelled
contours. On the other hand, if underlay equals "interrupt", then the contour
line is interrupted in the region of the label, which is closer to the scheme used
by the base contour() function.

col colour of the contour line, as for par("col"), except here col gets lengthened
by calling rep(), so that individual contours can be coloured distinctly.

lty type of the contour line, as for par("lty"), except for lengthening, as described
for col.

lwd width of the contour line, as for par("lwd"), except for lengthening, as de-
scribed for col and lty.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Sample of Usage

library(oce)
data(coastlineWorld)

282 mapCoordinateSystem

if (requireNamespace("ocedata", quietly=TRUE)) {
data(levitus, package = "ocedata")
par(mar = rep(1, 4))
mapPlot(coastlineWorld, projection = "+proj=robin", col = "lightgray")
mapContour(levitus$longitude, levitus$latitude, levitus$SST)

}

Dealing with longitude conventions

Suppose a map has been plotted using longitudes that are bound between -180 and 180. To overlay
contours defined with longitude bound between 0 and 360 (as for the built-in coastlineWorld
dataset), try Clark Richards’ method (https://github.com/dankelley/oce/issues/2217, as
below.

Start with z=z(lon,lat), with lon bound by 0 and 360
z2 <- rbind(z[lon > 180,], z[lon <= 180,])
lon2 <- lon + 180
mapContour(lon2, lat, z2)

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapCoordinateSystem(), mapDirectionField(), mapGrid(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

mapCoordinateSystem Draw a Coordinate System

Description

Draws arrows on a map to indicate a coordinate system, e.g. for an to indicate a coordinate system
set up so that one axis is parallel to a coastline.

Usage

mapCoordinateSystem(longitude, latitude, L = 100, phi = 0, ...)

https://github.com/dankelley/oce/issues/2217

mapDirectionField 283

Arguments

longitude numeric vector of longitudes in degrees.

latitude numeric vector of latitudes in degrees.

L axis length in km.

phi angle, in degrees counterclockwise, that the "x" axis makes to a line of latitude.

... plotting arguments, passed to mapArrows(); see “Examples” for how to control
the arrow-head size.

Details

This is a preliminary version of this function. It only works if the lines of constant latitude are
horizontal on the plot.

Sample of Usage

library(oce)
if (requireNamespace("ocedata", quietly=TRUE)) {

data(coastlineWorldFine, package="ocedata")
HfxLon <- -63.5752
HfxLat <- 44.6488
mapPlot(coastlineWorldFine, proj="+proj=merc",

longitudelim=HfxLon+c(-2,2), latitudelim=HfxLat+c(-2,2),
col=lightgrey")

mapCoordinateSystem(HfxLon, HfxLat, phi=45, length=0.05)
}

Author(s)

Chantelle Layton

See Also

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapDirectionField(), mapGrid(), mapImage(), mapLines(),
mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(), mapScalebar(),
mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(), utm2lonlat()

mapDirectionField Add a Direction Field to an Existing Map

Description

Plot a direction field on a existing map, either using arrows, which is the oceanographic convention,
or using wind barbs, which is a meteorological convention.

284 mapDirectionField

Usage

mapDirectionField(
longitude,
latitude,
u,
v,
scale = 1,
length = NULL,
code = 2,
lwd = par("lwd"),
col = par("fg"),
debug = getOption("oceDebug")

)

Arguments

longitude, latitude
numeric vectors of the starting points for arrows, or the locations of grid cells.

u, v numeric vectors or matrices holding the components of a vector to be shown as
a direction field.

scale an indication of the length of the arrows or lines. For the "arrow" style, this is
arrow length in latitude degrees per unit of velocity. For the "barb" style, this is
the length of all lines, regardless of the velocity, because in this style velocity is
indicated with barbs and pennants.

length an indication of the size of arrow heads, for "arrow" style, or of the barbs, for
"barb" style. If this is NULL (which is the default), then 0.05 will be used for
the "arrow" style, and 0.2 for the "barb" style.

code an indication of the style of arrow heads or barbs. For the arrow style, this is
a number that is passed to arrows(), with 2 as the default, meaning to draw
the arrow as a conventional vector. For the wind-barb style, this is the string
"barb".

lwd a numeric value indicating the width of the line segments that make up the speed
indicators.

col color of the speed indicators.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

As noted in the “Description”, there are two styles. 1. Arrow Style: arrows are drawn from the
stated locations in the direction of the flow defined by the (u,v) vector. This is the usual convention
in oceanographic work. 2. Barb Style: to create "wind barbs", according to a convention used

mapDirectionField 285

in meteorological charts. Unlike arrows, which indicate speed by the arrow length, barbs indicate
speed by angled lines and possibly triangles located at the upstream end. Note that the meanings of
the function parameters vary across the two styles.

The "arrow" style is quite common in the oceanographic literature. Arrows point in the direc-
tion of the velocity defined by (u,v), and the length of those arrows is proportional to the speed,
sqrt(u^2+v^2).

By contrast, in the "barb" notation, the lines are of equal length (compared with distance on the
ground), with speed being indicated with barbs. Many sources explain the notation, e.g. https://www.weather.gov/hfo/windbarbinfo.
The lines extend from the observation longitude and latitude in the direction opposite to the veloc-
ity. Velocities are indicated by barbs, i.e. short line segments that extend at an angle to the main line
and with pennants (triangles). Speed is given by a combination of pennants and barbs. A pennant
represents 50 speed units, a long barb 10 units, and a short barb 5 units. Summing these values
gives the speed, rounded to 5 units.

See “Details” for a comparison of the "arrow" and "barb" styles for some made-up velocity data.

There are two possibilities for how longitude, latitude are combined with u and v.

1. All four are vectors, and the matching is one-to-one. This is useful for showing velocities at
particular individual locations, as in the “Examples”.

2. longitude and latitude are vectors, while u and v are matrices. In this case, the lengths of
longitude and latitude must equal the number of rows and columns in u and v, respectively.

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapGrid(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
data(coastlineWorld)
par(mar = rep(2, 4))
mapPlot(coastlineWorld,

border = "black",
col = "grey95",
projection = "+proj=lcc +lat_1=40 +lat_2=60 +lon_0=-60",
longitudelim = c(-70, -50), latitudelim = c(45, 50)

)
Invent wind data for three locations in eastern Canada
dataText <- "
lat,lon,u,v,location
44.6476,-63.5728,15,0,Halifax

286 mapGrid

49.5495,-62.9555,20,20,Anticosti Island
47.5556,-52.7453,0,55,St. John's"
data <- read.csv(text = dataText)
Dots at observation locations, for reference
mapPoints(data$lon, data$lat)
Red: arrows that extend downwind from the location
mapDirectionField(data$lon, data$lat,

u = data$u, v = data$v, scale = 0.05,
length = .08, code = 2, col = 2, lwd = 2

)
Blue: barbs that extend upwind from the location
mapDirectionField(data$lon, data$lat,

u = data$u, v = data$v, scale = 2, code = "barb", lwd = 2, col = 4
)

mapGrid Add a Longitude and Latitude Grid to an Existing Map

Description

Plot longitude and latitude grid on an existing map. This is an advanced function, requiring coor-
dination with mapPlot() and (possibly) also with mapAxis(), and so it is best avoided by novices,
who may be satisfied with the defaults used by mapPlot().

Usage

mapGrid(
dlongitude = 15,
dlatitude = 15,
longitude,
latitude,
col = "darkgray",
lty = "solid",
lwd = 0.5 * par("lwd"),
polarCircle = 0,
longitudelim,
latitudelim,
debug = getOption("oceDebug")

)

Arguments

dlongitude increment in longitude, ignored if longitude is supplied, but otherwise deter-
mines the longitude sequence.

dlatitude increment in latitude, ignored if latitude is supplied, but otherwise determines
the latitude sequence.

longitude numeric vector of longitudes, or NULL to prevent drawing longitude lines.

mapGrid 287

latitude numeric vector of latitudes, or NULL to prevent drawing latitude lines.

col color of lines

lty line type

lwd line width

polarCircle a number indicating the number of degrees of latitude extending from the poles,
within which zones are not drawn.

longitudelim optional argument specifying suggested longitude limits for the grid. If this is
not supplied, grid lines are drawn for the whole globe, which can yield exces-
sively slow drawing speeds for small-region plots. This, and latitudelim, are
both set by mapPlot() if the arguments of the same name are passed to that
function.

latitudelim similar to longitudelim.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, 2 to go two function levels deep, or 3 to go all the way to the core
functions. Any value above 3 will be truncated to 3.

Details

This is somewhat analogous to grid(), except that the first two arguments of the latter supply the
number of lines in the grid, whereas the present function has increments for the first two arguments.

Value

A data.frame, returned silently, containing "side", "value", "type", and "at". A default call to
mapPlot() ensures agreement of grid and axes by using this return value in a call to mapAxis().

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapImage(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

if (utils::packageVersion("sf") != "0.9.8") {
sf version 0.9-8 has a problem with this projection
library(oce)
data(coastlineWorld)
par(mar = c(2, 2, 1, 1))
In mapPlot() call, note axes and grid args, to
prevent over-plotting of defaults.

288 mapImage

mapPlot(coastlineWorld,
type = "l", projection = "+proj=ortho",
axes = FALSE, grid = FALSE

)
mapGrid(15, 15)

}

mapImage Add an Image to a Map

Description

Plot an image on an existing map that was created with mapPlot().

Usage

mapImage(
longitude,
latitude,
z,
zlim,
zclip = FALSE,
breaks,
col,
colormap,
border = NA,
lwd = par("lwd"),
lty = par("lty"),
missingColor = NA,
filledContour = FALSE,
gridder = "binMean2D",
debug = getOption("oceDebug")

)

Arguments

longitude numeric vector of longitudes corresponding to z matrix.
latitude numeric vector of latitudes corresponding to z matrix.
z numeric matrix to be represented as an image.
zlim limit for z (color).
zclip A logical value, TRUE indicating that out-of-range z values should be painted

with missingColor and FALSE indicating that these values should be painted
with the nearest in-range color. If zlim is given then its min and max set the
range. If zlim is not given but breaks is given, then the min and max of breaks
sets the range used for z. If neither zlim nor breaks is given, clipping is not
done, i.e. the action is as if zclip were FALSE.

mapImage 289

breaks The z values for breaks in the color scheme. If this is of length 1, the value
indicates the desired number of breaks, which is supplied to pretty(), in deter-
mining clean break points.

col Either a vector of colors corresponding to the breaks, of length 1 plus the number
of breaks, or a function specifying colors, e.g. oce.colorsViridis() for the
Viridis scheme.

colormap optional colormap, as created by colormap(). If a colormap is provided, then
its properties takes precedence over breaks, col, missingColor, and zclip
specified to mapImage.

border Color used for borders of patches (passed to polygon()); the default NA means
no border.

lwd line width, used if borders are drawn.

lty line type, used if borders are drawn.

missingColor a color to be used to indicate missing data, or NA to skip the drawing of such
regions (which will retain whatever material has already been drawn at the re-
gions).

filledContour an indication of whether to use filled contours. This may be FALSE (the de-
fault), TRUE, or a positive numerical value. If FALSE, then polygons are used.
Otherwise, the longitude-latitude values are transformed to x-y values, which
will not be on a grid and thus will require gridding so that .filled.contour()
can plot the filled contours. The method used for gridding is set by the gridder
parameter (see next item). If filledContour is TRUE, then the grid is con-
structed with the aim of having approximately 3 of the projected x-y points in
each cell. That can leave some cells unoccupied, yielding blanks in the drawn
image. There are two ways around that. First, the gridder can be set up to fill
gaps. Second, a numerical value can be used for filledContour. For example,
using filledContour equal to 1.5 will increase grid width and height by a fac-
tor of 1.5, which may be enough to fill all the gaps, depending on the projection
and the area shown.

gridder specification of how gridding is to be done, used only if filledContour is
TRUE. The value of gridder may "binMean2D", which is the default, "interp",
or a function. In the first two cases, the gridding is done with either binMean2D()
or interp::interp(), respectively. For more on the last case, see “Details”.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

Image data are on a regular grid in lon-lat space, but not in the projected x-y space. This means that
image() cannot be used. Instead, there are two approaches, depending on the value of filledContour.

If filledContour is FALSE, the image "pixels" are drawn with polygon(). This can be pro-
hibitively slow for fine grids.

290 mapImage

However, if filledContour is TRUE, then the "pixels" are remapped into a regular grid and then
displayed with .filled.contour(). The remapping starts by converting the regular lon-lat grid to
an irregular x-y grid using lonlat2map(). This irregular grid is then interpolated onto a regular x-y
grid in accordance with the gridder parameter. If gridder values of "binMean2D" and "interp"
do not produce satisfactory results, advanced users might wish to supply a function to do the grid-
ding according to their own criteria. The function must have as its first 5 arguments (1) an x vector,
(2) a y vector, (3) a z matrix that corresponds to x and y in the usual way, (4) a vector holding the
desired x grid, and (5) a vector holding the desired y grid. The return value must be a list containing
items named xmids, ymids and result. To understand the meaning of the parameters and return
values, consult the documentation for binMean2D(). Here is an example of a scheme that will fill
data gaps of 1 or 2 cells:

g <- function(...) binMean2D(..., fill = TRUE, fillgap = 2)
mapImage(..., gridder = g, ...)

Historical Notes

Until oce 1.7.4, the gridder argument could be set to "akima", which used the akima package.
However, that package is not released with a FOSS license, so CRAN requested a change to interp.
Note that drawImage() intercepts the errors that sometimes get reported by interp::interp().

Sample of Usage

library(oce)
data(coastlineWorld)
data(topoWorld)

Northern polar region, with color-coded bathymetry
par(mfrow = c(1, 1), mar = c(2, 2, 1, 1))
cm <- colormap(zlim = c(-5000, 0), col = oceColorsGebco)
drawPalette(colormap = cm)
mapPlot(coastlineWorld,

projection = "+proj=stere +lat_0=90",
longitudelim = c(-180, 180), latitudelim = c(70, 110)

)
Uncomment one of the next four blocks. See
https://dankelley.github.io/dek_blog/2024/03/07/mapimage.html
for illustrations.

Method 1: the default, using polygons for lon-lat patches
mapImage(topoWorld, colormap = cm)

Method 2: filled contours, with ugly missing-data traces
mapImage(topoWorld, colormap = cm, filledContour = TRUE)

Method 3: filled contours, with a double-sized grid cells
mapImage(topoWorld, colormap = cm, filledContour = 2)

Method 4: filled contours, with a gap-filling gridder)

https://CRAN.R-project.org/package=interp

mapLines 291

g <- function(...) binMean2D(..., fill = TRUE, fillgap = 2)
mapImage(topoWorld, colormap = cm, filledContour = TRUE, gridder = g)

mapGrid(15, 15, polarCircle = 1, col = gray(0.2))
mapPolygon(coastlineWorld[["longitude"]],

coastlineWorld[["latitude"]],
col = "tan"

)

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

mapLines Add Lines to a Map

Description

Plot lines on an existing map, by analogy to lines().

Usage

mapLines(longitude, latitude, greatCircle = FALSE, ...)

Arguments

longitude numeric vector of longitudes of points to be plotted, or an object from which
longitude and latitude can be inferred (e.g. a coastline file, or the return value
from mapLocator()), in which case the following two arguments are ignored.

latitude vector of latitudes of points to be plotted.

greatCircle a logical value indicating whether to render line segments as great circles. (Ig-
nored.)

... optional arguments passed to lines().

Author(s)

Dan Kelley

292 mapLocator

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

if (utils::packageVersion("sf") != "0.9.8") {
sf version 0.9-8 has a problem with this projection
library(oce)
data(coastlineWorld)
mapPlot(coastlineWorld,

type = "l",
longitudelim = c(-80, 10), latitudelim = c(0, 120),
projection = "+proj=ortho +lon_0=-40"

)
lon <- c(-63.5744, 0.1062) # Halifax CA to London UK
lat <- c(44.6479, 51.5171)
mapPoints(lon, lat, col = "red")
mapLines(lon, lat, col = "red")

}

mapLocator Locate Points on a Map

Description

Locate points on an existing map. This uses map2lonlat() to infer the location in geographical
space, so it suffers the same limitations as that function.

Usage

mapLocator(n = 512, type = "n", ...)

Arguments

n number of points to locate; see locator().

type type of connector for the points; see locator().

... extra arguments passed to locator() (and either mapPoints() or mapLines(),
if appropriate) if type is not 'n'.

mapLongitudeLatitudeXY 293

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

mapLongitudeLatitudeXY

Convert From Longitude and Latitude to X and Y

Description

Find (x, y) values corresponding to (longitude, latitude) values, using the present projection. This
is mainly a wrapper around lonlat2map().

Usage

mapLongitudeLatitudeXY(longitude, latitude)

Arguments

longitude numeric vector of the longitudes of points, or an object from which both latitude
and longitude can be inferred (e.g. a coastline file, or the return value from
mapLocator()), in which case the following two arguments are ignored.

latitude numeric vector of latitudes of points, needed only if they cannot be inferred from
the first argument.

Value

A list containing x and y.

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapPlot(), mapPoints(), mapPolygon(), mapScalebar(),
mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(), utm2lonlat()

294 mapPlot

Examples

library(oce)
data(coastlineWorld)
par(mfrow = c(2, 1), mar = rep(2, 4))
mapPlot(coastlineWorld, projection = "+proj=moll") # sets a projection
xy <- mapLongitudeLatitudeXY(coastlineWorld)
plot(xy, type = "l", asp = 1)

mapPlot Draw a Map

Description

Plot coordinates as a map, using one of the subset of projections provided by the sf package. The
projection information specified with the mapPlot() call is stored in a global variable that can be
retrieved by related functions, making it easy to add points, lines, text, images or contours to an
existing map. The “Details” section, below, provides a list of available projections. The "Using
map projections" vignette offers examples of several map plots, in addition to the single example
provided in the “Examples” section.

Usage

mapPlot(
longitude,
latitude,
longitudelim,
latitudelim,
grid = TRUE,
geographical = 0,
bg,
fill,
border = NULL,
col = NULL,
clip = TRUE,
type = "polygon",
axes = TRUE,
axisStyle = 1,
cex,
cex.axis = 1,
mgp = c(0, 0.5, 0),
las = c(0, 0),
drawBox = TRUE,
showHemi = TRUE,
polarCircle = 0,
lonlabels = TRUE,

https://CRAN.R-project.org/package=sf

mapPlot 295

latlabels = TRUE,
projection = "+proj=moll",
tissot = FALSE,
trim = TRUE,
debug = getOption("oceDebug"),
...

)

Arguments

longitude either a numeric vector of longitudes of points to be plotted, or something (an
oce object, a list, or a data frame) from which both longitude and latitude may
be inferred (in which case the latitude argument is ignored). If longitude is
missing, both it and latitude are taken from the built-in coastlineWorld dataset.

latitude numeric vector of latitudes of points to be plotted (ignored if the first argument
contains both latitude and longitude).

longitudelim, latitudelim
optional numeric vectors of length two, indicating the limits of the plot. A warn-
ing is issued if these are not specified together. See “Examples” for a polar-
region example, noting that the whole-globe span of longitudelim is used to
centre the plot at the north pole.

grid either a number (or pair of numbers) indicating the spacing of longitude and
latitude lines, in degrees, or a logical value (or pair of values) indicating whether
to draw an auto-scaled grid, or whether to skip the grid drawing. In the case of
numerical values, NA can be used to turn off the grid in longitude or latitude.
Grids are set up based on examination of the scale used in middle 10 percent of
the plot area, and for most projections this works quite well. If not, one may set
grid=FALSE and add a grid later with mapGrid().

geographical flag indicating the style of axes. With geographical=0, the axes are conven-
tional, with decimal degrees as the unit, and negative signs indicating the south-
ern and western hemispheres. With geographical=1, the signs are dropped,
with axis values being in decreasing order within the southern and western
hemispheres. With geographical=2, the signs are dropped and the axes are
labelled with degrees, minutes and seconds, as appropriate, and hemispheres
are indicated with letters. With geographical=3, things are the same as for
geographical=2, but the hemisphere indication is omitted. Finally, with geographical=4,
unsigned numbers are used, followed by letters N in the northern hemisphere, S
in the southern, E in the eastern, and W in the western.

bg color of the background (ignored).

fill is a deprecated argument; see oce-deprecated.

border color of coastlines and international borders (ignored unless type="polygon".

col either the color for filling polygons (if type="polygon") or the color of the
points and line segments (if type="p", type="l", or type="o"). If col=NULL
then a default will be set: no coastline filling for the type="polygon" case, or
black coastlines, for type="p", type="l", or type="o".

296 mapPlot

clip logical value indicating whether to trim any coastline elements that lie wholly
outside the plot region. This can prevent e.g. a problem of filling the whole plot
area of an Arctic stereopolar view, because the projected trace for Antarctica lies
outside all other regions so the whole of the world ends up being "land". Setting
clip=FALSE disables this action, which may be of benefit in rare instances in
the line connecting two points on a coastline may cross the plot domain, even if
those points are outside that domain.

type indication of type; may be "polygon", for a filled polygon, "p" for points, "l"
for line segments, or "o" for points overlain with line segments.

axes a logical value indicating whether to draw longitude and latitude values in the
lower and left margin, respectively. This may not work well for some projections
or scales. See also axisStyle, lonlabels and latlabels, which offer more
granular control of labelling.

axisStyle an integer specifying the style of labels for the numbers on axes. The choices
are: 1 for signed numbers without additional labels; 2 (the default) for unsigned
numbers followed by letters indicating the hemisphere; 3 for signed numbers
followed by a degree sign; 4 for unsigned numbers followed by a degree sign;
and 5 for signed numbers followed by a degree sign and letters indicating the
hemisphere.

cex character expansion factor for plot symbols, used if type="p" or any other value
that yields symbols.

cex.axis axis-label expansion factor (see par()).

mgp three-element numerical vector describing axis-label placement, passed to mapAxis().

las two-element axis label orientation, passed to axis(). The first value is for the
horizontal axis, and the second is for the vertical axis. See par() for the mean-
ings of the permitted values, namely 0, 1, 2 and 3.

drawBox logical value indicating whether to draw a box around the plot. This is helpful
for many projections at sub-global scale.

showHemi logical value indicating whether to show the hemisphere in axis tick labels.

polarCircle a number indicating the number of degrees of latitude extending from the poles,
within which zones are not drawn.

lonlabels An optional logical value or numeric vector that controls the labelling along
the horizontal axis. There are four possibilities: (1) If lonlabels is TRUE (the
default), then reasonable values are inferred and axes are drawn with ticks and
labels alongside those ticks; (2) if lonlabels is FALSE, then ticks are drawn, but
no labels; (3) if lonlabels is NULL, then no axis ticks or labels are drawn; and
(4) if lonlabels is a vector of finite numerical values, then tick marks are placed
at those longitudes, and labels are put alongside them. Note that R tries to avoid
overwriting labels on axes, so the instructions in case 4 might not be obeyed
exactly. See also latlabels, and note that setting axes=FALSE ensures that no
longitude or latitude axes will be drawn regardless of the values of lonlabels
and latlabels.

latlabels As lonlabels, but for latitude, on the left plot axis.

projection either character value indicating the map projection, or the output from sf::st_crs().
In the first case, see a table in “Details” for the projections that are available. In

mapPlot 297

the second case, note that mapPlot() reports an error if a similar function from
the old sp package is used.

tissot logical value indicating whether to use mapTissot() to plot Tissot indicatrices,
i.e. ellipses at grid intersection points, which indicate map distortion.

trim logical value indicating whether to trim islands or lakes containing only points
that are off-scale of the current plot box. This solves the problem of Antarctica
overfilling the entire domain, for an Arctic-centred stereographic projection. It
is not a perfect solution, though, because the line segment joining two off-scale
points might intersect the plotting box.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional arguments passed to some plotting functions. This can be useful in
many ways, e.g. Example 5 shows how to use xlim etc to reproduce a scale
exactly between two plots.

Details

The calculations for map projections are done with the sf package. Importantly, though, not all the
sf projections are available in oce, for reasons relating to limitations of sf, for example relating to
inverse-projection calculations. The oce choices are tabulated below, e.g. projection="+proj=aea"
selects the Albers equal area projection. (See also the warning, below, about a problem with sf ver-
sion 0.9-8.)

Further details of the vast array of map projections are given in reference 4. This system has been
in rapid development since about 2018, and reference 5 provides a helpful overview of the changes
and the reasons why they were necessary. Practical examples of map projections in oce are provided
in reference 6, along with some notes on problems. A fascinating treatment of the history of map
projections is provided in reference 7. To get an idea of how projections are being created nowadays,
see reference 8, about the eqearth projection that was added to oce in August 2020.

Available Projections

The following table lists projections available in oce, and was generated by reformatting a subset
of the output of the unix command proj -lP. Most of the arguments have default values, and
many projections also have optional arguments. Although e.g. proj -l=aea provides a little more
information about particular projections, users ought to consult reference 4 for fuller details and
illustrations.

Projection Code Arguments
Albers equal area aea lat_1, lat_2
Azimuthal equidistant aeqd lat_0, guam
Aitoff aitoff -
Mod. stererographics of Alaska alsk -
Bipolar conic of western hemisphere bipc -
Bonne Werner bonne lat_1
Cassini cass -
Central cylindrical cc -
Equal area cylindrical cea lat_ts

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=oce
https://CRAN.R-project.org/package=oce
https://CRAN.R-project.org/package=oce

298 mapPlot

Collignon collg -
Craster parabolic Putnins P4 crast -
Eckert I eck1 -
Eckert II eck2 -
Eckert III eck3 -
Eckert IV eck4 -
Eckert V eck5 -
Eckert VI eck6 -
Equidistant cylindrical plate (Caree) eqc lat_ts, lat_0
Equidistant conic eqdc lat_1, lat_2
Equal earth eqearth -
Euler euler lat_1, lat_2
Extended transverse Mercator etmerc -
Fahey fahey -
Foucault fouc -
Foucault sinusoidal fouc_s -
Gall stereographic gall -
Geostationary satellite view geos h
General sinusoidal series gn_sinu m, n
Gnomonic gnom -
Goode homolosine goode -
Hatano asymmetrical equal area hatano -
Interrupted Goode homolosine igh -
Kavraisky V kav5 -
Kavraisky VII kav7 -
Lambert azimuthal equal area laea -
Longitude and latitude longlat -
Longitude and latitude latlong -
Lambert conformal conic lcc lat_1, lat_2 or lat_0, k_0
Lambert equal area conic leac lat_1, south
Loximuthal loxim -
Space oblique for Landsat lsat lsat, path
McBryde-Thomas flat-polar sine, no. 1 mbt_s -
McBryde-Thomas flat-polar sine, no. 2 mbt_fps -
McBryde-Thomas flat-polar parabolic mbtfpp -
McBryde-Thomas flat-polar quartic mbtfpq -
McBryde-Thomas flat-polar sinusoidal mbtfps -
Mercator merc lat_ts
Miller oblated stereographic mil_os -
Miller cylindrical mill -
Mollweide moll -
Murdoch I murd1 lat_1, lat_2
Murdoch II murd2 lat_1, lat_2
murdoch III murd3 lat_1, lat_2
Natural earth natearth -
Nell nell -
Nell-Hammer nell_h -
Near-sided perspective nsper h

mapPlot 299

New Zealand map grid nzmg -
General oblique transformation ob_tran o_proj, o_lat_p, o_lon_p,

o_alpha, o_lon_c, o_lat_c,
o_lon_1, o_lat_1,
o_lon_2, o_lat_2

Oblique cylindrical equal area ocea lat_1, lat_2, lon_1, lon_2
Oblated equal area oea n, m, theta
Oblique Mercator omerc alpha, gamma, no_off,

lonc, lon_1, lat_1,
lon_2, lat_2

Orthographic ortho -
Polyconic American poly -
Putnins P1 putp1 -
Putnins P2 putp2 -
Putnins P3 putp3 -
Putnins P3’ putp3p -
Putnins P4’ putp4p -
Putnins P5 putp5 -
Putnins P5’ putp5p -
Putnins P6 putp6 -
Putnins P6’ putp6p -
Quartic authalic qua_aut -
Quadrilateralized spherical cube qsc -
Robinson robin -
Roussilhe stereographic rouss -
Sinusoidal aka Sanson-Flamsteed sinu -
Swiss. oblique Mercator somerc -
Stereographic stere lat_ts
Oblique stereographic alternative sterea -
Transverse cylindrical equal area tcea -
Tissot tissot lat_1, lat_2
Transverse Mercator tmerc approx
Two point equidistant tpeqd lat_1, lon_1, lat_2, lon_2
Tilted perspective tpers tilt, azi, h
Universal polar stereographic ups south
Urmaev flat-polar sinusoidal urmfps n
Universal transverse Mercator utm zone, south, approx
van der Grinten I vandg -
Vitkovsky I vitk1 lat_1, lat_2
Wagner I Kavraisky VI wag1 -
Wagner II wag2 -
Wagner III wag3 lat_ts
Wagner IV wag4 -
Wagner V wag5 -
Wagner VI wag6 -
Werenskiold I weren -
Winkel I wink1 lat_ts
Winkel Tripel wintri lat_ts

300 mapPlot

Choosing a projection

The best choice of projection depends on the application. Users may find projection="+proj=moll"
useful for world-wide plots, ortho for hemispheres viewed from the equator, stere for polar views,
lcc for wide meridional ranges in mid latitudes, merc in limited-area cases where angle preserva-
tion is important, or either aea or eqearth (on local and global scales, respectively) where area
preservation is important. The choice becomes more important, the larger the size of the region
represented. When it comes to publication, it can be sensible to use the same projection as used in
previous reports.

Problems

Map projection is a complicated matter that is addressed here in a limited and pragmatic way. For
example, mapPlot tries to draw axes along a box containing the map, instead of trying to find spots
along the “edge” of the map at which to put longitude and latitude labels. This design choice greatly
simplifies the coding effort, freeing up time to work on issues regarded as more pressing. Chief
among those issues are (a) the occurrence of horizontal lines in maps that have prime meridians (b)
inaccurate filling of land regions that (again) occur with shifted meridians and (c) inaccurate filling
of Antarctica in some projections. Generally, issues are tackled first for commonly used projections,
such as those used in the examples.

Historical Notes

• 2020-12-24: complete switch from rgdal to sf, removing the testing scheme created on 2020-
08-03.

• 2020-08-03: added support for the eqearth projection (like robin but an equal-area method).

• 2020-08-03: dropped support for the healpix, pconic and rhealpix projections, which
caused errors with the sf package. (This is not a practical loss, since these interrupted pro-
jections were handled badly by mapPlot() in any case.)

• 2020-08-03: switch from rgdal to sf for calculations related to map projection, owing to some
changes in the former package that broke oce code. (To catch problems, oce was set up to use
both packages temporarily, issuing warnings if the results differed by more than 1 metre in
easting or northing values.)

• 2017-11-19: imw_p removed, because it has problems doing inverse calculations. This is a
also problem in the standalone PROJ.4 application version 4.9.3, downloaded and built on
OSX. See https://github.com/dankelley/oce/issues/1319 for details.

• 2017-11-17: lsat removed, because it does not work in rgdal or in the latest standalone
PROJ.4 application. This is a also problem in the standalone PROJ.4 application version 4.9.3,
downloaded and built on OSX. See https://github.com/dankelley/oce/issues/1337 for
details.

• 2017-09-30: lcca removed, because its inverse was wildly inaccurate in a Pacific Antarctic-
Alaska application (see https://github.com/dankelley/oce/issues/1303).

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=oce
https://CRAN.R-project.org/package=oce

mapPlot 301

Sample of Usage

Example 1.
Mollweide (referenc 1 page 54) is an equal-area projection that works well
for whole-globe views.
mapPlot(coastlineWorld, projection="+proj=moll", col="gray")
mtext("Mollweide", adj=1)

Example 2.
Note that filling is not employed (`col` is not
given) when the prime meridian is shifted, because
this causes a problem with Antarctica
cl180 <- coastlineCut(coastlineWorld, lon_0=-180)
mapPlot(cl180, projection="+proj=moll +lon_0=-180")
mtext("Mollweide with coastlineCut", adj=1)

Example 3.
Orthographic projections resemble a globe, making them attractive for
non-technical use, but they are neither conformal nor equal-area, so they
are somewhat limited for serious use on large scales. See Section 20 of
reference 1. Note that filling is not employed because it causes a problem with
Antarctica.
if (utils::packageVersion("sf") != "0.9.8") {

sf version 0.9-8 has a problem with this projection
par(mar=c(3, 3, 1, 1))
mapPlot(coastlineWorld, projection="+proj=ortho +lon_0=-180")
mtext("Orthographic", adj=1)

}

Example 4.
The Lambert conformal conic projection is an equal-area projection
recommended by reference 1, page 95, for regions of large east-west extent
away from the equator, here illustrated for the USA and Canada.
par(mar=c(3, 3, 1, 1))
mapPlot(coastlineCut(coastlineWorld, -100),

longitudelim=c(-130,-55), latitudelim=c(35, 60),
projection="+proj=lcc +lat_0=30 +lat_1=60 +lon_0=-100", col="gray")

mtext("Lambert conformal", adj=1)

Example 5.
The stereographic projection (reference 1, page 120) in the standard
form used NSIDC (National Snow and Ice Data Center) for the Arctic.
(See "A Guide to NSIDC's Polar Stereographic Projection" at
https://nsidc.org/data/user-resources/help-center.)
Note how the latitude limit extends 20 degrees past the pole,
symmetrically.
par(mar=c(3, 3, 1, 1))
mapPlot(coastlineWorld,

longitudelim=c(-180, 180), latitudelim=c(70, 110),

302 mapPlot

projection=sf::st_crs("EPSG:3413"), col="gray")
mtext("Stereographic", adj=1)

Example 6.
Spinning globe: create PNG files that can be assembled into a movie
if (utils::packageVersion("sf") != "0.9.8") {

sf version 0.9-8 has a problem with this projection
png("globe-
lons <- seq(360, 0, -15)
par(mar=rep(0, 4))
for (i in seq_along(lons)) {

p <- paste("+proj=ortho +lat_0=30 +lon_0=", lons[i], sep="")
if (i == 1) {
mapPlot(coastlineCut(coastlineWorld, lons[i]), projection=p, col="gray")

xlim <- par("usr")[1:2]
ylim <- par("usr")[3:4]

} else {
mapPlot(coastlineCut(coastlineWorld, lons[i]), projection=p, col="gray",

xlim=xlim, ylim=ylim, xaxs="i", yaxs="i")
}

}
dev.off()

}

Author(s)

Dan Kelley and Clark Richards

References

1. Snyder, John P., 1987. Map Projections: A Working Manual. USGS Professional Paper: 1395
https://pubs.er.usgs.gov/publication/pp1395

2. Natural Resources Canada https://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/maps/9805
3. "List of Map Projections." In Wikipedia, January 26, 2021. https://en.wikipedia.org/w/index.php?title=List_of_map_projections.
4. PROJ contributors (2020). "PROJ Coordinate Transformation Software Library." Open Source

Geospatial Foundation, n.d. https://proj.org.
5. Bivand, Roger (2020) Why have CRS, projections and transformations changed?
6. A gallery of map plots is provided at https://dankelley.github.io/r/2020/08/02/oce-proj.html
7. Snyder, John Parr. Flattening the Earth: Two Thousand Years of Map Projections. Chicago,

IL: University of Chicago Press, 1993. https://press.uchicago.edu/ucp/books/book/chicago/F/bo3632853.html
8. Šavrič, Bojan, Tom Patterson, and Bernhard Jenny. "The Equal Earth Map Projection." In-

ternational Journal of Geographical Information Science 33, no. 3 (March 4, 2019): 454-65.
doi:10.1080/13658816.2018.1504949

See Also

Points may be added to a map with mapPoints(), lines with mapLines(), text with mapText(),
polygons with mapPolygon(), images with mapImage(), and scale bars with mapScalebar().

https://doi.org/10.1080/13658816.2018.1504949

mapPoints 303

Points on a map may be determined with mouse clicks using mapLocator(). Great circle paths
can be calculated with geodGc(). See reference 8 for a demonstration of the available map projec-
tions (with graphs).

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPoints(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

NOTE: the map-projection vignette has many more examples.
library(oce)
data(coastlineWorld)
Demonstrate a high-latitude view using a built-in "CRS" value that is used
by the National Snow and Ice Data Center (NSIDC) for representing
the northern-hemisphere ice zone. The view is meant to mimic the figure
at the top of the document entitled "A Guide to NSIDC's Polar Stereographic
Projection" at https://nsidc.org/data/user-resources/help-center, with the
box indicating the region of the NSIDC grid.
projection <- sf::st_crs("EPSG:3413")
cat(projection$proj4string, "\n") # see the projection details
par(mar = c(2, 2, 1, 1)) # tighten margins
mapPlot(coastlineWorld,

projection = projection,
col = gray(0.9), geographical = 4,
longitudelim = c(-180, 180), latitudelim = c(10, 90)

)
Coordinates of box from Table 6 of the NSIDC document
box <- cbind(

-360 + c(168.35, 102.34, 350.3, 279.26, 168.35),
c(30.98, 31.37, 34.35, 33.92, 30.98)

)
mapLines(box[, 1], box[, 2], lwd = 2)

mapPoints Add Points to a Map

Description

Plot points on an existing map, by analogy to points().

Usage

mapPoints(longitude, latitude, debug = getOption("oceDebug"), ...)

304 mapPolygon

Arguments

longitude Longitudes of points to be plotted, or an object from which longitude and lat-
itude can be inferred in which case the following two arguments are ignored.
This objects that are possible include those of type coastline.

latitude numeric vector of latitudes of points to be plotted.

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... Optional arguments passed to points().

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPolygon(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
data(coastlineWorld)
mapPlot(coastlineWorld,

longitudelim = c(-80, 0), latitudelim = c(20, 50),
col = "lightgray", projection = "+proj=laea +lon_0=-35"

)
data(section)
mapPoints(section)

mapPolygon Add a Polygon to a Map

Description

mapPolygon adds a polygon to an existing map.

mapPolygon 305

Usage

mapPolygon(
longitude,
latitude,
density = NULL,
angle = 45,
border = NULL,
col = NA,
lty = par("lty"),
...,
fillOddEven = FALSE

)

Arguments

longitude numeric vector of longitudes of points defining the polygon, to be plotted, or
an object from which both longitude and latitude can be inferred (e.g. a coast-
line file, or the return value from mapLocator()), in which case the latitude
argument are ignored.

latitude numeric vector of latitudes of points to be plotted (ignored if both longitude and
latitude can be determined from the first argument).

density, angle, border, col, lty, ..., fillOddEven
handled as polygon() handles the same arguments.

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
data(coastlineWorld)
data(topoWorld)

Bathymetry near southeastern Canada
par(mfrow = c(1, 1), mar = c(2, 2, 1, 1))
cm <- colormap(zlim = c(-5000, 0), col = oceColorsGebco)
drawPalette(colormap = cm)
lonlim <- c(-60, -50)
latlim <- c(40, 60)

306 mapScalebar

mapPlot(coastlineWorld,
longitudelim = lonlim,
latitudelim = latlim, projection = "+proj=merc", grid = FALSE

)
mapImage(topoWorld, colormap = cm)
mapPolygon(coastlineWorld[["longitude"]], coastlineWorld[["latitude"]], col = "lightgray")

mapScalebar Add a Scalebar to a Map

Description

Draw a scalebar on a map created by mapPlot() or otherwise.

Usage

mapScalebar(
x,
y = NULL,
length,
lwd = 1.5 * par("lwd"),
cex = par("cex"),
col = "black"

)

Arguments

x, y position of the scalebar. Eventually this may be similar to the corresponding
arguments in legend(), but at the moment y must be NULL and x must be
"topleft" or "topright".

length the distance to indicate, in kilometres. If not provided, a reasonable choice is
made, based on the existing plot.

lwd line width of the scalebar.

cex character expansion factor for the scalebar text.

col color of the scalebar.

Details

The scale is appropriate to the centre of the plot, and will become increasingly inaccurate away from
that spot, with the error depending on the projection and the fraction of the earth that is shown.

Until December 2020, it was required that the map had been drawn by mapPlot(), but now it can
be any diagram showing longitude and latitude in degrees.

mapText 307

Author(s)

Dan Kelley

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapPolygon(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
data(coastlineWorld)
Arctic Ocean
par(mar = c(2.5, 2.5, 1, 1))
mapPlot(coastlineWorld,

latitudelim = c(60, 120), longitudelim = c(-130, -50),
col = "lightgray", projection = "+proj=stere +lat_0=90"

)
mapScalebar()

mapText Add Text to a Map

Description

Plot text on an existing map, by analogy to text().

Usage

mapText(longitude, latitude, labels, ...)

Arguments

longitude numeric vector of longitudes of text to be plotted.

latitude numeric vector of latitudes of text to be plotted.

labels vector of labels of text to be plotted.

... optional arguments passed to text(), e.g. adj, pos, etc.

Author(s)

Dan Kelley

308 mapTissot

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapPolygon(), mapScalebar(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(),
usrLonLat(), utm2lonlat()

Examples

library(oce)
data(coastlineWorld)
longitude <- coastlineWorld[["longitude"]]
latitude <- coastlineWorld[["latitude"]]
mapPlot(longitude, latitude,

type = "l", grid = 5,
longitudelim = c(-70, -50), latitudelim = c(45, 50),
projection = "+proj=merc"

)
lon <- -63.5744 # Halifax
lat <- 44.6479
mapPoints(lon, lat, pch = 20, col = "red")
mapText(lon, lat, "Halifax", col = "red", pos = 1, offset = 1)

mapTissot Add Tissot Indicatrices to a Map

Description

Plot ellipses at grid intersection points, as a method for indicating the distortion inherent in the
projection, somewhat analogous to the scheme used in reference 1. (Each ellipse is drawn with 64
segments.)

Usage

mapTissot(grid = rep(15, 2), scale = 0.2, crosshairs = FALSE, ...)

Arguments

grid numeric vector of length 2, specifying the increment in longitude and latitude for
the grid. Indicatrices are drawn at e.g. longitudes seq(-180, 180, grid[1]).

scale numerical scale factor for ellipses. This is multiplied by min(grid) and the
result is the radius of the circle on the earth, in latitude degrees.

matchBytes 309

crosshairs logical value indicating whether to draw constant-latitude and constant-longitude
crosshairs within the ellipses. (These are drawn with 10 line segments each.)
This can be helpful in cases where it is not desired to use mapGrid() to draw
the longitude/latitude grid.

... extra arguments passed to plotting functions, e.g. col="red" yields red indica-
trices.

Author(s)

Dan Kelley

References

1. Snyder, John P., 1987. Map Projections: A Working Manual. USGS Professional Paper: 1395

See Also

A map must first have been created with mapPlot().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapPolygon(), mapScalebar(), mapText(), oceCRS(), oceProject(), shiftLongitude(), usrLonLat(),
utm2lonlat()

Examples

library(oce)
data(coastlineWorld)
par(mfrow = c(1, 1), mar = c(2, 2, 1, 1))
p <- "+proj=aea +lat_1=10 +lat_2=60 +lon_0=-45"
mapPlot(coastlineWorld,

projection = p, col = "gray",
longitudelim = c(-90, 0), latitudelim = c(0, 50)

)
mapTissot(c(15, 15), col = "red")

matchBytes Locate Byte Sequences in a Raw Vector

Description

Find spots in a raw vector that match a given byte sequence.

Usage

matchBytes(input, b1, ...)

310 matrixShiftLongitude

Arguments

input a vector of raw (byte) values.

b1 a vector of bytes to match (must be of length 2 or 3 at present; for 1-byte, use
which()).

... additional bytes to match for (up to 2 permitted)

Value

matchBytes returns a double vector of the indices of input that match the start of the bytes se-
quence. (A double vector is returned instead of an integer vector, to avoid problems with large
files.)

Author(s)

Dan Kelley

Examples

buf <- as.raw(c(0xa5, 0x11, 0xaa, 0xa5, 0x11, 0x00))
print(buf)
print(matchBytes(buf, 0xa5, 0x11))

matrixShiftLongitude Rearrange Areal Matrix so Greenwich is Near the Centre

Description

Sometimes datasets are provided in matrix form, with first index corresponding to longitudes rang-
ing from 0 to 360. matrixShiftLongitude cuts such matrices at longitude=180, and swaps the
pieces so that the dateline is at the left of the matrix, not in the middle.

Usage

matrixShiftLongitude(m, longitude)

Arguments

m The matrix to be modified.

longitude A vector containing the longitude in the 0-360 convention. If missing, this is
constructed to range from 0 to 360, with as many elements as the first index of
m.

Value

A list containing m and longitude, both rearranged as appropriate.

matrixSmooth 311

See Also

shiftLongitude() and standardizeLongitude().

matrixSmooth Smooth a Matrix

Description

The values on the edge of the matrix are unaltered. For interior points, the result is defined in terms
in terms of the original as follows. ri,j = (2mi,j +mi−1,j +mi+1,j +mi,j−1 +mi,j+1)/6. Note
that missing values propagate to neighbours.

Usage

matrixSmooth(m, passes = 1)

Arguments

m a matrix to be smoothed.

passes an integer specifying the number of times the smoothing is to be applied.

Value

A smoothed matrix.

Author(s)

Dan Kelley

Examples

library(oce)
opar <- par(no.readonly = TRUE)
m <- matrix(rep(seq(0, 1, length.out = 5), 5), nrow = 5, byrow = TRUE)
m[3, 3] <- 2
m1 <- matrixSmooth(m)
m2 <- matrixSmooth(m1)
m3 <- matrixSmooth(m2)
par(mfrow = c(2, 2))
image(m, col = rainbow(100), zlim = c(0, 4), main = "original image")
image(m1, col = rainbow(100), zlim = c(0, 4), main = "smoothed 1 time")
image(m2, col = rainbow(100), zlim = c(0, 4), main = "smoothed 2 times")
image(m3, col = rainbow(100), zlim = c(0, 4), main = "smoothed 3 times")
par(opar)

312 met

met Sample met Data

Description

This is sample met object containing data for Halifax, Nova Scotia, during September of 2003 (the
period during which Hurricane Juan struck the city).

Details

The data file was downloaded

metFile <- download.met(id=6358, year=2003, month=9, destdir=".", type="xml")

Note that using download.met() avoids having to navigate the the awkward Environment Canada
website, but it imposes the burden of having to know the station ID number. With the data in-hand,
the object was then created (and its timezone adjusted) with

met <- read.met(metFile)
met <- oceSetData(met, "time", met[["time"]]+4*3600,

note="add 4h to local time to get UTC time")

Historical note. The data(met) object was changed on October 19, 2019, based on the data pro-
vided by Environment Canada at that time. The previous version of data(met), created in 2017,
had been based on a data format that Environment Canada no longer provided in 2019. See the
notes on the type argument of read.met() for more on this shift in the Environment Canada data
format.

Source

Environment Canada website on October 19, 2019.

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, ocecolors, rsk, sealevel, sealevelTuktoyaktuk, section,
topoWorld, wind, xbt

Other things related to met data: [[,met-method, [[<-,met-method, as.met(), download.met(),
met-class, plot,met-method, read.met(), subset,met-method, summary,met-method

met-class 313

met-class Class to Store Meteorological Data

Description

This class stores meteorological data. For objects created with read.met(), the data slot will
contain all the columns within the original file (with some guesses as to units) in addition to several
calculated quantities such as u and v, which are velocities in m/s (not the km/h stored in typical data
files), and which obey the oceanographic convention that u>0 is a wind towards the east.

Slots

data As with all oce objects, the data slot for met objects is a list containing the main data for the
object.

metadata As with all oce objects, the metadata slot for met objects is a list containing information
about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for met objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of met objects (see [[<-,met-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a met object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,met-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,met-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

314 metNames2oceNames

Author(s)

Dan Kelley

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, oce-class, odf-class, rsk-class,
sealevel-class, section-class, topo-class, windrose-class, xbt-class

Other things related to met data: [[,met-method, [[<-,met-method, as.met(), download.met(),
met, plot,met-method, read.met(), subset,met-method, summary,met-method

metNames2oceNames Convert met Data Name to oce Name

Description

Interoperability between oce functions requires that standardized data names be used, e.g. "temperature"
for in-situ temperature. Very few data-file headers name the temperature column in exactly that way,
however, and this function is provided to try to guess the names. The task is complicated by the fact
that Environment Canada seems to change the names of the columns, e.g. sometimes a symbol is
used for the degree sign, other times not.

Usage

metNames2oceNames(names, scheme)

Arguments

names a vector of character strings with original names

scheme an optional indication of the scheme that is employed. This may be "ODF",
in which case ODFNames2oceNames() is used, or "met", in which case some
tentative code for met files is used.

Details

Several quantities in the returned object differ from their values in the source file. For example,
speed is converted from km/h to m/s, and angles are converted from tens of degrees to degrees.
Also, some items are created from scratch, e.g. u and v, the eastward and northward velocity, are
computed from speed and direction. (Note that e.g. u is positive if the wind blows to the east; the
data are thus in the normal Physics convention.)

Value

Vector of strings for the decoded names. If an unknown scheme is provided, this will just be names.

Author(s)

Dan Kelley

moonAngle 315

See Also

Other functions that convert variable names to the oce convention: ODFNames2oceNames(), argoNames2oceNames(),
bodcNames2oceNames(), woceNames2oceNames()

moonAngle Lunar Angle as Function of Space and Time

Description

The calculations are based on formulae provided by Meeus (1982), primarily in chapters 6, 18,
and 30. The first step is to compute sidereal time as formulated in Meeus (1982) chapter 7,
which in turn uses Julian day computed according to as formulae in Meeus (1982) chapter 3.
Using these quantities, formulae in Meeus (1982) chapter 30 are then used to compute geocen-
tric longitude (lambda, in the Meeus notation), geocentric latitude (beta), and parallax. Then the
obliquity of the ecliptic is computed with Meeus (1982) equation 18.4. Equatorial coordinates
(right ascension and declination) are computed with equations 8.3 and 8.4 from Meeus (1982), us-
ing eclipticalToEquatorial(). The hour angle (H) is computed using the unnumbered equation
preceding Meeus’s (1982) equation 8.1. Finally, Meeus (1982) equations 8.5 and 8.6 are used to
calculate the local azimuth and altitude of the moon, using equatorialToLocalHorizontal().

Usage

moonAngle(t, longitude = 0, latitude = 0, useRefraction = TRUE)

Arguments

t time, a POSIXt object (converted to timezone "UTC", if it is not already in that
timezone), a character or numeric value that corresponds to such a time.

longitude observer longitude in degrees east

latitude observer latitude in degrees north

useRefraction boolean, set to TRUE to apply a correction for atmospheric refraction. (Ignored
at present.)

Value

A list containing the following.

• time

• azimuth moon azimuth, in degrees eastward of north, from 0 to 360. Note: this is not the
convention used by Meeus, who uses degrees westward of South. Here, the convention is
chosen to more closely match the expectation of oceanographers.

• altitude moon altitude, in degrees from -90 to 90.

• rightAscension in’ degrees.

• declination in degrees.

• lambda geocentric longitude, in degrees.

316 moonAngle

• beta geocentric latitude, in degrees.

• diameter lunar diameter, in degrees.

• distance earth-moon distance, in kilometers.

• illuminatedFraction fraction of moon’s visible disk that is illuminated.

• phase phase of the moon, defined in equation 32.3 of Meeus (1982). The fractional part of
which is 0 for new moon, 1/4 for first quarter, 1/2 for full moon, and 3/4 for last quarter.

Alternate formulations

Formulae provide by Meeus (1982) are used for all calculations here. Meeus (1991) provides for-
mulae that are similar, but that differ in the 5th or 6th digits. For example, the formula for ephemeris
time in Meeus (1991) differs from that in Meeus (1992) at the 5th digit, and almost all of the approx-
imately 200 coefficients in the relevant formulae also differ in the 5th and 6th digits. Discussion of
the changing formulations is best left to members of the astronomical community. For the present
purpose, it may be sufficient to note that moonAngle, based on Meeus (1982), reproduces the values
provided in example 45.a of Meeus (1991) to 4 significant digits, e.g. with all angles matching to
under 2 minutes of arc.

Author(s)

Dan Kelley, based on formulae in Meeus (1982).

References

• Meeus, Jean. Astronomical Formulas for Calculators. Second Edition. Richmond, Virginia,
USA: Willmann-Bell, 1982.

• Meeus, Jean. Astronomical Algorithms. Second Edition. Richmond, Virginia, USA: Willmann-
Bell, 1991.

See Also

The equivalent function for the sun is sunAngle().

Other things related to astronomy: angle2hms(), eclipticalToEquatorial(), equatorialToLocalHorizontal(),
julianCenturyAnomaly(), julianDay(), siderealTime(), sunAngle(), sunDeclinationRightAscension()

Examples

library(oce)
par(mfrow = c(3, 2))
y <- 2012
m <- 4
days <- 1:3
Halifax sunrise/sunset (see e.g. https://www.timeanddate.com/worldclock)
rises <- ISOdatetime(y, m, days, c(13, 15, 16), c(55, 04, 16), 0, tz = "UTC") + 3 * 3600 # ADT
sets <- ISOdatetime(y, m, days, c(3, 4, 4), c(42, 15, 45), 0, tz = "UTC") + 3 * 3600
azrises <- c(69, 75, 82)
azsets <- c(293, 288, 281)
latitude <- 44.65
longitude <- -63.6

netcdfTOC 317

for (i in 1:3) {
t <- ISOdatetime(y, m, days[i], 0, 0, 0, tz = "UTC") + seq(0, 24 * 3600, 3600 / 4)
ma <- moonAngle(t, longitude, latitude)

oce.plot.ts(t, ma$altitude, type = "l", mar = c(2, 3, 1, 1), cex = 1 / 2, ylab = "Altitude")
abline(h = 0)
points(rises[i], 0, col = "red", pch = 3, lwd = 2, cex = 1.5)
points(sets[i], 0, col = "blue", pch = 3, lwd = 2, cex = 1.5)

oce.plot.ts(t, ma$azimuth, type = "l", mar = c(2, 3, 1, 1), cex = 1 / 2, ylab = "Azimuth")
points(rises[i], -180 + azrises[i], col = "red", pch = 3, lwd = 2, cex = 1.5)
points(sets[i], -180 + azsets[i], col = "blue", pch = 3, lwd = 2, cex = 1.5)

}

netcdfTOC Print an overview of the contents of a NetCDF file

Description

This prints an overview of the variables in a NetCDF file, along with time, longitude and latitude,
if the last three are stored as dimensions.

Usage

netcdfTOC(file, level = 1L, debug = getOption("oceDebug"))

Arguments

file character value naming a NetCDF file.

level integer indicating the level of the overview. If level is 1, which is the de-
fault, then a list holding the names of variables and dimensions is printed (and
returned, silently). If level is 2, then more information is printed.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

An alternative to this is to examine what is printed by running ncdf4::nc_open() with the given
filename, but this output can be a bit confusing to read, especially for files that have voluminous
global attributes.

Value

If level is 1, then the printed list of variables and dimensions is returned (silently). Otherwise,
much more is printed, but the return value is as for the first case.

318 numberAsHMS

Author(s)

Dan Kelley

Examples

library(oce)
Saving to a temporary file for CRAN testing; in practice,
it's more likely that the user will retain this file, or already
have a target file on the local system.
if (requireNamespace("ncdf4") &&

requireNamespace("jsonlite") &&
requireNamespace("curl")) {
urlroot <- "ftp://ftp.ifremer.fr/ifremer/argo/dac/bodc/6900388/profiles/"
remotefile <- "D6900388_001.nc"
localfile <- tempfile(fileext = ".nc")
curl::curl_download(paste0(urlroot, remotefile), localfile)
netcdfTOC(localfile)
unlink(localfile)

}

numberAsHMS Convert a Numeric Time to Hour, Minute, and Second

Description

Convert a Numeric Time to Hour, Minute, and Second

Usage

numberAsHMS(t, default = 0)

Arguments

t a vector of factors or character strings, in the format 1200 for 12:00, 0900 for
09:00, etc.

default value to be used for the returned hour, minute and second if there is something
wrong with the input value (e.g. its length exceeds 4 characters, or it contains
non-numeric characters)

Value

A list containing hour, minute, and second, the last of which is always zero.

Author(s)

Dan Kelley

numberAsPOSIXct 319

See Also

Other things related to time: ctimeToSeconds(), julianCenturyAnomaly(), julianDay(), numberAsPOSIXct(),
secondsToCtime(), unabbreviateYear()

Examples

t <- c("0900", "1234")
numberAsHMS(t)

numberAsPOSIXct Convert a Numeric Time to a POSIXct Time

Description

This converts numerical values into POSIXct times. There are many schemes for doing this, with
the type parameter being used to select between them. See “Details” for a listing, broken down by
scheme.

Usage

numberAsPOSIXct(t, type = "unix", tz = "UTC", leap = TRUE)

Arguments

t an integer corresponding to a time, in a way that depends on type.

type character value indicating the time type. The permitted values are "argo",
"epic", "excel", "gps", "matlab", "ncep1", "ncep2", "sas", "spss", "unix",
and "yearday", the first of these being the default.

tz a string indicating the time zone, by default "UTC".

leap a logical value, TRUE by default, that applies only if type is "gps". If leap
is TRUE, then the built-in dataset named .leap.seconds is consulted to find of
the number of leap seconds between 1980 (when the GPS program started) and
the time computed from the other parameters, and the return value is decreased
accordingly (see Example 3).

Details

The possible choices for type are as listed below.

• "unix" handles Unix times, measured in seconds since the start of the year 1970.

• "matlab" handles Matlab times, measured in days since what MathWorks (reference 1) calls
“January 0, 0000” (i.e. ISOdatetime(0, 1, 1, 0,0, 0) in R notation).

320 numberAsPOSIXct

• "gps" handles the Global Positioning System convention. The scheme is complicated, owing
to hardware limitations of GPS satellites. As illustrated in Example 3, t may be a matrix with
either 2 or 3 columns. In the 2-column format, the first column holds the number of weeks
after 1999-08-22, modulo 1024 (approximately 19.6 years), and the second column (here and
also in the 3-column format) holds the number of seconds in the referenced week, with leap
seconds being handled with the leap parameter. The modulo calculation is required because
GPS satellites dedicate only 10 bits to the week number. The resultant ambiguity (e.g. a
rollover in 2019-04-07) is addressed in the 3-column format, in which the last column holds
the number of 1024-week rollover events since 1980-01-06. Users should set this column to
0 for times prior to 1999-08-22, to 1 for later times prior to 2019-04-07, to 2 for later times
prior to 2038-11-21, etc. However, there will be an exception to this rule, when satellites start
dedicating 12 bits to the week value. For such data, the third column will need to be 0 for all
times prior to 2137-01-06.

• "argo" handles Argo times, measured in days since the start of the year 1900.

• "excel" handles Excel times, measured in days since the start of the year 1900. (Note that
excel incorrectly regards 1900 as a leap year, so 1 day is subtracted from t unless the time is
less than or equal to 1900 Feb 28. Note that NA is returned for the day 60, which is what excel
codes for "Feb 29, 1900", the non-existing day that excel accepts.

• "ncep1" handles NCEP times, measured in hours since the start of the year 1800.

• "ncep2" handles NCEP times, measured in days since the start of the year 1. (Note that, for
reasons that are unknown at this time, a simple R expression of this definition is out by two
days compared with the UDUNITS library, which is used by NCEP. Therefore, a two-day
offset is applied. See references 2 and 3.)

• "sas" handles SAS times, indicated by type="sas", have origin at the start of 1960.

• "spss" handles SPSS times, in seconds after 1582-10-14.

• "yearday" handles a convention in which t is a two-column matrix, with the first column
being the year, and the second the yearday (starting at 1 for the first second of January 1, to
match the convention used by Sea-Bird CTD software).

• "epic" handles a convention used in the EPIC software library, from the Pacific Marine En-
vironmental Laboratory, in which t is a two-column matrix, with the first column being the
julian Day (as defined in julianDay(), for example), and with the second column being the
millisecond within that day. See reference 4.

• "vms" handles a convention used in the VMS operating system and for Modified Julian Day,
in which t is the number of seconds past 1859-11-17T00:00:00 UTC. See reference 5.

Value

A POSIXct() time vector.

Author(s)

Dan Kelley

References

1. Matlab times: https://www.mathworks.com/help/matlab/ref/datenum.html

numberAsPOSIXct 321

2. NCEP times: https://psl.noaa.gov/data/gridded/faq.html

3. Problem with NCEP times: https://github.com/dankelley/oce/issues/738

4. EPIC times: software and manuals at https://www.pmel.noaa.gov/epic/download/index.html#epslib;
see also Denbo, Donald W., and Nancy N. Soreide. “EPIC.” Oceanography 9 (1996). doi:10.5670/
oceanog.1996.10

5. VMS times: https://en.wikipedia.org/wiki/Epoch_(computing)

6. GPS times: https://www.labsat.co.uk/index.php/en/gps-time-calculator

See Also

Other things related to time: ctimeToSeconds(), julianCenturyAnomaly(), julianDay(), numberAsHMS(),
secondsToCtime(), unabbreviateYear()

Other things related to time: ctimeToSeconds(), julianCenturyAnomaly(), julianDay(), numberAsHMS(),
secondsToCtime(), unabbreviateYear()

Examples

Example 1. default (unix)
numberAsPOSIXct(0)

Example 2. Matlab
numberAsPOSIXct(1, type = "matlab")

Example 3. GPS with default week rollover or with no rollover (Canada Day, year 2010)
numberAsPOSIXct(cbind(566, 345615), type = "gps")
numberAsPOSIXct(cbind(566, 345615, 1), type = "gps")
numberAsPOSIXct(cbind(1024 + 566, 345615, 0), type = "gps")
Show how to deal with leap seconds (15 of them, in this case)
sum(as.POSIXct("1980-01-01") < .leap.seconds & .leap.seconds <= as.POSIXct("2010-07-01"))
-15 + numberAsPOSIXct(cbind(1024 + 566, 345615, 0), type = "gps", leap = FALSE)

Example 4. yearday
numberAsPOSIXct(cbind(2013, 1), type = "yearday") # start of 2013

Example 5. Epic time, one hour into Canada Day of year 2018. In computing the
Julian day, note that this starts at noon.
jd <- julianDay(as.POSIXct("2018-07-01 12:00:00", tz = "UTC"))
numberAsPOSIXct(cbind(jd, 1e3 * 1 * 3600), type = "epic", tz = "UTC")

Example 6. Julian day, note that this starts at noon.
jd <- julianDay(as.POSIXct("2018-07-01 12:00:00", tz = "UTC"))
numberAsPOSIXct(cbind(jd, 1e3 * 1 * 3600), type = "epic", tz = "UTC")

https://doi.org/10.5670/oceanog.1996.10
https://doi.org/10.5670/oceanog.1996.10

322 oce-deprecated

oce-class Base Class for oce Objects

Description

This is mainly used within oce to create sub-classes, although users can use new("oce") to create
a blank oce object, if desired.

Slots

metadata A list containing information about the data. The contents vary across sub-classes, e.g.
an adp object has information about beam patterns, which obviously would not make sense
for a ctd object In addition, all classes have items named units and flags, used to store
information on the units of the data, and the data quality.

data A list containing the data.

processingLog A list containing time-stamped processing steps, typically stored in the object by
oce functions.

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, met-class, odf-class, rsk-class,
sealevel-class, section-class, topo-class, windrose-class, xbt-class

Examples

str(new("oce"))

oce-deprecated Deprecated and Defunct Elements of the oce Package

Description

Certain functions and function arguments are still provided for compatibility with older versions of
oce, but will be removed soon. The oce scheme for removing functions is similar to that used by
Bioconductor: items are marked as "deprecated" in one release, marked as "defunct" in the next,
and removed in the next after that. This goal is to provide a gentle migration path for users who
keep their packages reasonably up-to-date.

https://CRAN.R-project.org/package=oce
https://CRAN.R-project.org/package=oce

oce-deprecated 323

Details

The following are marked "deprecated" in the present CRAN release of oce. Please use the replace-
ment functions as listed below. The upcoming CRAN release of oce will mark these as "defunct",
which is the last step before outright removal.

Deprecated Replacement Deprecated Defunct Removed

The following are marked "defunct", so calling them in the the present version produces an error
message that hints at a replacement function. Once a function is marked "defunct" on one CRAN
release, it will be slated for outright deletion in some subsequent release.

Defunct Replacement Version

The following functions were removed after having been marked as "deprecated" in at least one
CRAN release, and possibly as "defunct" in at least one CRAN release. (The version number in the
table is the first version to lack the named function.)

Function Replacement Version
addColumn() oceSetData() 1.1-2
ctdAddColumn() oceSetData() 1.1-2
ctdUpdateHeader() oceSetMetadata() 1.1-2
findInOrdered() findInterval() 1.1-2
makeSection() as.section() 0.9.24
mapMeridians() mapGrid() 1.1-2
mapZones() mapGrid() 1.1-2
oce.as.POSIXlt() lubridate::parse_date_time() 1.1-2
renameData() oceRenameData() 1.7-9
trimString() trimws() 1.8-2

Several “oce” function arguments are considered "defunct", which means they will be removed in
the next CRAN release. They are as follows.

• The fill argument of mapPlot() was confusing to users, so it was designated as deprecated in
June 2016. (The confusion stemmed from subtle differences between plot() and polygon(),
and the problem is that mapPlot() can use either of these functions, according to whether
coastlines are to be filled.) The functionality is preserved, in the col argument.

See Also

The “Bioconductor” scheme for removing functions is described at https://www.bioconductor.org/developers/how-to/deprecation/
and it is extended here to function arguments.

https://CRAN.R-project.org/package=oce
https://CRAN.R-project.org/package=oce

324 oce.axis.POSIXct

oce.as.raw Version of as.raw() That Clips Data

Description

A version of as.raw() that clips data to prevent warnings

Usage

oce.as.raw(x)

Arguments

x values to be converted to raw

Details

Negative values are clipped to 0, while values above 255 are clipped to 255; the result is passed to
as.raw() and returned.

Value

Raw values corresponding to x.

Author(s)

Dan Kelley

Examples

x <- c(-0.1, 0, 1, 255, 255.1)
data.frame(x, oce.as.raw(x))

oce.axis.POSIXct Oce Version of axis.POSIXct

Description

A specialized variant of axis.POSIXct() that produces results with less ambiguity in axis labels.

oce.axis.POSIXct 325

Usage

oce.axis.POSIXct(
side,
x,
at,
tformat,
labels = TRUE,
drawTimeRange,
abbreviateTimeRange = FALSE,
drawFrequency = FALSE,
cex.axis = par("cex.axis"),
cex.lab = par("cex.lab"),
cex.main = par("cex.main"),
mar = par("mar"),
mgp = par("mgp"),
main = "",
debug = getOption("oceDebug"),
...

)

Arguments

side as for axis.POSIXct().

x as for axis.POSIXct().

at as for axis.POSIXct().

tformat as format for axis.POSIXct() for now, but may eventually have new features
for multiline labels, e.g. day on one line and month on another.

labels as for axis.POSIXct().

drawTimeRange Optional indication of whether/how to draw the time range in the margin on the
side of the the plot opposite the time axis. If this is not supplied, it defaults
to the value returned by getOption("oceDrawTimeRange"), and if that option
is not set, it defaults to TRUE. No time range is drawn if drawTimeRange is
FALSE. If it is TRUE, the range will be shown. This range refers to range of the
x axis (not the data). The format of the elements of that range is set by getOp-
tion("oceTimeFormat") (or with the default value of an empty string, if this
option has not been set). The timezone will be indicated if the time range is un-
der a week. For preliminary work, it makes sense to use drawTimeRange=TRUE,
but for published work it can be better to drop this label and indicate something
about the time in the figure caption.

abbreviateTimeRange

boolean, TRUE to abbreviate the second number in the time range, e.g. dropping
the year if it is the same in the first number.

drawFrequency boolean, TRUE to show the frequency of sampling in the data
cex.axis, cex.lab, cex.main

character expansion factors for axis numbers, axis names and plot titles; see
par().

326 oce.axis.POSIXct

mar value for par(mar) for axis

mgp value for par(mgp) for axis

main title of plot

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... as for axis.POSIXct().

Details

The tick marks are set automatically based on examination of the time range on the axis. The
scheme was devised by constructing test cases with a typical plot size and font size, and over a wide
range of time scales. In some categories, both small tick marks are interspersed between large ones.

The user may set the format of axis numbers with the tformat argument. If this is not supplied, the
format is set based on the time span of the axis:

• If this time span is less than a minute, the time axis labels are in seconds (fractional seconds,
if the interval is less than 2 seconds), with leading zeros on small integers. (Fractional seconds
are enabled with a trick: the usual R format "\%S" is supplemented with a new format e.g.
"\%.2S", meaning to use two digits after the decimal.)

• If the time span exceeds a minute but is less than 1.5 days, the label format is "\%H:\%M:\%S".

• If the time span exceeds 1.5 days but is less than 1 year, the format is "\%b \%d" (e.g. Jul 15)
and, again, the tick marks are set up for several subcategories.

• If the time span exceeds a year, the format is "\%Y", i.e. the year is displayed with 4 digits.

It should be noted that this scheme differs from the R approach in several ways. First, R writes day
names for some time ranges, in a convention that is seldom seen in the literature. Second, R will
write nn:mm for both HH:MM and MM:SS, an ambiguity that might confuse readers. Third, the
use of both large and small tick marks is not something that R does.

Bear in mind that tformat may be set to alter the number format, but that the tick mark scheme
cannot (presently) be controlled.

Value

A vector of times corresponding to axis ticks is returned silently.

Author(s)

Dan Kelley

See Also

This is used mainly by oce.plot.ts().

oce.contour 327

oce.contour Oce Variant of contour

Description

This provides something analogous to contour(), but with the ability to flip x and y. Setting
revy=TRUE can be helpful if the y data represent pressure or depth below the surface.

Usage

oce.contour(
x,
y,
z,
revx = FALSE,
revy = FALSE,
add = FALSE,
tformat,
drawTimeRange = getOption("oceDrawTimeRange"),
debug = getOption("oceDebug"),
...

)

Arguments

x values for x grid.

y values for y grid.

z matrix for values to be contoured. The first dimension of z must equal the num-
ber of items in x, etc.

revx set to TRUE to reverse the order in which the labels on the x axis are drawn

revy set to TRUE to reverse the order in which the labels on the y axis are drawn

add logical value indicating whether the contours should be added to a pre-existing
plot.

tformat time format; if not supplied, a reasonable choice will be made by oce.axis.POSIXct(),
which draws time axes.

drawTimeRange logical, only used if the x axis is a time. If TRUE, then an indication of the time
range of the data (not the axis) is indicated at the top-left margin of the graph.
This is useful because the labels on time axes only indicate hours if the range is
less than a day, etc.

debug a flag that turns on debugging; set to 1 to information about the processing.

... optional arguments passed to plotting functions.

Author(s)

Dan Kelley

328 oce.grid

Examples

library(oce)
data(topoWorld)
coastline now, and in last glacial maximum
lon <- topoWorld[["longitude"]]
lat <- topoWorld[["latitude"]]
z <- topoWorld[["z"]]
oce.contour(lon, lat, z, levels = 0, drawlabels = FALSE)
oce.contour(lon, lat, z, levels = -130, drawlabels = FALSE, col = "blue", add = TRUE)

oce.grid Add a Grid to an Existing Oce Plot

Description

Add a Grid to an Existing Oce Plot

Usage

oce.grid(xat, yat, col = "lightgray", lty = "dotted", lwd = par("lwd"))

Arguments

xat either a list of x values at which to draw the grid, or the return value from an oce
plotting function

yat a list of y values at which to plot the grid (ignored if gx was a return value from
an oce plotting function)

col color of grid lines (see par())

lty type for grid lines (see par())

lwd width for grid lines (see par())

Details

For plots not created by oce functions, or for missing xat and yat, this is the same as a call to
grid() with missing nx and ny. However, if xat is the return value from certain oce functions, a
more sophisticated grid is constructed. The problem with grid() is that it cannot handle axes with
non-uniform grids, e.g. those with time axes that span months of differing lengths.

As of early February 2015, oce.grid handles xat produced as the return value from the following
functions: imagep() and oce.plot.ts(), plot,adp-method(), plot,echosounder-method(),
and plotTS(). It makes no sense to try to use oce.grid for multipanel oce plots, e.g. the default
plot from plot,adp-method().

oce.plot.ts 329

Examples

library(oce)
i <- imagep(volcano)
oce.grid(i, lwd = 2)

data(sealevel)
i <- oce.plot.ts(sealevel[["time"]], sealevel[["elevation"]])
oce.grid(i, col = "red")

data(ctd)
i <- plotTS(ctd)
oce.grid(i, col = "red")

data(adp)
i <- plot(adp, which = 1)
oce.grid(i, col = "gray", lty = 1)

data(echosounder)
i <- plot(echosounder)
oce.grid(i, col = "pink", lty = 1)

oce.plot.ts Oce Variant of plot.ts

Description

Plot a time-series, obeying the timezone and possibly drawing the range in the top-left margin.

Usage

oce.plot.ts(
x,
y,
type = "l",
xlim,
ylim,
log = "",
logStyle = "r",
flipy = FALSE,
xlab,
ylab,
drawTimeRange,
simplify = 2560,
fill = FALSE,
col = par("col"),
pch = par("pch"),
cex = par("cex"),

330 oce.plot.ts

cex.axis = par("cex.axis"),
cex.lab = par("cex.lab"),
cex.main = par("cex.main"),
xaxs = par("xaxs"),
yaxs = par("yaxs"),
mgp = getOption("oceMgp"),
mar = c(mgp[1] + if (nchar(xlab) > 0) 1.5 else 1, mgp[1] + 1.5, mgp[2] + 1, mgp[2] +

3/4),
main = "",
despike = FALSE,
axes = TRUE,
tformat,
marginsAsImage = FALSE,
grid = FALSE,
grid.col = "lightgray",
grid.lty = "dotted",
grid.lwd = par("lwd"),
debug = getOption("oceDebug"),
...

)

Arguments

x the times of observations. If this is not a POSIXt object, then an attempt is made
to convert it to one using as.POSIXct().

y the observations.

type plot type, "l" for lines, "p" for points.

xlim optional limit for x axis. This has an additional effect, beyond that for conven-
tional R functions: it effectively windows the data, so that autoscaling will yield
limits for y that make sense within the window.

ylim optional limit for y axis.

log a character value that must be either empty (the default) for linear y axis, or "y"
for logarithmic y axis. (Unlike plot.default() etc., oce.plot.ts does not
permit logarithmic time, or x axis.)

logStyle a character value that indicates how to draw the y axis, if log="y". If it is
"r" (the default) then the conventional R style is used, in which a logarithmic
transform connects y values to position on the "page" of the plot device, so
that tics will be nonlinearly spaced, but not organized by integral powers of
10. However, if it is "decade", then the style will be that used in the scientific
literature, in which large tick marks are used for integral powers of 10, with
smaller tick marks at integral multiples of those powers, and with labels that use
exponential format for values above 100 or below 0.01. The value of logStyle
is passed to oceAxis(), which draws the axis.

flipy Logical, with TRUE indicating that the graph should have the y axis reversed, i.e.
with smaller values at the bottom of the page.

xlab name for x axis; defaults to "".

oce.plot.ts 331

ylab name for y axis; defaults to the plotted item.

drawTimeRange an optional indication of whether/how to draw a time range, in the top-left mar-
gin of the plot; see oce.axis.POSIXct() for details.

simplify an integer value that indicates whether to speed up type="l" plots by replacing
the data with minimum and maximum values within a subsampled time mesh.
This can speed up plots of large datasets (e.g. by factor 20 for 10^7 points),
sometimes with minor changes in appearance. This procedure is skipped if
simplify is NA or if the number of visible data points is less than 5 times
simplify. Otherwise, oce.plot.ts creates simplify intervals ranging across
the visible time range. Intervals with under 2 finite y data are ignored. In the
rest, y values are replaced with their range, and x values are replaced with the re-
peated midpoint time. Thus, each retained sub-interval has exactly 2 data points.
A warning is printed if this replacement is done. The default value of simplify
means that cases with under 2560 visible points are plotted conventionally.

fill boolean, set TRUE to fill the curve to zero (which it does incorrectly if there are
missing values in y).

col The colours for points (if type=="p") or lines (if type=="l"). For the type="p"
case, if there are fewer col values than there are x values, then the col values
are recycled in the standard fashion. For the type="l" case, the line is plotted
in the first colour specified.

pch character code, used if type=="p". If there are fewer pch values than there are x
values, then the pch values are recycled in the standard fashion. See points()
for the possible values for pch.

cex numeric character expansion factor for points on plots, ignored unless type is
"p". This may be a single number, applied to all points, or a vector of numbers
to be applied to the points in sequence. If there are fewer pch values than there
are x values, then the pch values are recycled in the standard fashion. See par()
for more on cex.

cex.axis, cex.lab, cex.main
numeric character expansion factors for axis numbers, axis names and plot titles;
see par().

xaxs control x axis ending; see par("xaxs").

yaxs control y axis ending; see par("yaxs").

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar") to set margins. The default value uses sig-
nificantly tighter margins than is the norm in R, which gives more space for the
data. However, in doing this, the existing par("mar") value is ignored, which
contradicts values that may have been set by a previous call to drawPalette().
To get plot with a palette, first call drawPalette(), then call oce.plot.ts with
mar=par("mar").

main title of plot.

despike boolean flag that can turn on despiking with despike().

axes boolean, set to TRUE to get axes plotted

332 oce.plot.ts

tformat optional format for labels on the time axis

marginsAsImage boolean indicating whether to set the right-hand margin to the width normally
taken by an image drawn with imagep().

grid if TRUE, a grid will be drawn for each panel. (This argument is needed, because
calling grid() after doing a sequence of plots will not result in useful results
for the individual panels.

grid.col color of grid

grid.lty line type of grid

grid.lwd line width of grid

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... graphical parameters passed down to plot().

Details

Depending on the version of R, the standard plot() and plot.ts() routines will not obey the time
zone of the data. This routine gets around that problem. It can also plot the time range in the top-left
margin, if desired; this string includes the timezone, to remove any possible confusion. The time
axis is drawn with oce.axis.POSIXct().

Value

A list is silently returned, containing xat and yat, values that can be used by oce.grid() to add a
grid to the plot.

Author(s)

Dan Kelley and Clark Richards

Examples

library(oce)
t0 <- as.POSIXct("2008-01-01", tz = "UTC")
t <- seq(t0, length.out = 48, by = "30 min")
y <- sin(as.numeric(t - t0) * 2 * pi / (12 * 3600))
oce.plot.ts(t, y, type = "l", xaxs = "i")
Show how col, pch and cex get recycled
oce.plot.ts(t, y,

type = "p", xaxs = "i",
col = 1:3, pch = c(rep(1, 6), rep(20, 6)), cex = sqrt(1:6)

)
Trimming x; note the narrowing of the y view
oce.plot.ts(t, y, type = "p", xlim = c(t[6], t[12]))
Flip the y axis
oce.plot.ts(t, y, flipy = TRUE)

oce.write.table 333

oce.write.table Write the Data Portion of Object to a File

Description

The output has a line containing the names of the columns in x$data, each enclosed in double
quotes. After that line are lines for the data themselves. The default is to separate data items
by a single space character, but this can be altered by using a sep argument in the ... list; see
utils::write.table().

Usage

oce.write.table(x, file = "", ...)

Arguments

x an oce object.

file file name, as passed to utils::write.table(). Use "" to get a listing in the
terminal window.

... optional arguments passed to utils::write.table().

Details

This function is little more than a thin wrapper around utils::write.table(), the only differ-
ence being that row names are omitted here, making for a file format that is more conventional in
Oceanography.

Value

The value returned by utils::write.table().

Author(s)

Dan Kelley

See Also

‘utils::write.table(), which does the actual work.

334 oceApprox

oceApprox Interpolate 1D Data with UNESCO or Reiniger-Ross Algorithm

Description

Interpolate one-dimensional data using schemes that permit curvature but tends minimize extrema
that are not well-indicated by the data.

Usage

oceApprox(x, y, xout, method = c("rr", "unesco"))

Arguments

x the independent variable (z or p, usually).

y the dependent variable.

xout the values of the independent variable at which interpolation is to be done.

method method to use. See “Details”.

Details

Setting method="rr" yields the weighted-parabola algorithm of Reiniger and Ross (1968). For
procedure is as follows. First, the interpolant for any xout value that is outside the range of x is set
to NA. Next, linear interpolation is used for any xout value that has only one smaller neighboring x
value, or one larger neighboring value. For all other values of xout, the 4 neighboring points x are
sought, two smaller and two larger. Then two parabolas are determined, one from the two smaller
points plus the nearest larger point, and the other from the nearest smaller point and the two larger
points. A weighted sum of these two parabolas provides the interpolated value. Note that, in the
notation of Reiniger and Ross (1968), this algorithm uses m=2 and n=1. (A future version of this
routine might provide the ability to modify these values.)

Setting method="unesco" yields the method that is used by the U.S. National Oceanographic Data
Center. It is described in pages 48-50 of reference 2; reference 3 presumably contains the same
information but it is not as easily accessible. The method works as follows.

• If there are data above 5m depth, then the surface value is taken to equal to the shallowest
recorded value.

• Distance bounds are put on the four neighboring points, and the Reiniger-Ross method is used
for interpolated points with sufficiently four close neighbors. The bounds are described in
table 15 of reference 2 only for so-called standard depths; in the present instance they are
transformed to the following rules. Inner neighbors must be within 5m for data above 10m,
50m above 250m 100m above 900m, 200m above 2000m, or within 1000m otherwise. Outer
neighbors must be within 200m above 500m, 400m above 1300m, or 1000m otherwise. If two
or more points meet these criteria, Lagrangian interpolation is used. If not, NA is used as the
interpolant.

After these rules are applied, the interpolated value is compared with the values immediately above
and below it, and if it is outside the range, simple linear interpolation is used.

oceAxis 335

Value

A vector of interpolated values, corresponding to the xout values and equal in number.

Author(s)

Dan Kelley

References

1. R.F. Reiniger and C.K. Ross, 1968. A method of interpolation with application to oceano-
graphic data. Deep Sea Research, 15, 185-193.

2. Daphne R. Johnson, Tim P. Boyer, Hernan E. Garcia, Ricardo A. Locarnini, Olga K. Baranova,
and Melissa M. Zweng, 2011. World Ocean Database 2009 Documentation. NODC Internal
report 20. Ocean Climate Laboratory, National Oceanographic Data Center. Silver Spring,
Maryland.

3. UNESCO, 1991. Processing of oceanographic station data, 138 pp., Imprimerie des Presses
Universitaires de France, United Nations Educational, Scientific and Cultural Organization,
France.

Examples

library(oce)
if (require(ocedata)) {

data(RRprofile)
zz <- seq(0, 2000, 2)
plot(RRprofile$temperature, RRprofile$depth, ylim = c(500, 0), xlim = c(2, 11))
Contrast two methods
a1 <- oce.approx(RRprofile$depth, RRprofile$temperature, zz, "rr")
a2 <- oce.approx(RRprofile$depth, RRprofile$temperature, zz, "unesco")
lines(a1, zz)
lines(a2, zz, col = "red")
legend("bottomright", lwd = 1, col = 1:2, legend = c("rr", "unesco"), cex = 3 / 4)

}

oceAxis Draw an Axis, Possibly with Decade-style Logarithmic Scaling

Description

Draw an Axis, Possibly with Decade-style Logarithmic Scaling

Usage

oceAxis(side, labels = TRUE, logStyle = "r", ...)

336 ocecolors

Arguments

side an integer specifying which axis to draw, with 1 for bottom axis, 2 for left axis,
3 for top axis, and 4 for right axis (as with axis()).

labels either a vector of character values used for labels or a logical value indicating
whether to draw such labels. The first form only works if the coordinate is not
logarithmic, and if logStyle is "r".

logStyle a character value that indicates how to draw the y axis, if log="y". If it is
"r" (the default) then the conventional R style is used, in which a logarithmic
transform connects y values to position on the "page" of the plot device, so
that tics will be nonlinearly spaced, but not organized by integral powers of
10. However, if it is "decade", then the style will be that used in the scientific
literature, in which large tick marks are used for integral powers of 10, with
smaller tick marks at integral multiples of those powers, and with labels that use
exponential format for values above 100 or below 0.01.

... other graphical parameters, passed to axis().

Value

Numerical values at which tick marks were drawn (or would have been drawn, if labels specified
to draw them).

Author(s)

Dan Kelley

Examples

library(oce)
Ra <- 10^seq(4, 10, 0.1)
Nu <- 0.085 * Ra^(1 / 3)
plot(Ra, Nu, log = "xy", axes = FALSE)
box()
oceAxis(1, logStyle = "decade")
oceAxis(2, logStyle = "decade")

ocecolors Data That Define Some Color Palettes

Description

The ocecolors dataset is a list containing color-schemes, used by oceColorsClosure() to create
functions such as oceColorsViridis().

Author(s)

Authored by matplotlib contributers, packaged (with license permission) in oce by Dan Kelley

ocecolors 337

Source

The data come from the matplotlib site https://github.com/matplotlib/matplotlib.

References

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, met, rsk, sealevel, sealevelTuktoyaktuk, section,
topoWorld, wind, xbt

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(),
oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity()

338 oceColors9B

oceColors9B Create Colors in a Red-Yellow-Blue Color Scheme

Description

The results are similar to those of oceColorsJet(), but with white hues in the centre, rather than
green ones. The scheme may be useful in displaying signed quantities, and thus is somewhat anal-
ogous to oceColorsTwo(), except that some viewers may be able to distinguish more colors with
oceColors9B.

Usage

oceColors9B(n)

Arguments

n number of colors

References

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColorsCDOM(), oceColorsChlorophyll(),
oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(), oceColorsGebco(), oceColorsJet(),
oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(), oceColorsSalinity(),
oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(),
oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)
imagep(volcano,

col = oceColors9B(128),
zlab = "oceColors9B"

)

oceColorsCDOM 339

oceColorsCDOM Create Colors Suitable for CDOM Fields

Description

Create a set of colors for displaying CDOM values, based on the scheme devised by Thyng et
al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsCDOM(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis
https://doi.org/10.5670/oceanog.2016.66

340 oceColorsChlorophyll

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsChlorophyll(),
oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(), oceColorsGebco(), oceColorsJet(),
oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(), oceColorsSalinity(),
oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(),
oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsCDOM(128),

zlab="oceColorsCDOM")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsChlorophyll Create Colors Suitable for chlorophyll Fields

Description

Create a set of colors for displaying chlorophyll values, based on the scheme devised by Thyng
et al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis

oceColorsChlorophyll 341

Usage

oceColorsChlorophyll(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(), oceColorsGebco(), oceColorsJet(),
oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(), oceColorsSalinity(),
oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(),
oceColorsViridis(), oceColorsVorticity(), ocecolors

https://doi.org/10.5670/oceanog.2016.66

342 oceColorsClosure

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsChlorophyll(128),

zlab="oceColorsChlorophyll")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsClosure Create Color Functions

Description

This function generates other functions that are used to specify colors. It is used within oce to
create oceColorsTemperature() and its many cousins. Users may also find it helpful, for creating
custom color schemes (see “Examples”).

Usage

oceColorsClosure(spec)

Arguments

spec Specification of the color scheme. This may be a character string, in which
case it must be the name of an item stored in data(ocecolors), or either a 3-
column data frame or matrix, in which case the columns specify red, green and
blue values (in range from 0 to 1).

Sample of Usage

Update oxygen color scheme to latest matplotlib value.
library(oce)
oxy <- "https://raw.githubusercontent.com/matplotlib/cmocean/master/cmocean/rgb/oxy-rgb.txt"
oxyrgb <- read.table(oxy, header=FALSE)
oceColorsOxygenUpdated <- oceColorsClosure(oxyrgb)
par(mfrow=c(1, 2))
m <- matrix(1:256)
imagep(m, col=oceColorsOxygen, zlab="oxygen")
imagep(m, col=oceColorsOxygenUpdated, zlab="oxygenUpdated")

oceColorsDensity 343

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsDensity(), oceColorsFreesurface(), oceColorsGebco(),
oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(),
oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

oceColorsDensity Create Colors Suitable for density Fields

Description

Create a set of colors for displaying density values, based on the scheme devised by Thyng et
al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsDensity(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis
https://doi.org/10.5670/oceanog.2016.66

344 oceColorsFreesurface

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsFreesurface(), oceColorsGebco(),
oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(),
oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsDensity(128),

zlab="oceColorsDensity")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsFreesurface Create Colors Suitable for freesurface Fields

oceColorsFreesurface 345

Description

Create a set of colors for displaying freesurface values, based on the scheme devised by Thyng
et al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsFreesurface(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis
https://doi.org/10.5670/oceanog.2016.66

346 oceColorsGebco

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsGebco(), oceColorsJet(),
oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(), oceColorsSalinity(),
oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(),
oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsFreesurface(128),

zlab="oceColorsFreesurface")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsGebco Create Colors in a GEBCO-like Scheme

Description

The colours were determined by examination of paper charts printed during the GEBCO Fifth Edi-
tion era. The hues range from dark blue to light blue, then from light brown to dark brown. If used
to show topography in scheme centred on z=0, this means that near-coastal regions are light in tone,
with darker colours representing both mountains and the deep sea.

Usage

oceColorsGebco(
n = 9,
region = c("water", "land", "both"),
type = c("fill", "line"),
debug = getOption("oceDebug")

)

oceColorsJet 347

Arguments

n Number of colors to return
region String indicating application region, one of "water", "land", or "both".
type String indicating the purpose, one of "fill" or "line".
debug a flag that turns on debugging.

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(),
oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)
imagep(volcano, col = oceColorsGebco(128, region = "both"))

oceColorsJet Create Colors Similar to the Matlab Jet Scheme

Description

Create Colors Similar to the Matlab Jet Scheme

Usage

oceColorsJet(n)

Arguments

n number of colors

References

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

348 oceColorsOxygen

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(),
oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)
imagep(volcano, col = oceColorsJet, zlab = "oceColorsJet")

oceColorsOxygen Create Colors Suitable for oxygen Fields

Description

Create a set of colors for displaying oxygen values, based on the scheme devised by Thyng et
al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsOxygen(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis

oceColorsOxygen 349

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsPAR(), oceColorsPalette(), oceColorsPhase(),
oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsOxygen(128),

zlab="oceColorsOxygen")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

https://doi.org/10.5670/oceanog.2016.66

350 oceColorsPalette

oceColorsPalette Create a Vector of Colors

Description

The available schemes are:

• which=1 for a red-white-blue scheme.

• which=2 for a red-yellow-blue scheme.

• which=9.01, which="9A" or which="jet" for oceColorsJet(n).

• which=9.02 or which="9B" for oceColors9B(n).

Usage

oceColorsPalette(n, which = 1)

Arguments

n number of colors to create

which integer or character string indicating the palette to use; see “Details”.

References

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPhase(),
oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

oceColorsPAR 351

oceColorsPAR Create Colors Suitable for PAR Fields

Description

Create a set of colors for displaying PAR values, based on the scheme devised by Thyng et al. (2016)
and presented in a python package by Thyng (2019). The color specifications were transliterated
from python to R on 2015-09-29, but have not been adjusted since, even though the python source
has changed. This is to prevent breaking old oce code. To get the latest versions of these colours
or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019) directly, as is
illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core functions provide
a way to select between various versions of the colour schemes. It is also worth considering the
palettes provided by the viridis package, as illustrated (with the "inferno" scheme) in Example 3.

Usage

oceColorsPAR(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis
https://doi.org/10.5670/oceanog.2016.66

352 oceColorsPhase

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPalette(), oceColorsPhase(),
oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsPAR(128),

zlab="oceColorsPAR")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsPhase Create Colors Suitable for phase Fields

Description

Create a set of colors for displaying phase values, based on the scheme devised by Thyng et al.
(2016) and presented in a python package by Thyng (2019). The color specifications were translit-
erated from python to R on 2015-09-29, but have not been adjusted since, even though the python
source has changed. This is to prevent breaking old oce code. To get the latest versions of these
colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019) directly,
as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core functions
provide a way to select between various versions of the colour schemes. It is also worth considering
the palettes provided by the viridis package, as illustrated (with the "inferno" scheme) in Example
3.

Usage

oceColorsPhase(n)

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis

oceColorsPhase 353

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsPhase(128),

zlab="oceColorsPhase")
Not run:
Example 2 (requires the cmocean package)

https://doi.org/10.5670/oceanog.2016.66

354 oceColorsSalinity

imagep(volcano, col=cmocean::cmocean("matter"),
zlab="cmocean::cmocean(\"matter\")")

End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsSalinity Create Colors Suitable for salinity Fields

Description

Create a set of colors for displaying salinity values, based on the scheme devised by Thyng et
al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsSalinity(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis
https://doi.org/10.5670/oceanog.2016.66

oceColorsTemperature 355

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsTemperature(), oceColorsTurbidity(), oceColorsTurbo(), oceColorsTwo(),
oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsSalinity(128),

zlab="oceColorsSalinity")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsTemperature Create Colors Suitable for temperature Fields

356 oceColorsTemperature

Description

Create a set of colors for displaying temperature values, based on the scheme devised by Thyng
et al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsTemperature(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis
https://doi.org/10.5670/oceanog.2016.66

oceColorsTurbidity 357

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsSalinity(), oceColorsTurbidity(), oceColorsTurbo(), oceColorsTwo(),
oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsTemperature(128),

zlab="oceColorsTemperature")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsTurbidity Create Colors Suitable for turbidity Fields

Description

Create a set of colors for displaying turbidity values, based on the scheme devised by Thyng et
al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsTurbidity(n)

Arguments

n number of colors to create.

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis

358 oceColorsTurbidity

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbo(), oceColorsTwo(),
oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsTurbidity(128),

zlab="oceColorsTurbidity")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

https://doi.org/10.5670/oceanog.2016.66

oceColorsTurbo 359

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsTurbo Create Colors Similar to the Google Turbo Scheme

Description

This uses the coefficients published (with Apache license) by google, as described by Mikhailo
(2019).

Usage

oceColorsTurbo(n)

Arguments

n number of colors to create.

Author(s)

Dan Kelley

References

Mikhailo, Anton. “Turbo, An Improved Rainbow Colormap for Visualization.” Google AI (blog),
August 20, 2019. https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

360 oceColorsTwo

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(),
oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)
imagep(volcano,

col = oceColorsTurbo(128),
zlab = "oceColorsTurbo"

)

oceColorsTwo Create Two-Color Palette

Description

Create colors ranging between two specified limits, with white in the middle.

Usage

oceColorsTwo(n, low = 2/3, high = 0, smax = 1, alpha = 1)

Arguments

n number of colors to generate.

low, high numerical values (in range 0 to 1) specifying the hue for the low and high ends
of the color scale.

smax numerical value (in range 0 to 1) for the color saturation.

alpha numerical value (in ragne 0 to 1) for the alpha (transparency) of the colors.

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(),
oceColorsTurbo(), oceColorsVelocity(), oceColorsViridis(), oceColorsVorticity(), ocecolors

oceColorsVelocity 361

Examples

library(oce)
imagep(volcano - mean(range(volcano)),

col = oceColorsTwo(128),
zlim = "symmetric", zlab = "oceColorsTwo"

)

oceColorsVelocity Create Colors Suitable for velocity Fields

Description

Create a set of colors for displaying velocity values, based on the scheme devised by Thyng et
al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsVelocity(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis
https://doi.org/10.5670/oceanog.2016.66

362 oceColorsViridis

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(),
oceColorsTurbo(), oceColorsTwo(), oceColorsViridis(), oceColorsVorticity(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsVelocity(128),

zlab="oceColorsVelocity")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

oceColorsViridis Create Colors Similar to the Matlab Viridis Scheme

oceColorsViridis 363

Description

This is patterned on a matlab/python scheme that blends from yellow to blue in a way that is
designed to reproduce well in black-and-white, and to be interpretable by those with certain forms of
color blindness. See the references for notes about issues of colour blindness in computer graphics.
An alternative to oceColorsViridis is provided in the viridis package, as illustrated in Example 2.

Usage

oceColorsViridis(n)

Arguments

n number of colors to create.

Author(s)

Dan Kelley

References

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

https://CRAN.R-project.org/package=viridis

364 oceColorsVorticity

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(),
oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(), oceColorsVorticity(), ocecolors

Examples

library(oce)
Example 1: oceColorsViridis
imagep(volcano,

col = oceColorsViridis(128),
zlab = "oceColorsViridis"

)

oceColorsVorticity Create Colors Suitable for vorticity Fields

Description

Create a set of colors for displaying vorticity values, based on the scheme devised by Thyng et
al. (2016) and presented in a python package by Thyng (2019). The color specifications were
transliterated from python to R on 2015-09-29, but have not been adjusted since, even though the
python source has changed. This is to prevent breaking old oce code. To get the latest versions of
these colours or other colours, use the cmocean R package (Thyng, Richards, and Krylov, 2019)
directly, as is illustrated (with the "matter" scheme) in Example 2. Note that the cmocean core
functions provide a way to select between various versions of the colour schemes. It is also worth
considering the palettes provided by the viridis package, as illustrated (with the "inferno" scheme)
in Example 3.

Usage

oceColorsVorticity(n)

Arguments

n number of colors to create.

Value

A vector of color specifications.

Author(s)

Krysten M. Thyng (Python version), Dan Kelley (R transliteration)

https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=cmocean
https://CRAN.R-project.org/package=viridis

oceColorsVorticity 365

References

• Thyng, Kristen, Chad Greene, Robert Hetland, Heather Zimmerle, and Steven DiMarco.
“True Colors of Oceanography: Guidelines for Effective and Accurate Colormap Selection.”
Oceanography 29, no. 3 (September 1, 2016): 9–13. doi:10.5670/oceanog.2016.66

• Thyng, Kristen. Kthyng/Cmocean. Python, 2019. https://github.com/kthyng/cmocean.

• Thyng, Kristen, Clark Richards, and Ivan Krylov. Cmocean: Beautiful Colour Maps for
Oceanography (version 0.2), 2019. https://CRAN.R-project.org/package=cmocean.

The following references provide information on choosing colour schemes, that are suitable for
viewers who have colour deficiencies.

Light, Adam, and Patrick J. Bartlein. "The End of the Rainbow? Color Schemes for Improved
Data Graphics." Eos, Transactions American Geophysical Union 85, no. 40 (2004): 385. DOI:
10.1029/2004EO400002

Stephenson, David B. "Comment on ’Color Schemes for Improved Data Graphics’, by A Light
and P.J. Bartlein." Eos, Transactions American Geophysical Union 86, no. 20 (2005): 196. DOI:
10.1029/2005EO200005

Light, Adam, and Patrick J. Bartlein. "Reply to ’Comment on Color Schemes for Improved Data
Graphics,’ by A. Light and P.J. Bartlein’." Eos, Transactions American Geophysical Union 86, no.
20 (2005): 196–196. DOI: 10.1029/2005EO200006

See Also

Other things related to colors: colormap(), colormapGMT(), oceColors9B(), oceColorsCDOM(),
oceColorsChlorophyll(), oceColorsClosure(), oceColorsDensity(), oceColorsFreesurface(),
oceColorsGebco(), oceColorsJet(), oceColorsOxygen(), oceColorsPAR(), oceColorsPalette(),
oceColorsPhase(), oceColorsSalinity(), oceColorsTemperature(), oceColorsTurbidity(),
oceColorsTurbo(), oceColorsTwo(), oceColorsVelocity(), oceColorsViridis(), ocecolors

Examples

library(oce)

Example 1
imagep(volcano, col=oceColorsVorticity(128),

zlab="oceColorsVorticity")
Not run:
Example 2 (requires the cmocean package)
imagep(volcano, col=cmocean::cmocean("matter"),

zlab="cmocean::cmocean(\"matter\")")
End(Not run)

Not run:
Example 3 (requires the viridis package)
imagep(volcano, col=viridis::inferno,

zlab="viridis::inferno")
End(Not run)

https://doi.org/10.5670/oceanog.2016.66

366 oceConvolve

oceConvolve Convolve Two Time Series

Description

Convolve two time series, using a backward-looking method. This function provides a straightfor-
ward convolution, which may be useful to those who prefer not to use convolve() and filter in
the stats package.

Usage

oceConvolve(x, f, end = 2)

Arguments

x a numerical vector of observations.

f a numerical vector of filter coefficients.

end a flag that controls how to handle the points of the x series that have indices less
than the length of f. If end=0, the values are set to 0. If end=1, the original x
values are used there. If end=2, that fraction of the f values that overlap with x
are used.

Value

A vector of the convolution output.

Author(s)

Dan Kelley

Examples

library(oce)
t <- 0:1027
n <- length(t)
signal <- ifelse(sin(t * 2 * pi / 128) > 0, 1, 0)
tau <- 10
filter <- exp(-seq(5 * tau, 0) / tau)
filter <- filter / sum(filter)
observation <- oce.convolve(signal, filter)
plot(t, signal, type = "l")
lines(t, observation, lty = "dotted")

oceCRS 367

oceCRS Coordinate Reference System Strings for Some Oceans

Description

Create a coordinate reference string (CRS), suitable for use as a projection argument to mapPlot()
or plot,coastline-method().

Usage

oceCRS(region)

Arguments

region character string indicating the region. This must be in the following list (or
a string that matches to just one entry, with pmatch()): "North Atlantic",
"South Atlantic", "Atlantic", "North Pacific", "South Pacific", "Pacific",
"Arctic", and "Antarctic".

Value

string contain a CRS, which can be used as projection in mapPlot().

Caution

This is a preliminary version of this function, with the results being very likely to change through
the autumn of 2016, guided by real-world usage.

Author(s)

Dan Kelley

See Also

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapPolygon(), mapScalebar(), mapText(), mapTissot(), oceProject(), shiftLongitude(),
usrLonLat(), utm2lonlat()

Examples

library(oce)
data(coastlineWorld)
par(mar = c(2, 2, 1, 1))
plot(coastlineWorld, projection = oceCRS("Atlantic"), span = 12000)
plot(coastlineWorld, projection = oceCRS("North Atlantic"), span = 8000)
plot(coastlineWorld, projection = oceCRS("South Atlantic"), span = 8000)
plot(coastlineWorld, projection = oceCRS("Arctic"), span = 4000)

368 oceDebug

plot(coastlineWorld, projection = oceCRS("Antarctic"), span = 10000)
Avoid ugly horizontal lines, an artifact of longitude shifting.
Note: we cannot fill the land once we shift, either.
pacific <- coastlineCut(coastlineWorld, -180)
plot(pacific, proj = oceCRS("Pacific"), span = 15000, col = NULL)
plot(pacific, proj = oceCRS("North Pacific"), span = 12000, col = NULL)
plot(pacific, proj = oceCRS("South Pacific"), span = 12000, col = NULL)

oceDebug Print a Debugging Message

Description

Print an indented debugging message. Many oce functions decrease the debug level by 1 when they
call other functions, so the effect is a nesting, with more space for deeper function level.

Usage

oceDebug(debug = 0, ..., unindent = 0, sep = "", style = "plain")

Arguments

debug an integer, less than or equal to zero for no message, and greater than zero for
increasing levels of debugging. Values greater than 4 are treated like 4.

... items to be supplied to cat(), which does the printing. Note that no newline
will be printed unless . . . contains a string with a newline character (as in the
example).

unindent integer giving the number of levels to un-indent, e.g. for start and end lines from
a called function.

sep character to insert between elements of ..., by passing it to cat().

style either a string or a function. If a string, it must be "plain" (the default) for plain
text, "bold", "italic", "red", "green" or "blue" (with obvious meanings).
Note that none of these has any effect for non-interactive use, because doing so
would make it difficult to work with R-markdown and similar documents that
are to be run through latex.
If style is a function, it must prepend and postpend the text with control codes,
as in the cyan-coloured example; note that crayon provides many functions that
work well for style.

Author(s)

Dan Kelley

https://CRAN.R-project.org/package=crayon

oceDeleteData 369

Examples

oceDebug(debug = 1, "Example", 1, "Plain text")
oceDebug(debug = 1, "Example", 2, "Bold", style = "bold")
oceDebug(debug = 1, "Example", 3, "Italic", style = "italic")
oceDebug(debug = 1, "Example", 4, "Red", style = "red")
oceDebug(debug = 1, "Example", 5, "Green", style = "green")
oceDebug(debug = 1, "Example", 6, "Blue", style = "blue")
mycyan <- function(...) paste("\033[36m", paste(..., sep = " "), "\033[0m", sep = "")
oceDebug(debug = 1, "Example", 7, "User-set cyan", style = mycyan)

oceDeleteData Delete Something From the data Slot of an oce Object

Description

Return a copy of the supplied object that lacks the named element in its data slot, and that has a
note about the deletion in its processing log.

Usage

oceDeleteData(object, name)

Arguments

object an oce object.

name String indicating the name of the item to be deleted.

Author(s)

Dan Kelley

See Also

Other things related to the data slot: oceGetData(), oceRenameData(), oceSetData()

oceDeleteMetadata Delete Something in an oce metadata Slot

Description

Return a copy of the supplied object that lacks the named element in its metadata slot, and that has
a note about the deletion in its processing log.

Usage

oceDeleteMetadata(object, name)

370 oceEdit

Arguments

object an oce object.

name String indicating the name of the item to be deleted.

Author(s)

Dan Kelley

See Also

Other things related to the metadata slot: oceGetMetadata(), oceRenameMetadata(), oceSetMetadata()

oceEdit Edit an Oce Object

Description

Edit an element of an oce object, inserting a note in the processing log of the returned object.

Usage

oceEdit(
x,
item,
value,
action,
reason = "",
person = "",
debug = getOption("oceDebug")

)

Arguments

x an oce object. The exact action of oceEdit() depends on the sub-class of x.

item if supplied, a character string naming an item in the object’s metadata or data
slot, the former being checked first. An exception is if item starts with "data@"
or "metadata@", in which case the named slot is updated with a changed value
of the contents of item after the @ character.

value new value for item, if both supplied.

action optional character string containing R code to carry out some action on the ob-
ject.

reason character string giving the reason for the change.

person character string giving the name of person making the change.

debug an integer that specifies a level of debugging, with 0 or less indicating no debug-
ging, and 1 or more indicating debugging.

oceEdit 371

Details

There are several ways to use this function.

1. If both an item and value are supplied, then either the object’s metadata or data slot may be
altered. There are two ways in which this can be done.

• Case 1A. If the item string does not contain an @ character, then the metadata slot is
examined for an entry named item, and that is modified if so. Alternatively, if item is
found in metadata, then that value is modified. However, if item is not found in either
metadata or data, then an error is reported (see 1B for how to add something that does
not yet exist).

• Case 1B. If the item string contains the @ character, then the text to the left of that char-
acter must be either "metadata" or "data", and it names the slot in which the change is
done. In contrast with case 1A, this will create a new item, if it is not already in existence.

2. If item and value are not supplied, then action must be supplied. This is a character string
specifying some action to be performed on the object, e.g. a manipulation of a column. The
action must refer to the object as x, as in Example 2.

In any case, a log entry is stored in the object, to document the change. Indeed, this is the main
benefit to using this function, instead of altering the object directly. The log entry will be most
useful if it contains a brief note on the reason for the change, and the name of the person doing
the work.

Value

A oce object, altered appropriately, and with a log item indicating the nature of the alteration.

Author(s)

Dan Kelley

Examples

library(oce)
data(ctd)
Example 1: change latitude
ctd2 <- oceEdit(ctd,

item = "latitude", value = 47.8879,
reason = "illustration", person = "Dan Kelley"

)
Example 2: add 0.1 dbar to pressure
ctd3 <- oceEdit(ctd, action = "x@data$pressure<-x@data$pressure+0.1")

372 oceFileTrim

oceFileTrim Trim an oce File

Description

Create an oce file by copying the first n data chunks of another such file. This can be useful in
supplying small sample files for bug reports. Only a few file types (as inferred with oceMagic())
are permitted.

Usage

oceFileTrim(infile, n = 100L, outfile, debug = getOption("oceDebug"))

Arguments

infile name of an AD2CP source file.

n integer indicating the number of data chunks to keep. The default is to keep 100
chunks, a common good choice for sample files.

outfile optional name of the new file to be created. If this is not supplied, a default is
used, by adding _trimmed to the base filename, e.g. for an AD2CP file named
"a.ad2cp", the constructed value of outfile will be a_trimmed.ad2cp.

debug an integer value indicating the level of debugging. If this is 1L, then a brief
indication is given of the processing steps. If it is > 1L, then information is
given about each data chunk, which can yield very extensive output.

Value

oceFileTrim() returns the name of the output file, either provided in the outfile parameter or
constructed by this function.

Sample of Usage

Can only be run by the developer, since it uses a private file.
f <- "~/Dropbox/oce_secret_data/ad2cp/byg_trimmed.ad2cp"
if (file.exists(f)) {

oceFileTrim(f, 10L) # this file holds 100 data segments
}

Author(s)

Dan Kelley

See Also

Other functions that trim data files: adpAd2cpFileTrim(), adpRdiFileTrim(), advSontekAdrFileTrim()

oceFilter 373

oceFilter Filter a Time Series

Description

Filter a time-series, possibly recursively

Usage

oceFilter(x, a = 1, b, zero.phase = FALSE)

Arguments

x a vector of numeric values, to be filtered as a time series.

a a vector of numeric values, giving the a coefficients (see “Details”).

b a vector of numeric values, giving the b coefficients (see “Details”).

zero.phase boolean, set to TRUE to run the filter forwards, and then backwards, thus remov-
ing any phase shifts associated with the filter.

Details

The filter is defined as e.g. y[i] = b[1] ∗x[i]+b[2] ∗x[i− 1]+ b[3] ∗x[i− 2]+ ...− a[2] ∗ y[i− 1]−
a[3]∗y[i−2]−a[4]∗y[i−3]− ..., where some of the illustrated terms will be omitted if the lengths
of a and b are too small, and terms are dropped at the start of the time series where the index on x
would be less than 1.

By contrast with the filter() function of R, oce.filter lacks the option to do a circular filter.
As a consequence, oceFilter introduces a phase lag. One way to remove this lag is to run the filter
forwards and then backwards, as in the “Examples”. However, the result is still problematic, in the
sense that applying it in the reverse order would yield a different result. (Matlab’s filtfilt shares
this problem.)

Value

A numeric vector of the filtered results, y, as denoted in “Details”.

Note

The first value in the a vector is ignored, and if length(a) equals 1, a non-recursive filter results.

Author(s)

Dan Kelley

374 oceGetData

Examples

library(oce)
par(mar = c(4, 4, 1, 1))
b <- rep(1, 5) / 5
a <- 1
x <- seq(0, 10)
y <- ifelse(x == 5, 1, 0)
f1 <- oceFilter(y, a, b)
plot(x, y, ylim = c(-0, 1.5), pch = "o", type = "b")
points(x, f1, pch = "x", col = "red")

remove the phase lag
f2 <- oceFilter(y, a, b, TRUE)
points(x, f2, pch = "+", col = "blue")

legend("topleft",
col = c("black", "red", "blue"), pch = c("o", "x", "+"),
legend = c("data", "normal filter", "zero-phase filter")

)
mtext("note that normal filter rolls off at end")

oceGetData Extract Something From the data Slot of an oce Object

Description

In contrast to the various [[functions, this is guaranteed to look only within the data slot. If the
named item is not found, NULL is returned.

Usage

oceGetData(object, name)

Arguments

object an oce object.

name String indicating the name of the item to be found.

Author(s)

Dan Kelley

See Also

Other things related to the data slot: oceDeleteData(), oceRenameData(), oceSetData()

oceGetMetadata 375

oceGetMetadata Extract Something From the metadata Slot of an oce Object

Description

In contrast to the various [[functions, this is guaranteed to look only within the metadata slot. If
the named item is not found, NULL is returned.

Usage

oceGetMetadata(object, name)

Arguments

object an oce object.

name String indicating the name of the item to be found.

Author(s)

Dan Kelley

See Also

Other things related to the metadata slot: oceDeleteMetadata(), oceRenameMetadata(), oceSetMetadata()

oceMagic Find the Type of an Oceanographic Data File

Description

oceMagic tries to infer the file type, based on the data within the file, the file name, or a combination
of the two.

Usage

oceMagic(file, encoding = "latin1", debug = getOption("oceDebug"))

Arguments

file a connection or a character string giving the name of the file to be checked.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer, set non-zero to turn on debugging. Higher values indicate more de-
bugging.

376 oceNames2whpNames

Details

oceMagic was previously called oce.magic, but that alias was removed in version 0.9.24; see oce-
defunct.

Value

A character string indicating the file type, or "unknown", if the type cannot be determined. If the
result contains "/" characters, these separate a list describing the file type, with the first element
being the general type, the second element being the manufacturer, and the third element being
the manufacturer’s name for the instrument. For example, "adp/nortek/aquadopp" indicates a
acoustic-doppler profiler made by NorTek, of the model type called Aquadopp.

Author(s)

Dan Kelley

See Also

This is used mainly by read.oce().

oceNames2whpNames Translate Oce Data Names to WHP Data Names

Description

Translate oce-style names to WOCE names, using gsub() to match patterns. For example, the
pattern "oxygen" is taken to mean "CTDOXY".

Usage

oceNames2whpNames(names)

Arguments

names vector of strings holding oce-style names.

Value

vector of strings holding WHP-style names.

Author(s)

Dan Kelley

References

Several online sources list WHP names. An example is https://cchdo.github.io/hdo-assets/documentation/manuals/pdf/90_1/chap4.pdf

ocePmatch 377

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceUnits2whpUnits(), plot,ctd-method, plotProfile(),
plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that interpret variable names and units from headers: ODFNames2oceNames(),
cnvName2oceName(), oceUnits2whpUnits(), unitFromString(), unitFromStringRsk(), woceNames2oceNames(),
woceUnit2oceUnit()

ocePmatch Partial Matching of Strings or Numbers

Description

An extended version of pmatch() that allows x to be numeric or string-based. As with pmatch(),
partial string matches are handled. This is a wrapper that is useful mainly for which arguments to
plotting functions.

Usage

ocePmatch(x, table, nomatch = NA_integer_, duplicates.ok = FALSE)

Arguments

x a code, or vector of codes. This may be numeric, in which case it is simply
returned without further analysis of the other arguments, or it may be string-
based, in which case pmatch() is used to find numeric matches.

table a list that maps strings to numbers; pmatch() is used on names(table). If the
name contains characters that are normally not permitted in a variable name, use
quotes, e.g. list(salinity=1, temperature=2, "salinity+temperature"=3).

nomatch value to be returned for cases of no match (passed to pmatch().

duplicates.ok code for the handling of duplicates (passed to pmatch()).

Value

A number, or vector of numbers, corresponding to the matches. Non-matches are indicated with NA
values, or whatever value is given by the NA argument.

Author(s)

Dan Kelley

378 oceProject

See Also

Since pmatch() is used for the actual matching, its documentation should be consulted.

Examples

library(oce)
oce.pmatch(c("s", "at", "te"), list(salinity = 1, temperature = 3.1))

oceProject Wrapper to sf::sf_project()

Description

This function is used to isolate other oce functions from changes to the map-projection functions
that are done in the sf package. (Until 2020 December, the rgdal package was used, after a year of
tests ensuring that the results of the two packages were the same.)

Usage

oceProject(xy, proj, inv = FALSE, debug = getOption("oceDebug"))

Arguments

xy two-column numeric matrix specifying locations. If inv is False, then xy[,1]
will hold longitude and xy[,2] will hold latitude, but if inv is True, then the
columns will be easting and northing values (in metres).

proj a character value specifying the desired map projection. See the projection
parameter of mapPlot() for details, including a historical note dated 2023-04-
11 about the now-deprecated sp package.

inv logical value, False by default, indicating whether an inverse projection is re-
quested.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

oceProject returns a two-column matrix, with first column holding either longitude or x, and
second column holding either latitude or y.

Author(s)

Dan Kelley

https://CRAN.R-project.org/package=sf

oceRenameData 379

See Also

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapPolygon(), mapScalebar(), mapText(), mapTissot(), oceCRS(), shiftLongitude(), usrLonLat(),
utm2lonlat()

oceRenameData Rename Something in the data slot of an oce Object

Description

Rename an item within the data slot of an oce object, also changing dataNamesOriginal in the
metadata slot, so that the [[accessor will still work with the original name that was stored in the
data.

Usage

oceRenameData(object, old, new, note = "")

Arguments

object an oce object.

old character value that matches the name of an item in object’s data slot.

new character value to be used as the new name that matches the name of an item in
object’s data slot. Thus must not be the name of something that is already in
the data slot. If new is the same as old, then the object is returned unaltered.

note character value that holds an explanation of the reason for the change. If this
is a string of non-zero length, then this is inserted in the processing log of the
returned value. If it is NULL, then no entry is added to the processing log. Oth-
erwise, the processing log gets a new item that is constructed from the function
call.

Author(s)

Dan Kelley

See Also

Other things related to the data slot: oceDeleteData(), oceGetData(), oceSetData()

380 oceRenameMetadata

Examples

library(oce)
data(ctd)
CTD <- oceRenameData(ctd, "salinity", "SALT")
stopifnot(all.equal(ctd[["salinity"]], CTD[["SALT"]]))
stopifnot(all.equal(ctd[["sal00"]], CTD[["SALT"]]))

oceRenameMetadata Rename Something in the metadata Slot of an oce Object

Description

Rename an item within the metadata slot of an oce object.

Usage

oceRenameMetadata(object, old, new, note = "")

Arguments

object an oce object.

old character value that matches the name of an item in object’s metadata slot.

new character value to be used as the new name that matches the name of an item in
object’s metadata slot. Thus must not be the name of something that is already
in the metadata slot. If new is the same as old, then the object is returned
unaltered.

note character value that holds an explanation of the reason for the change. If this
is a string of non-zero length, then this is inserted in the processing log of the
returned value. If it is NULL, then no entry is added to the processing log. Oth-
erwise, the processing log gets a new item that is constructed from the function
call.

Author(s)

Dan Kelley

See Also

Other things related to the metadata slot: oceDeleteMetadata(), oceGetMetadata(), oceSetMetadata()

oceSetData 381

oceSetData Set Something in the data Slot of an oce Object

Description

Create a copy of an object in which some element of its data slot has been altered, or added.

Usage

oceSetData(object, name, value, unit, originalName, note = "")

Arguments

object an oce object.

name String indicating the name of the data item to be set.

value Value for the item.

unit An optional indication of the units for the item. This has three possible forms
(see “Details”).

originalName Optional character string giving an ’original’ name (e.g. as stored in the header
of a data file).

note Either empty (the default), a character string, or NULL, to control additions made
to the processing log of the return value. If note="" then the an entry is cre-
ated based on deparsing the function call. If note is a non-empty string, then
that string gets added added to the processing log. Finally, if note=NULL, then
nothing is added to the processing log. This last form is useful in cases where
oceSetData is to be called many times in succession, resulting in an overly ver-
bose processing log; in such cases, it might help to add a note by e.g. processingLog(a)
<- "QC (memo dek-2018-01/31)"

Details

The trickiest argument to set is the unit. There are three possibilities for this:

1. unit is a named or unnamed list() that contains two items. If the list is named, the names
must be unit and scale. If the list is unnamed, the stated names are assigned to the items,
in the stated order. Either way, the unit item must be an expression() that specifies the
unit, and the scale item must be a string that describes the scale. For example, modern
temperatures have unit=list(unit=expression(degree*C), scale="ITS-90").

2. unit is an expression() giving the unit as above. In this case, the scale will be set to "".

3. unit is a character string that is converted into an expression with parse(text=unit), and the
scale set to "".

Value

An oce object, the data slot of which has been altered either by adding a new item or modifying an
existing item.

382 oceSetMetadata

Author(s)

Dan Kelley

See Also

Other things related to the data slot: oceDeleteData(), oceGetData(), oceRenameData()

Examples

data(ctd)
Tf <- swTFreeze(ctd)
ctd <- oceSetData(ctd, "freezing", Tf,

unit = list(unit = expression(degree * C), scale = "ITS-90")
)
plotProfile(ctd, "freezing")

oceSetMetadata Set Something in the metadata Slot of an oce Object

Description

Create a copy of an object in which some element of its metadata slot has been altered, or added.

Usage

oceSetMetadata(object, name, value, note = "")

Arguments

object an oce object.

name String indicating the name of the metadata item to be set.

value Value for the item.

note Either empty (the default), a character string, or NULL, to control additions made
to the processing log of the return value. If note="" then an entry is created
based on deparsing the function call. If note is a non-empty string, then that
string gets added added to the processing log. Finally, if note=NULL, then noth-
ing is added to the processing log. This last form is useful in cases where
oceSetData is to be called many times in succession, resulting in an overly
verbose processing log; in which case, it might helpful to use processingLog<-
to add a summary entry to the object’s processing log.

Value

An oce object, the metadata slot of which has been altered either by adding a new item or modifying
an existing item.

oceSmooth 383

Author(s)

Dan Kelley

See Also

Other things related to the metadata slot: oceDeleteMetadata(), oceGetMetadata(), oceRenameMetadata()

Examples

Add an estimate of MLD (mixed layer depth) to a ctd object
library(oce)
data(ctd)
ctdWithMLD <- oceSetMetadata(ctd, "MLD", 3)
ctdWithMLD[["MLD"]] # 3

oceSmooth Smooth an oce Object

Description

Each data element is smoothed as a timeseries. For ADP data, this is done along time, not distance.
Time vectors, if any, are not smoothed. A good use of oce.smooth is for despiking noisy data.

Usage

oceSmooth(x, ...)

Arguments

x an oce object.

... parameters to be supplied to smooth(), which does the actual work.

Value

An oce object that has been smoothed appropriately.

Author(s)

Dan Kelley

See Also

The work is done with smooth(), and the ... arguments are handed to it directly by oce.smooth.

384 oceSpectrum

Examples

library(oce)
data(ctd)
d <- oce.smooth(ctd)
plot(d)

oceSpectrum Normalize a Spectrum

Description

This is a wrapper around the R spectrum() function, which returns spectral values that are adjusted
so that the integral of those values equals the variance of the input x.

Usage

oceSpectrum(x, ...)

Arguments

x a univariate or multivariate time series, as for spectrum().

... extra arguments passed on to spectrum().

Value

A spectrum that has values that integrate to the variance.

Author(s)

Dan Kelley

See Also

spectrum().

Examples

x <- rnorm(1e3)
s <- spectrum(x, plot = FALSE)
ss <- oce.spectrum(x, plot = FALSE)
cat("variance of x=", var(x), "\n")
cat("integral of spectrum=", sum(s$spec) * diff(s$freq[1:2]), "\n")
cat("integral of oce.spectrum=", sum(ss$spec) * diff(ss$freq[1:2]), "\n")

oceUnits2whpUnits 385

oceUnits2whpUnits Translate oce Unit to WHP Unit

Description

Translate oce units to WHP-style strings, to match patterns.

Usage

oceUnits2whpUnits(units, scales)

Arguments

units vector of expressions for units in oce notation.

scales vector of strings for scales in oce notation.

Value

vector of strings holding WOCE-style names.

Author(s)

Dan Kelley

References

Several online sources list WOCE names. An example is https://cchdo.github.io/hdo-assets/documentation/manuals/pdf/90_1/chap4.pdf

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), plot,ctd-method, plotProfile(),
plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that interpret variable names and units from headers: ODFNames2oceNames(),
cnvName2oceName(), oceNames2whpNames(), unitFromString(), unitFromStringRsk(), woceNames2oceNames(),
woceUnit2oceUnit()

386 odf-class

odf-class Class to Store ODF Data

Description

This class is for data stored in a format used at Canadian Department of Fisheries and Oceans
laboratories. It is somewhat similar to the bremen class, in the sense that it does not apply just to a
particular instrument.

Slots

data As with all oce objects, the data slot for odf objects is a list containing the main data for the
object.

metadata As with all oce objects, the metadata slot for odf objects is a list containing information
about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for odf objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of odf objects (see [[<-,odf-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a odf object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,odf-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,odf-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

ODF2oce 387

References

1. Anthony W. Isenor and David Kellow, 2011. ODF Format Specification Version 2.0. (This is
a .doc file obtained in June 2011 by Dan Kelley, which no longer seems to be made available
at any DFO website.)

2. (Unknown authors), October 2014. ODF Format Description (MLI), https://ogsl.ca/wp-content/uploads/ODF_format_desc_en_0.pdf,
(Link worked early on March 16, 2022, but failed later that day.)

3. A sample ODF file in the DFO format is available at system.file("extdata","CTD_BCD2014666_008_1_DN.ODF.gz",package="oce")

4. A sample ODF file in the MLI format may be available at https://ogsl.ca/wp-content/uploads/ODF_file_example_en_0.pdf.
(Link worked early on March 16, 2022, but failed later that day.)

See Also

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
ODFNames2oceNames(), [[,odf-method, [[<-,odf-method, plot,odf-method, read.ctd.odf(),
read.odf(), subset,odf-method, summary,odf-method

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, met-class, oce-class, rsk-class,
sealevel-class, section-class, topo-class, windrose-class, xbt-class

ODF2oce Create ODF Object From Output of read_ODF in ODF package

Description

As of August 11, 2015, ODF::read_ODF returns a list with 9 elements, one named DATA, which
is a data.frame() containing the columnar data, the others being headers of various sorts. The
present function constructs an oce object from such data, facilitating processing and plotting with
the general oce functions. This involves storing the 8 headers verbatim in the odfHeaders in the
metadata slot, and also copying some of the header information into more standard names (e.g.
metadata@longitude is a copy of metadata@odfHeader$EVENT_HEADER$INITIAL_LATITUDE).
As for the DATA, they are stored in the data slot, after renaming from ODF to oce convention
using ODFNames2oceNames().

Usage

ODF2oce(ODF, coerce = TRUE, debug = getOption("oceDebug"))

Arguments

ODF A list as returned by read_ODF in the ODF package

coerce A logical value indicating whether to coerce the return value to an appropriate
object type, if possible.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

388 ODFListFromHeader

Value

An oce object, possibly coerced to a subtype.

Caution

This function may change as the ODF package changes. Since ODF has not been released yet, this
should not affect any users except those involved in the development of oce and ODF.

Author(s)

Dan Kelley

See Also

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODFListFromHeader(),
ODFNames2oceNames(), [[,odf-method, [[<-,odf-method, odf-class, plot,odf-method, read.ctd.odf(),
read.odf(), subset,odf-method, summary,odf-method

ODFListFromHeader Create a List of odf Header Metadata

Description

Create a List of odf Header Metadata

Usage

ODFListFromHeader(header)

Arguments

header Vector of character strings, holding the header

Value

A list holding the metadata, with item names matching those in the ODF header, except that dupli-
cates are transformed through the use of unduplicateNames().

See Also

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFNames2oceNames(),
[[,odf-method, [[<-,odf-method, odf-class, plot,odf-method, read.ctd.odf(), read.odf(),
subset,odf-method, summary,odf-method

ODFNames2oceNames 389

ODFNames2oceNames Translate ODF CODE Strings to oce Variable Names

Description

Translate ODF CODE strings to oce variable names. This is done differently for data names and
quality-control (QC) names.

Usage

ODFNames2oceNames(
ODFnames,
columns = NULL,
PARAMETER_HEADER = NULL,
debug = getOption("oceDebug")

)

Arguments

ODFnames vector of character values that hold ODF names.

columns Optional list containing name correspondances, as described for read.ctd.odf().
PARAMETER_HEADER

Optional list containing information on the data variables.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The following table gives the recognized ODF code names for variables, along with the translated
names as used in oce objects. Note that the code names are appended with strings such as "_01",
"_02", etc, for repeats. The converted name for an "_01" item is as shown below, and for e.g.
"_02" a suffix 2 is added to the oce name, etc.

QC items (which get stored as flags in object’s metadata slots) are assigned names that match
those of the parameters to which they refer. In parsing ODF files, it is assumed that QC items refer
to the data items that precede them. This pattern does not seem to be documented, but it has held
in all the files examined by the author, and a similar assumption is made in other software systems.
QC items have CODE values that are either start with "QQQQ" or equal "Q<CODE>", where <CODE>
matches the corresponding data item.

ODF Code Oce Name Notes
ABSH humidityAbsolute
ACO2 CO2Atmosphere

390 ODFNames2oceNames

ALKW alkalinity
ALKY alkalinityTotal
ALP0 apha0
ALTB altimeter
ALTS altitude
AMON ammonium
ATMP pressureAtmosphere
ATMS pressureAtmosphereSealevel
ATRK alongTrackDisplacement
ATTU attenuation
AUTH authority
BATH barometricDepth
BATT batteryVoltage
BEAM a
BNO7 bestNODC7Number That is an "oh" letter, not a zero
CALK carbonateAlkalinity
CHLR chlorinity
CHLS chlorosity
CNDC conductivity
CNTR scan
COND conductivity
CORG carbonOrganic
CPHL chlorophyll
CRAT conductivity Conductivity ratio (may have spurious unit)
CMNT comment
CNDC conductivity
COND conductivity
CTOT carbonTotal
DCHG discharge
DENS density
DEPH pressure
DEWT temperatureDewpoint
DOC_ carbonOrganicDissolved
DON_ nitrogenOrganicDissolved
DOXY oxygen
DPDT dpdt
DRDP drogueDepth
DPWT dryWeight
DRYT temperatureDryBulb
DYNH dynamicHeight
ERRV errorVelocity
EWCM uMagnetic
EWCT u
FFFF overall(FFFF) Archaic overall flag, replaced by QCFF
FLOR fluorometer
GDIR windDirectionGust
GEOP geopotential
GSPD windSpeedGust

ODFNames2oceNames 391

HCDM directionMagnetic
HCDT directionTrue
HCSP speedHorizontal
HEAD heading
HSUL hydrogenSulphide
IDEN sampleNumber
LABT temperatureLaboratory
LATD latitude
LHIS lifeHistory
LOND longitude
LPHT pHLaboratory
MNSV retentionFilterSize
MNSZ organismSizeMinimum
MODF additionalTaxonomicInformation
MXSZ organismSizeMaximum
NETR netSolarRadiation
NONE noWMOcode
NORG nitrogenOrganic
NSCM vMagnetic
NSCT v
NTOT nitrogenTotal
NTRA nitrate
NTRI nitrite
NTRZ nitrite+nitrate
NUM_ scansPerAverage
OBKS turbidity
OCUR oxygenCurrent
OPPR oxygenPartialPressure
OSAT oxygenSaturation
OTMP oxygenTemperature
OXYG oxygenDissolved
OXYM oxygenDissolved
OXYV oxygenVoltage
OXV_ oxygenVoltageRaw
PCO2 CO2
PHA_ phaeopigment
PHOS phosphate
PHPH pH
PHT_ pHTotal
PIM_ particulateInorganicMatter
PHY_ phytoplanktonCount
POC_ particulateOrganicCarbon
POM_ particulateOrganicMatter
PON_ particulateOrganicNitrogen
POTM theta
PRES pressure
PSAL salinity
PSAR PSAR

392 ODFNames2oceNames

PTCH pitch
QCFF overall(QCFF) Overall flag (see also archaic FFFF)
RANG range
REFR reference
RELH humidityRelative
RELP relativeTotalPressure
ROLL roll
SDEV standardDeviation
SECC SecchiDepth
SEX_ sex
SIG0 sigma0
SIGP sigmaTheta
SIGT sigmat
SLCA silicate
SNCN scanCounter
SPAR SPAR
SPEH humiditySpecific
SPFR sampleFraction
SPVO specificVolume
SPVA specificVolumeAnomaly
STRA stressAmplitude
STRD stressDirection
STRU stressU
STRV stressV
SSAL salinity
SVEL soundVelocity
SYTM time
TAXN taxonomicName
TE90 temperature
TEMP temperature
TEXZT text
TICW totalInorganicCarbon
TILT tilt
TOTP pressureAbsolute
TPHS phosphorousTotal
TRAN lightTransmission
TRB_ turbidity
TRBH trophicDescriptor
TSM_ suspendedMatterTotal
TSN_ taxonomicSerialNumber
TURB turbidity
UNKN -
UREA urea
VAIS BVFrequency
VCSP w
VMXL waveHeightMaximum
VRMS waveHeightMean
VTCA wavePeriod

parseLatLon 393

WDIR windDirection
WETT temperatureWetBulb
WSPD windSpeed
WTWT wetWeight
ZOO_ zooplanktonCount

Any code not shown in the list is transferred to the oce object without renaming, apart from the
adjustment of suffix numbers. The following code have been seen in data files from the Bedford
Institute of Oceanography: ALTB, PHPH and QCFF.

Value

A list relating ODF names to oce names (see “Examples”).

Author(s)

Dan Kelley

References

For sources that describe the ODF format, see the documentation for the odf.

See Also

Other functions that interpret variable names and units from headers: cnvName2oceName(), oceNames2whpNames(),
oceUnits2whpUnits(), unitFromString(), unitFromStringRsk(), woceNames2oceNames(), woceUnit2oceUnit()

Other functions that convert variable names to the oce convention: argoNames2oceNames(), bodcNames2oceNames(),
metNames2oceNames(), woceNames2oceNames()

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
[[,odf-method, [[<-,odf-method, odf-class, plot,odf-method, read.ctd.odf(), read.odf(),
subset,odf-method, summary,odf-method

Examples

ODFNames2oceNames("TEMP_01")$names # "temperature"

parseLatLon Parse a Latitude or Longitude String

394 plot,adp-method

Description

Parse a latitude or longitude string, e.g. as in the header of a CTD file The following formats are
understood (for, e.g. latitude):

** NMEA Latitude = 47 54.760 N
** Latitude: 47 53.27 N

Note that iconv() is called to convert the string to ASCII before decoding, to change any degree
(or other non-ASCII) symbols to blanks.

Usage

parseLatLon(line, debug = getOption("oceDebug"))

Arguments

line a character string containing an indication of latitude or longitude.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

Value

A numerical value of latitude or longitude.

Author(s)

Dan Kelley

See Also

Used by read.ctd().

plot,adp-method Plot an adp Object

Description

Create a summary plot of data measured by an acoustic Doppler profiler.

plot,adp-method 395

Usage

S4 method for signature 'adp'
plot(
x,
which,
j,
col,
breaks,
zlim,
titles,
lwd = par("lwd"),
type = "l",
ytype = c("profile", "distance"),
drawTimeRange = getOption("oceDrawTimeRange"),
useSmoothScatter,
missingColor = "gray",
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1.5, mgp[1] + 1.5, 1.5, 1.5),
mai.palette = rep(0, 4),
tformat,
marginsAsImage = FALSE,
cex = par("cex"),
cex.axis = par("cex.axis"),
cex.lab = par("cex.lab"),
xlim,
ylim,
control,
useLayout = FALSE,
coastline = "coastlineWorld",
span = 300,
main = "",
grid = FALSE,
grid.col = "darkgray",
grid.lty = "dotted",
grid.lwd = 1,
xlab = NULL,
debug = getOption("oceDebug"),
...

)

Arguments

x an adp object.

which list of desired plot types. These are graphed in panels running down from the
top of the page. If which is not given, the plot will show images of the distance-
time dependence of velocity for each beam. See “Details” for the meanings of
various values of which.

396 plot,adp-method

j optional string specifying a sub-class of which. For Nortek Aquadopp pro-
filers, this may either be "default" (or missing) to get the main signal, or
"diagnostic" to get a diagnostic signal.

col optional indication of color(s) to use. If not provided, the default for images is
oce.colorsPalette(128,1), and for lines and points is black.

breaks optional breaks for color scheme

zlim a range to be used as the zlim parameter to the imagep() call that is used to
create the image. If omitted, zlim is set for each panel individually, to encom-
pass the data of the panel and to be centred around zero. If provided as a two-
element vector, then that is used for each panel. If provided as a two-column
matrix, then each panel of the graph uses the corresponding row of the matrix;
for example, setting zlim=rbind(c(-1,1),c(-1,1),c(-.1,.1)) might make
sense for which=1:3, so that the two horizontal velocities have one scale, and
the smaller vertical velocity has another.

titles optional vector of character strings to be used as labels for the plot panels. For
images, these strings will be placed in the right hand side of the top margin. For
timeseries, these strings are ignored. If this is provided, its length must equal
that of which.

lwd if the plot is of a time-series or scattergraph format with lines, this is used in the
usual way; otherwise, e.g. for image formats, this is ignored.

type if the plot is of a time-series or scattergraph format, this is used in the usual way,
e.g. "l" for lines, etc.; otherwise, as for image formats, this is ignored.

ytype character string controlling the type of the y axis for images (ignored for time
series). If "distance", then the y axis will be distance from the sensor head,
with smaller distances nearer the bottom of the graph. If "profile", then this
will still be true for upward-looking instruments, but the y axis will be flipped
for downward-looking instruments, so that in either case, the top of the graph
will represent the sample nearest the sea surface.

drawTimeRange boolean that applies to panels with time as the horizontal axis, indicating whether
to draw the time range in the top-left margin of the plot.

useSmoothScatter

boolean that indicates whether to use smoothScatter() in various plots, such
as which="uv". If not provided a default is used, with smoothScatter() being
used if there are more than 2000 points to plot.

missingColor color used to indicate NA values in images (see imagep()); set to NULL to avoid
this indication.

mgp A 3-element numerical vector used with par("mgp") to control the spacing of
axis elements. The default is tighter than the R default.

mar A 4-element numerical vector used with par("mar") to control the plot margins.
The default is tighter than the R default.

mai.palette margins, in inches, to be added to those calculated for the palette; alter from the
default only with caution

tformat optional argument passed to oce.plot.ts(), for plot types that call that func-
tion. (See strptime() for the format used.)

plot,adp-method 397

marginsAsImage boolean, TRUE to put a wide margin to the right of time-series plots, even if there
are no images in the which list. (The margin is made wide if there are some
images in the sequence.)

cex numeric character expansion factor for plot symbols; see par().

cex.axis, cex.lab
character expansion factors for axis numbers and axis names; see par().

xlim optional 2-element list for xlim, or 2-column matrix, in which case the rows are
used, in order, for the panels of the graph.

ylim optional 2-element list for ylim, or 2-column matrix, in which case the rows are
used, in order, for the panels of the graph.

control optional list of parameters that may be used for different plot types. Possibilities
are drawBottom (a boolean that indicates whether to draw the bottom) and bin
(a numeric giving the index of the bin on which to act, as explained in “Details”).

useLayout set to FALSE to prevent using layout() to set up the plot. This is needed if the
call is to be part of a sequence set up by e.g. par(mfrow).

coastline a coastline object, or a character string naming one. This is used only for
which="map". See notes at plot,ctd-method() for more information on built-
in coastlines.

span approximate span of map in km

main main title for plot, used just on the top panel, if there are several panels.

grid if TRUE, a grid will be drawn for each panel. (This argument is needed, because
calling grid() after doing a sequence of plots will not result in useful results
for the individual panels.

grid.col color of grid

grid.lty line type of grid

grid.lwd line width of grid

xlab optional character value giving the label for the x axis. If NULL (the default)
then the label is determined automatically.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

... optional arguments passed to plotting functions. For example, supplying despike=TRUE
will cause time-series panels to be de-spiked with despike(). Another common
action is to set the color for missing values on image plots, with the argument
missingColor (see imagep()). Note that it is an error to give breaks in . . . ,
if the formal argument zlim was also given, because they could contradict each
other.

398 plot,adp-method

Details

The plot may have one or more panels, with the content being controlled by the which argument.

• which=1:4 (or which="u1" to "u4") yield a distance-time image plot of a velocity component.
If x is in beam coordinates (signalled by metadata$oce.coordinate=="beam"), this will be
the beam velocity, labelled b[1] etc. If x is in xyz coordinates (sometimes called frame
coordinates, or ship coordinates), it will be the velocity component to the right of the frame or
ship (labelled u etc). Finally, if x is in "enu" coordinates, the image will show the the eastward
component (labelled east). If x is in "other" coordinates, it will be component corresponding
to east, after rotation (labelled u\'). Note that the coordinate is set by read.adp(), or by
beamToXyzAdp(), xyzToEnuAdp(), or enuToOtherAdp().

• which=5:8 (or which="a1" to "a4") yield distance-time images of backscatter intensity of the
respective beams. (For data derived from Teledyne-RDI instruments, this is the item called
“echo intensity.”)

• which=9:12 (or which="q1" to "q4") yield distance-time images of signal quality for the
respective beams. (For RDI data derived from instruments, this is the item called “correlation
magnitude.”)

• which=60 or which="map" draw a map of location(s).

• which=70:73 (or which="g1" to "g4") yield distance-time images of percent-good for the
respective beams. (For data derived from Teledyne-RDI instruments, which are the only in-
struments that yield this item, it is called “percent good.”)

• which=80:83 (or which="vv", which="va", which="vq", and which="vg") yield distance-
time images of the vertical beam fields for a 5 beam "SentinelV" ADCP from Teledyne RDI.

• which="vertical" yields a two panel distance-time image of vertical beam velocity and
amplitude.

• which=13 (or which="salinity") yields a time-series plot of salinity.

• which=14 (or which="temperature") yields a time-series plot of temperature.

• which=15 (or which="pressure") yields a time-series plot of pressure.

• which=16 (or which="heading") yields a time-series plot of instrument heading.

• which=17 (or which="pitch") yields a time-series plot of instrument pitch.

• which=18 (or which="roll") yields a time-series plot of instrument roll.

• which=19 yields a time-series plot of distance-averaged velocity for beam 1, rightward veloc-
ity, eastward velocity, or rotated-eastward velocity, depending on the coordinate system.

• which=20 yields a time-series of distance-averaged velocity for beam 2, foreward velocity,
northward velocity, or rotated-northward velocity, depending on the coordinate system.

• which=21 yields a time-series of distance-averaged velocity for beam 3, up-frame velocity,
upward velocity, or rotated-upward velocity, depending on the coordinate system.

• which=22 yields a time-series of distance-averaged velocity for beam 4, for beam coordinates,
or velocity estimate, for other coordinates. (This is ignored for 3-beam data.)

• which="progressiveVector" (or which=23) yields a progressive-vector diagram in the hori-
zontal plane, plotted with asp=1. Normally, the depth-averaged velocity components are used,
but if the control list contains an item named bin, then the depth bin will be used (with an
error resulting if the bin is out of range).

plot,adp-method 399

• which=24 yields a time-averaged profile of the first component of velocity (see which=19 for
the meaning of the component, in various coordinate systems).

• which=25 as for 24, but the second component.

• which=26 as for 24, but the third component.

• which=27 as for 24, but the fourth component (if that makes sense, for the given instrument).

• which=28 or "uv" yields velocity plot in the horizontal plane, i.e. u[2] versus u[1]. If the
number of data points is small, a scattergraph is used, but if it is large, smoothScatter() is
used.

• which=29 or "uv+ellipse" as the "uv" case, but with an added indication of the tidal ellipse,
calculated from the eigen vectors of the covariance matrix.

• which=30 or "uv+ellipse+arrow" as the "uv+ellipse" case, but with an added arrow indi-
cating the mean current.

• which=40 or "bottomRange" for average bottom range from all beams of the instrument.

• which=41 to 44 (or "bottomRange1" to "bottomRange4") for bottom range from beams 1 to
4.

• which=50 or "bottomVelocity" for average bottom velocity from all beams of the instru-
ment.

• which=51 to 54 (or "bottomVelocity1" to "bottomVelocity4") for bottom velocity from
beams 1 to 4.

• which=55 (or "heaving") for time-integrated, depth-averaged, vertical velocity, i.e. a time
series of heaving.

• which=60 (or "map") for a map.

• which=100 (or "soundSpeed") for a time series of sound speed.

• which=200 (or "accelerometerx") for a time-series of the x component of the accelerometer
reading.

• which=201 (or "accelerometery") for a time-series of the y component of the accelerometer
reading.

• which=202 (or "accelerometerz") for a time-series of the z component of the accelerometer
reading.

• which=210 (or "magnetometerx") for a time-series of the x component of the magnetometer
reading.

• which=211 (or "magnetometery") for a time-series of the y component of the magnetometer
reading.

• which=212 (or "magnetometerz") for a time-series of the z component of the magnetometer
reading.

In addition to the above, the following shortcuts are defined:

• which="velocity" equivalent to which=1:3 or 1:4 (depending on the device) for velocity
components.

• which="amplitude" equivalent to which=5:7 or 5:8 (depending on the device) for backscat-
ter intensity components.

400 plot,adp-method

• which="quality" equivalent to which=9:11 or 9:12 (depending on the device) for quality
components.

• which="hydrography" equivalent to which=14:15 for temperature and pressure.

• which="angles" equivalent to which=16:18 for heading, pitch and roll.

• which="accelerometer" to plot a 3-panel timeseries of acceleration, equivalent to which=110:102.

The color scheme for image plots (which in 1:12) is provided by the col argument, which is passed
to image() to do the actual plotting. See “Examples” for some comparisons.

A common quick-look plot to assess mooring movement is to use which=15:18 (pressure being
included to signal the tide, and tidal currents may dislodge a mooring or cause it to settle).

By default, plot,adp-method uses a zlim value for the image() that is constructed to contain all
the data, but to be symmetric about zero. This is done on a per-panel basis, and the scale is plotted
at the top-right corner, along with the name of the variable being plotted. You may also supply zlim
as one of the . . . arguments, but be aware that a reasonable limit on horizontal velocity components
is unlikely to be of much use for the vertical component.

A good first step in the analysis of measurements made from a moored device (stored in d, say) is
to do plot(d, which=14:18). This shows time series of water properties and sensor orientation,
which is helpful in deciding which data to trim at the start and end of the deployment, because they
were measured on the dock or on the ship as it travelled to the mooring site.

Value

A list is silently returned, containing xat and yat, values that can be used by oce.grid() to add a
grid to the plot.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method,
plotProfile(), plotScan(), plotTS(), tidem-class

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

plot,adv-method 401

Examples

library(oce)
data(adp)
plot(adp, which = 1:3)
plot(adp, which = "temperature", tformat = "%H:%M")

plot,adv-method Plot an adv Object

Description

Plot adv data.

Usage

S4 method for signature 'adv'
plot(
x,
which = c(1:3, 14, 15),
col,
titles,
type = "l",
lwd = par("lwd"),
drawTimeRange = getOption("oceDrawTimeRange"),
drawZeroLine = FALSE,
useSmoothScatter,
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1.5, mgp[1] + 1.5, 1.5, 1.5),
tformat,
marginsAsImage = FALSE,
cex = par("cex"),
cex.axis = par("cex.axis"),
cex.lab = par("cex.lab"),
cex.main = par("cex.main"),
xlim,
ylim,
brushCorrelation,
colBrush = "red",
main = "",
debug = getOption("oceDebug"),
...

)

402 plot,adv-method

Arguments

x an adv object.

which List of desired plot types. These are graphed in panels running down from the
top of the page. See “Details” for the meanings of various values of which.

col Optional indication of color(s) to use. If not provided, the default for images is
oce.colorsPalette(128,1), and for lines and points is black.

titles Optional vector of character strings to be used as labels for the plot panels. For
images, these strings will be placed in the right hand side of the top margin. For
timeseries, these strings are ignored. If this is provided, its length must equal
that of which.

type Type of plot, as for plot().

lwd If the plot is of a time-series or scattergraph format with lines, this is used in the
usual way; otherwise, e.g. for image formats, this is ignored.

drawTimeRange Logical value that applies to panels with time as the horizontal axis, indicating
whether to draw the time range in the top-left margin of the plot.

drawZeroLine Logical value indicating whether to draw zero lines on velocities.
useSmoothScatter

Logical value indicating whether to use smoothScatter() in various plots, such
as which="uv". If not provided a default is used, with smoothScatter() being
used if there are more than 2000 points to plot.

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar Value to be used with par("mar").

tformat Optional argument passed to oce.plot.ts(), for plot types that call that func-
tion. (See strptime() for the format used.)

marginsAsImage Logical value indicating whether to put a wide margin to the right of time-series
plots, matching the space used up by a palette in an imagep() plot.

cex numeric character expansion factor for plot symbols; see par().
cex.axis, cex.lab, cex.main

character expansion factors for axis numbers, axis names and plot titles; see
par().

xlim Optional 2-element list for xlim, or 2-column matrix, in which case the rows are
used, in order, for the panels of the graph.

ylim Optional 2-element list for ylim, or 2-column matrix, in which case the rows are
used, in order, for the panels of the graph.

brushCorrelation

Optional number between 0 and 100, indicating a per-beam correlation thresh-
old below which data are to be considered suspect. If the plot type is p, the
suspect points (velocity, backscatter amplitude, or correlation) will be colored
red; otherwise, this argument is ignored.

colBrush Color to use for brushed (bad) data, if brushCorrelation is active.

main Main title for plot, used just on the top panel, if there are several panels.

plot,adv-method 403

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... Optional arguments passed to plotting functions.

Details

Creates a multi-panel summary plot of data measured by an ADV. The panels are controlled by the
which argument. (Note the gaps in the sequence, e.g. 4 and 8 are not used.)

• which=1 to 3 (or "u1" to "u3") yield timeseries of the first, second, and third components of
velocity (in beam, xyz or enu coordinates).

• which=4 is not permitted (since ADV are 3-beam devices)

• which=5 to 7 (or "a1" to "a3") yield timeseries of the amplitudes of beams 1 to 3. (Note that
the data are called data$a[,1], data$a[,2] and data$a[,3], for these three timeseries.)

• which=8 is not permitted (since ADV are 3-beam devices)

• which=9 to 11 (or "q1" to "q3") yield timeseries of correlation for beams 1 to 3. (Note that
the data are called data$c[,1], data$c[,2] and data$c[,3], for these three timeseries.)

• which=12 is not permitted (since ADVs are 3-beam devices)

• which=13 is not permitted (since ADVs do not measure salinity)

• which=14 or which="temperature" yields a timeseries of temperature.

• which=15 or which="pressure" yields a timeseries of pressure.

• which=16 or which="heading" yields a timeseries of heading.

• which=17 or which="pitch"yields a timeseries of pitch.

• which=18 or which="roll"yields a timeseries of roll.

• which=19 to 21 yields plots of correlation versus amplitude, for beams 1 through 3, using
smoothScatter().

• which=22 is not permitted (since ADVs are 3-beam devices)

• which=23 or "progressive vector" yields a progressive-vector diagram in the horizontal
plane, plotted with asp=1, and taking beam1 and beam2 as the eastward and northward com-
ponents of velocity, respectively.

• which=28 or "uv" yields velocity plot in the horizontal plane, i.e. u[2] versus u[1]. If the
number of data points is small, a scattergraph is used, but if it is large, smoothScatter() is
used.

• which=29 or "uv+ellipse" as the "uv" case, but with an added indication of the tidal ellipse,
calculated from the eigen vectors of the covariance matrix.

• which=30 or "uv+ellipse+arrow" as the "uv+ellipse" case, but with an added arrow indi-
cating the mean current.

• which=50 or "analog1" plots a time series of the analog1 signal, if there is one.

• which=51 or "analog2" plots a time series of the analog2 signal, if there is one.

• which=100 or "voltage" plots the voltage as a timeseries, if voltage exists in the dataset.

In addition to the above, there are some groupings defined:

404 plot,amsr-method

• which="velocity" equivalent to which=1:3 (three velocity components)

• which="amplitude" equivalent to which=5:7 (three amplitude components)

• which="backscatter" equivalent to which=9:11 (three backscatter components)

• which="hydrography" equivalent to which=14:15 (temperature and pressure)

• which="angles" equivalent to which=16:18 (heading, pitch and roll)

Author(s)

Dan Kelley

See Also

The documentation for adv explains the structure of ADV objects, and also outlines the other func-
tions dealing with them.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method,
plotProfile(), plotScan(), plotTS(), tidem-class

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

Examples

library(oce)
data(adv)
plot(adv)

plot,amsr-method Plot an amsr Object

Description

Plot an image of a component of an amsr object.

plot,amsr-method 405

Usage

S4 method for signature 'amsr'
plot(
x,
y,
asp = NULL,
breaks,
col,
colormap,
zlim,
zlab,
pass = NULL,
missingColor,
debug = getOption("oceDebug"),
...

)

Arguments

x an amsr object.

y character value indicating the name of the band to plot; if not provided, SST (or
a variant thereof) is used; see the documentation for the amsr class for a list of
bands.

asp optional numerical value giving the aspect ratio for plot. The default value,
NULL, means to use an aspect ratio of 1 for world views, and a value computed
from ylim, if the latter is specified in the ... argument.

breaks optional numeric vector of the z values for breaks in the color scheme. If
colormap is provided, it takes precedence over breaks and col.

col optional argument, either a vector of colors corresponding to the breaks, of
length 1 less than the number of breaks, or a function specifying colors. If nei-
ther col or colormap is provided, then col defaults to oceColorsTemperature().
If colormap is provided, it takes precedence over breaks and col.

colormap a specification of the colormap to use, as created with colormap(). If colormap
is NULL, which is the default, then a colormap is created to cover the range
of data values, using oceColorsTemperature color scheme. If colormap is pro-
vided, it takes precedence over breaks and col. See “Examples” for an example
of using the "turbo" color scheme.

zlim optional numeric vector of length 2, giving the limits of the plotted quantity. A
reasonable default is computed, if this is not given.

zlab optional character value that is shown in the top-right margin of the plot. If not
given, this defaults to the name of the plotted variable.

pass either NULL (the default), or character value that is either "ascending" or
"descending". The value of pass is only examined for realtime data, which
hold both ascending and descending passes in SST and related arrays.

missingColor optional list specifying colors to use for non-data categories. If not provided, a
default is used. For type 1, that default is list(land="papayaWhip", none="lightGray",

406 plot,amsr-method

bad="gray", rain="plum", ice="mediumVioletRed"). For type 2, it is list(coast="gray",
land="papayaWhip", noObs="lightGray", seaIce="mediumVioletRed"). Any
colors may be used in place of these, but the names must match, and all names
must be present.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

... extra arguments passed to imagep(), e.g. to control the view with xlim (for
longitude) and ylim (for latitude).

Details

In addition to fields named directly in the object, such as SSTDay and SSTNight, it is also possible
to plot computed fields, such as SST, which combines the day and night fields.

Author(s)

Dan Kelley

See Also

Other things related to amsr data: [[,amsr-method, [[<-,amsr-method, amsr, amsr-class, composite,amsr-method,
download.amsr(), read.amsr(), subset,amsr-method, summary,amsr-method

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,argo-method,
plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method, plot,gps-method,
plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Examples

library(oce)
data(coastlineWorld)
data(amsr) # see ?amsr for how to read and composite such objects

Example 1: plot with default color scheme, oceColorsTemperature()
plot(amsr, "SST")
lines(coastlineWorld[["longitude"]], coastlineWorld[["latitude"]])

Example 2: 'turbo' color scheme
plot(amsr, "SST", col = oceColorsTurbo)
lines(coastlineWorld[["longitude"]], coastlineWorld[["latitude"]])

plot,argo-method 407

plot,argo-method Plot an argo Object

Description

Plot a summary diagram for argo data.

Usage

S4 method for signature 'argo'
plot(
x,
which = 1,
level,
coastline = c("best", "coastlineWorld", "coastlineWorldMedium", "coastlineWorldFine",

"none"),
cex = 1,
pch = 1,
type = "p",
col = 1,
fill = FALSE,
projection = NULL,
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1.5, mgp[1] + 1.5, 1.5, 1.5),
tformat,
debug = getOption("oceDebug"),
...

)

Arguments

x an argo object.

which list of desired plot types, one of the following. Note that oce.pmatch() is used
to try to complete partial character matches, and that an error will occur if the
match is not complete (e.g. "salinity" matches to both "salinity ts" and
"salinity profile".).

• which=1, which="trajectory" or which="map" gives a plot of the argo
trajectory, with the coastline, if one is provided.

• which=2 or "salinity ts" gives a time series of salinity at the indicated
level(s)

• which=3 or "temperature ts" gives a time series of temperature at the
indicated level(s)

• which=4 or "TS" gives a TS diagram at the indicated level(s)
• which=5 or "salinity profile" gives a salinity profile
• which=6 or "temperature profile" gives a temperature profile

408 plot,argo-method

• which=7 or "sigma0 profile" gives a sigma0 profile
• which=8 or "spice profile" gives a spiciness profile, referenced to the

surface. (This is the same as using which=9.)
• which=9 or "spiciness0 profile" gives a profile of spiciness referenced

to a pressure of 0 dbar, i.e. the surface. (This is the same as using which=8.)
• which=10 or "spiciness1 profile" gives a profile of spiciness referenced

to a pressure of 1000 dbar.
• which=11 or "spiciness2 profile" gives a profile of spiciness referenced

to a pressure of 2000 dbar.

level depth pseudo-level to plot, for which=2 and higher. May be an integer, in which
case it refers to an index of depth (1 being the top) or it may be the string "all"
which means to plot all data.

coastline character string giving the coastline to be used in an Argo-location map, or
"best" to pick the one with highest resolution, or "none" to avoid drawing
the coastline.

cex size of plotting symbols to be used if type="p".

pch type of plotting symbols to be used if type="p".

type plot type, either "l" or "p".

col optional list of colors for plotting.

fill either a logical, indicating whether to fill the land with light-gray, or a color
name. Owing to problems with some projections, the default is not to fill.

projection character value indicating the projection to be used in trajectory maps. If this
is NULL, no projection is used, although the plot aspect ratio will be set to yield
zero shape distortion at the mean float latitude. If projection="automatic",
then one of two projections is used: stereopolar (i.e. "+proj=stere +lon_0=X"
where X is the mean longitude), or Mercator (i.e. "+proj=merc") otherwise.
Otherwise, projection must be a character string specifying a projection in the
notation used by oceProject() and mapPlot().

mgp a 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar").

tformat optional argument passed to oce.plot.ts(), for plot types that call that func-
tion. (See strptime() for the format used.)

debug debugging flag.

... optional arguments passed to plotting functions.

Value

None.

Author(s)

Dan Kelley

plot,bremen-method 409

See Also

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoGrid(),
argoNames2oceNames(), as.argo(), handleFlags,argo-method, read.argo(), read.argo.copernicus(),
subset,argo-method, summary,argo-method

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method, plot,gps-method,
plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Examples

library(oce)
data(argo)
tc <- cut(argo[["time"]], "year")
Example 1: plot map, which reveals float trajectory.
plot(argo, pch = as.integer(tc))
year <- substr(levels(tc), 1, 4)
data(topoWorld)
contour(topoWorld[["longitude"]], topoWorld[["latitude"]],

topoWorld[["z"]],
add = TRUE

)
legend("bottomleft", pch = seq_along(year), legend = year, bg = "white", cex = 3 / 4)

Example 2: plot map, TS, T(z) and S(z). Note the use
of handleFlags(), to skip over questionable data.
plot(handleFlags(argo), which = c(1, 4, 6, 5))

plot,bremen-method Plot a bremen Object

Description

Plot a bremen object. If the first argument seems to be a CTD dataset, this uses plot,ctd-method();
otherwise, that argument is assumed to be a ladp object, and a two-panel plot is created with
plot,ladp-method() to show velocity variation with pressure.

Usage

S4 method for signature 'bremen'
plot(x, type, ...)

410 plot,cm-method

Arguments

x a bremen object.

type Optional string indicating the type to which x should be coerced before plotting.
The choices are ctd and ladp.

... Other arguments, passed to plotting functions.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,cm-method, plot,coastline-method, plot,ctd-method, plot,gps-method,
plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to bremen data: [[,bremen-method, [[<-,bremen-method, bremen-class,
read.bremen(), summary,bremen-method

plot,cm-method Plot a cm Object

Description

Creates a multi-panel summary plot of data measured by a current meter.

Usage

S4 method for signature 'cm'
plot(
x,
which = c(1:2),
type = "l",
xlim,
ylim,
xaxs = "r",
yaxs = "r",
drawTimeRange = getOption("oceDrawTimeRange"),
drawZeroLine = FALSE,
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1.5, mgp[1] + 1.5, 1.5, 1.5),
small = 2000,
main = "",
tformat,

plot,cm-method 411

debug = getOption("oceDebug"),
...

)

Arguments

x a cm object.

which list of desired plot types. These are graphed in panels running down from the
top of the page. See “Details” for the meanings of various values of which.

type type of plot, as for plot().

xlim, ylim optional limit to the x and y axes, passed to oce.plot.ts() for time-series
plots.

xaxs, yaxs optional controls over the limits of the x and y axes, passed to oce.plot.ts()
for time-series plots. These values default to "r", meaning to use the regular
method of extend the plot past its normal limits. It is common to use "i" to
make the graph extend to the panel limits.

drawTimeRange boolean that applies to panels with time as the horizontal axis, indicating whether
to draw the time range in the top-left margin of the plot.

drawZeroLine boolean that indicates whether to draw zero lines on velocities.

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar").

small an integer indicating the size of data set to be considered "small", to be plotted
with points or lines using the standard plot() function. Data sets with more
than small points will be plotted with smoothScatter() instead.

main main title for plot, used just on the top panel, if there are several panels.

tformat optional argument passed to oce.plot.ts(), for plot types that call that func-
tion. (See strptime() for the format used.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... Optional arguments passed to plotting functions.

Details

The panels are controlled by the which argument, as follows.

• which=1 or which="u" for a time-series graph of eastward velocity, u, as a function of time.

• which=2 or which="v" for a time-series graph of northward velocity, u, as a function of time.

• which=3 or "progressive vector" for progressive-vector plot

• which=4 or "uv" for a plot of v versus u. (Dots are used for small datasets, and smoothScatter
for large ones.)

• which=5 or "uv+ellipse" as the "uv" case, but with an added indication of the tidal ellipse,
calculated from the eigen vectors of the covariance matrix.

412 plot,coastline-method

• which=6 or "uv+ellipse+arrow" as the "uv+ellipse" case, but with an added arrow indi-
cating the mean current.

• which=7 or "pressure" for pressure

• which=8 or "salinity" for salinity

• which=9 or "temperature" for temperature

• which=10 or "TS" for a TS diagram

• which=11 or "conductivity" for conductivity

• which=20 or "direction" for the direction of flow

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,coastline-method, plot,ctd-method, plot,gps-method,
plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to cm data: [[,cm-method, [[<-,cm-method, applyMagneticDeclination,cm-method,
as.cm(), cm, cm-class, read.cm(), rotateAboutZ(), subset,cm-method, summary,cm-method

Examples

library(oce)
data(cm)
summary(cm)
plot(cm)

plot,coastline-method Plot a coastline Object

Description

This function plots a coastline. An attempt is made to fill the space of the plot, and this is done by
limiting either the longitude range or the latitude range, as appropriate, by modifying the eastern or
northern limit, as appropriate.

plot,coastline-method 413

Usage

S4 method for signature 'coastline'
plot(
x,
xlab = "",
ylab = "",
showHemi = TRUE,
asp,
clongitude,
clatitude,
span,
lonlabels = TRUE,
latlabels = TRUE,
projection = NULL,
expand = 1,
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1, mgp[1] + 1, 1, 1),
bg,
fill,
type = "polygon",
border = NULL,
col = NULL,
axes = TRUE,
cex.axis = par("cex.axis"),
add = FALSE,
inset = FALSE,
geographical = 0,
longitudelim,
latitudelim,
debug = getOption("oceDebug"),
...

)

Arguments

x a coastline object.

xlab label for x axis

ylab label for y axis

showHemi logical indicating whether to show the hemisphere in axis tick labels.

asp Aspect ratio for plot. The default is for plot,coastline-method to set the
aspect ratio to give natural latitude-longitude scaling somewhere near the centre
latitude on the plot. Often, it makes sense to set asp yourself, e.g. to get correct
shapes at 45N, use asp=1/cos(45*pi/180). Note that the land mass is not
symmetric about the equator, so to get good world views you should set asp=1
or set ylim to be symmetric about zero. Any given value of asp is ignored,
if clongitude and clatitude are given (or if the latter two are inferred from
projection.

414 plot,coastline-method

clongitude, clatitude
optional center latitude of map, in decimal degrees. If both clongitude and
clatitude are provided, or alternatively if they can be inferred from substrings
+lon_0 and +lat_0 in projection, then any provided value of asp is ignored,
and instead the plot aspect ratio is computed based on the center latitude. If
clongitude and clatitude are known, then span must also be provided, and
in this case, it is not permitted to also specify longitudelim and latitudelim.

span optional suggested diagonal span of the plot, in kilometers. The plotted span is
usually close to the suggestion, although the details depend on the plot aspect
ratio and other factors, so some adjustment may be required to fine-tune a plot.
A value for span must be supplied, if clongitude and clatitude are supplied
(or inferred from projection).

lonlabels, latlabels
optional vectors of longitude and latitude to label on the sides of plot, passed
to mapPlot() to control axis labelling, for plots done with map projections (i.e.
for cases in which projection is not NULL).

projection optional map projection to use (see the mapPlot() argument of the same name).
If set to FALSE then no projection is used, and the data are plotted in a cartesion
frame, with aspect ratio set to reduce distortion near the middle of the plot.
This option is useful if the coastline produces spurious horizontal lines owing
to islands crossing the plot edges (a problem that plagues map projections). If
projection is not set, a Mercator projection is used for latitudes below about 70
degrees, as if projection="+proj=merc" had been supplied, or a Stereopolar
one is used as if projection="+proj=stere". Otherwise, projection must
be a character string identifying a projection accepted by mapPlot().

expand numerical factor for the expansion of plot limits, showing area outside the plot,
e.g. if showing a ship track as a coastline, and then an actual coastline to show
the ocean boundary. The value of expand is ignored if either xlim or ylim is
given.

mgp 3-element numerical vector to use for par("mgp"), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar").

bg optional color to be used for the background of the map. This comes in handy
for drawing insets (see “details”).

fill a legacy parameter that will be permitted only temporarily; see “History”.

type indication of type; may be "polygon", for a filled polygon, "p" for points, "l"
for line segments, or "o" for points overlain with line segments. See color for
a note on how the the value of type alters the meaning of the color argument.

border color used to indicate land (if type="polygon") or the coastline and interna-
tional borders (if type="l").

col either the color for filling polygons (if type="polygon") or the color of the
points and line segments (if type="p", type="l", or type="o").

axes boolean, set to TRUE to plot axes.

cex.axis value for axis font size factor.

plot,coastline-method 415

add boolean, set to TRUE to draw the coastline on an existing plot. Note that this
retains the aspect ratio of that existing plot, so it is important to set that correctly,
e.g. with asp=1/cos(lat * pi / 180), where clat is the central latitude of the
plot.

inset set to TRUE for use within plotInset(). The effect is to prevent the present
function from adjusting margins, which is necessary because margin adjustment
is the basis for the method used by plotInset().

geographical flag indicating the style of axes. With geographical=0, the axes are conven-
tional, with decimal degrees as the unit, and negative signs indicating the south-
ern and western hemispheres. With geographical=1, the signs are dropped,
with axis values being in decreasing order within the southern and western
hemispheres. With geographical=2, the signs are dropped and the axes are
labelled with degrees, minutes and seconds, as appropriate, and hemispheres
are indicated with letters. With geographical=3, things are the same as for
geographical=2, but the hemisphere indication is omitted. Finally, with geographical=4,
unsigned numbers are used, followed by letters N in the northern hemisphere, S
in the southern, E in the eastern, and W in the western.

longitudelim this and latitudelim provide a second way to suggest plot ranges. Note that
these may not be supplied if clongitude, clatitude and span are given.

latitudelim see longitudelim.

debug set to TRUE to get debugging information during processing.

... optional arguments passed to plotting functions. For example, set yaxp=c(-90,90,4)
for a plot extending from pole to pole.

Details

If longitudelim, latitudelim and projection are all given, then these arguments are passed to
mapPlot() to produce the plot. (The call uses bg for col, and uses col, fill and border directly.)
If the results need further customization, users should use mapPlot() directly.

If projection is provided without longitudelim or latitudelim, then mapPlot() is still called,
but longitudelim and latitudelim are computed from clongitude, clatitude and span.

If projection is not provided, much simpler plots are produced. These are Cartesian, with aspect
ratio set to minimize shape distortion at the central latitude. Although these are crude, they have the
benefit of always working, which cannot be said of true map projections, which can be problematic
in various ways owing to difficulties in inverting projection calculations.

To get an inset map inside another map, draw the first map, do par(new=TRUE), and then call
plot,coastline-method() with a value of mar that moves the inset plot to a desired location on
the existing plot, and with bg="white".

Value

None.

History

Until February, 2016, plot,coastline-method relied on a now-defunct argument fill to control
colors; col is to be used now, instead.

416 plot,ctd-method

Author(s)

Dan Kelley

See Also

The documentation for the coastline class explains the structure of coastline objects, and also out-
lines the other functions dealing with them.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,ctd-method, plot,gps-method,
plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(),
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

Examples

library(oce)
par(mar = c(2, 2, 1, 1))
data(coastlineWorld)
plot(coastlineWorld)
plot(coastlineWorld, clongitude = -63.6, clatitude = 44.6, span = 1000)

Canada in Lambert projection
plot(coastlineWorld,

clongitude = -95, clatitude = 65, span = 5500,
grid = 10, projection = "+proj=laea +lon_0=-100 +lat_0=55"

)

plot,ctd-method Plot a ctd Object

Description

Plot CTD data in any of many different ways. In many cases, the best choice is to use default values
for all parameters other than the first. This yields a 4-panel plot that displays a basic overview of the
data, with a combined profile of salinity and temperature at the top left, a combined plot of density
and the square of buoyancy frequency at top right, a TS diagram at bottom left, and a map at bottom
right.

plot,ctd-method 417

Usage

S4 method for signature 'ctd'
plot(
x,
which,
col = par("fg"),
fill,
borderCoastline = NA,
colCoastline = "lightgray",
eos = getOption("oceEOS", default = "gsw"),
ref.lat = NaN,
ref.lon = NaN,
grid = TRUE,
coastline = "best",
Slim,
Clim,
Tlim,
plim,
densitylim,
sigmalim,
N2lim,
Rrholim,
dpdtlim,
timelim,
drawIsobaths = FALSE,
clongitude,
clatitude,
span,
showHemi = TRUE,
lonlabels = TRUE,
latlabels = TRUE,
latlon.pch = 20,
latlon.cex = 1.5,
latlon.col = "red",
projection = NULL,
cex = 1,
cex.axis = par("cex.axis"),
pch = 1,
useSmoothScatter = FALSE,
df,
keepNA = FALSE,
type,
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1.5, mgp[1] + 1.5, mgp[1] + 1.5, mgp[1] + 1),
inset = FALSE,
add = FALSE,
debug = getOption("oceDebug"),
...

418 plot,ctd-method

)

Arguments

x a ctd object.

which a numeric or character vector specifying desired plot types. If which is not sup-
plied, a default will be used. This default depends on deploymentType in the
metadata slot of x. If deploymentType is "profile" or missing, then which
defaults to c(1, 2, 3, 5). If deploymentType is "moored" or "thermosalinograph"
then which defaults to c(30, 3, 31, 5). Finally, if deploymentType is towyo
then which defaults to c(30, 31, 32, 3).
The details of individual which values are as follows. Some of the entries re-
fer to the EOS (equation of state for seawater), which may either "gsw" for the
modern Gibbs Seawater system, or "unesco" for the older UNESCO system.
The EOS may be set with the eos argument to plot,ctd-method() or by using
options(), with options(oceEOS="unesco") or options(oceEOS="unesco").
The default EOS is "gsw".

• which=1 or which="salinity+temperature" gives a combined profile of
temperature and salinity. If the EOS is "gsw" then Conservative Temper-
ature and Absolute Salinity are shown; otherwise in-situ temperature and
practical salinity are shown.

• which=2 or which="density+N2" gives a combined profile of density anomaly,
computed with swSigma0(), along with the square of the buoyancy fre-
quency, computed with swN2(). The eos parameter is passed to each of
these functions, so the desired EOS is used.

• which=3 or which="TS" gives a TS plot. If the EOS is "gsw", T is Conser-
vative Temperature and S is Absolute Salinity; otherwise, they are in-situ
temperature and practical salinity, respectively.

• which=4 or which="text" gives a textual summary of some aspects of the
data.

• which=5 or which="map" gives a map plotted with plot,coastline-method(),
with a dot for the station location. Notes near the top boundary of the map
give the station number, the sampling date, and the name of the chief scien-
tist, if these are known. Note that the longitude will be converted to a value
between -180 and 180 before plotting. (See also notes about span.)

• which=5.1 as for which=5, except that the file name is drawn above the
map.

• which=6 or which="density+dpdt" gives a profile of density and dP/dt,
which is useful for evaluating whether the instrument is dropping properly
through the water column. If the EOS is "gsw" then σ0 is shown; otherwise,
σθ is shown.

• which=7 or which="density+time" gives a profile of density and time.
• which=8 or which="index" gives a profile of index number, which can

provide useful information for trimming with ctdTrim().
• which=9 or which="salinity" gives a profile of Absolute Salinity if the

EOS is "gsw", or practical salinity otherwise.

plot,ctd-method 419

• which=10 or which="temperature" gives a profile of Conservative Tem-
perature if the EOS is "gsw", or in-situ temperature otherwise.

• which=11 or which="density" gives a profile of density as computed with
swRho(), to which the eos parameter is passed.

• which=12 or which="N2" gives an N2 profile.
• which=13 or which="spice" gives a profile of the UNESCO-defined spice

variable.
• which=14 or which="tritium" gives a tritium profile.
• which=15 or which="Rrho" gives a diffusive-case density ratio profile.
• which=16 or which="RrhoSF" gives a salt-finger case density ratio profile.
• which=17 or which="conductivity" gives a conductivity profile.
• which=20 or which="CT" gives a profile of Conservative Temperature.
• which=21 or which="SA" gives a profile of Absolute Salinity.
• which=30 or which="Sts" gives a time series of Salinity Absolute Salinity

if the EOS is "gsw" or practical salinity otherwise.
• which=31 or which="Tts" gives a time series of Conservative Temperature

if the EOS is "gsw" or in-situ temperature otherwise.
• which=32 or which="pts" gives a time series of pressure
• which=33 or which="rhots" gives a time series of density anomaly, σ0 if

the EOS is "gsw" or σθ otherwise.
• otherwise, which is interpreted as a character value to be checked against

the data and dataDerived fields returned by x[["?"]. If a match is found
then a profile of the corresponding quantity is plotted. If there is no match,
an error is reported.

col color of lines or symbols.

fill a legacy parameter that will be permitted only temporarily; see “History”.
borderCoastline

color of coastlines and international borders, passed to plot,coastline-method()
if a map is included in which.

colCoastline fill color of coastlines and international borders, passed to plot,coastline-method()
if a map is included in which. Set to NULL to avoid filling.

eos character value indicating the equation of state to be used, either "unesco" or
"gsw". The default is to use a value stored with options() as e.g. options(oceEOS="unesco").

ref.lat latitude of reference point for distance calculation. The permitted range is -90
to 90.

ref.lon longitude of reference point for distance calculation. The permitted range is
-180 to 180.

grid logical value indicating whether to draw a grid on the plot.

coastline a specification of the coastline to be used for which="map". This may be a
coastline object, whether built-in or supplied by the user, or a character string.
If the later, it may be the name of a built-in coastline ("coastlineWorld",
"coastlineWorldFine", or "coastlineWorldCoarse"), or "best", to choose
a suitable coastline for the locale, or "none" to prevent the drawing of a coast-
line. There is a speed penalty for providing coastline as a character string,

420 plot,ctd-method

because it forces plot,coastline-method() to load it on every call. So, if
plot,coastline-method() is to be called several times for a given coastline,
it makes sense to load it in before the first call, and to supply the object as an
argument, as opposed to the name of the object.

Slim, Clim, Tlim, plim, densitylim, sigmalim, N2lim, Rrholim, dpdtlim,
timelim

optional numeric vectors of length 2, that give axis limits for salinity (or Abso-
lute Salinity, if eos is "gsw"), conductivity, in-situ or potential temperature (or
Conservative Temperature, if eos is ‘"gsw"’), pressure, density, density anomaly
(either sigma-theta or sigma0), square of buoyancy frequency, density ratio,
dp/dt, and time, respectively.

drawIsobaths logical value indicating whether to draw depth contours on maps, in addition to
the coastline. The argument has no effect except for panels in which the value
of which equals "map" or the equivalent numerical code, 5. If drawIsobaths
is FALSE, then no contours are drawn. If drawIsobaths is TRUE, then contours
are selected automatically, using pretty(c(0, 300)) if the station depth is under
100m or pretty(c(0, 5500)) otherwise. If drawIsobaths is a numerical vector,
then the indicated depths are drawn. For plots drawn with projection set to
NULL, the contours are added with contour() and otherwise mapContour() is
used. To customize the resultant contours, e.g. setting particular line types or
colors, users should call these functions directly (see e.g. Example 2).

clongitude, clatitude, span
controls for the map area view, used only if which="map". clongitude and
clatitude specify the centre of the view, and span specifies the approximate
extend of the view, in kilometres. (If span is not given, it is be determined as a
small multiple of the distance to the nearest point of land, in an attempt to show
the station in familiar geographical context.)

showHemi, lonlabels, latlabels
controls for axis labelling, used only if which="map". showHemi is logical
value indicating whether to show hemisphere in axis tick labels. lonlabels
and latlabels are numeric and character values that control the axis labelling.

latlon.pch, latlon.cex, latlon.col
controls for station location, used only if which="map". latlon.pch sets the
symbol code, latlon.cex sets the character expansion factor, and latlon.col
sets the colour.

projection controls the map projection (if any), and ignored unless which="map". The pos-
sibilities are as follows. (1) If projection=NULL (the default) then no projec-
tion will be used; the map will simply show longitude and latitude in a Cartesian
frame, scaled to retain shapes at the centre. (2) If projection="automatic"then either a Mercator or Stereographic projection will be used, depending on whether the CTD station is within 70 degrees of the equator or at higher latitudes. (3) Ifprojection‘
is a string in the format used by mapPlot(), then it is is passed to that function.

cex size to be used for plot symbols (see par()).

cex.axis size factor for axis labels (see par()).

pch code for plotting symbol (see par()).
useSmoothScatter

logical value indicating whether to use smoothScatter() instead of plot() to
draw the plot.

plot,ctd-method 421

df optional numeric argument that is ignored except for plotting buoyancy fre-
quency; in that case, it is passed to swN2().

keepNA logical value indicating whether NA values will yield breaks in lines drawn if
type is b, l, or o. The default value is FALSE. Setting keepNA to TRUE can be
helpful when working with multiple profiles strung together into one ctd object,
which otherwise would have extraneous lines joining the deepest point in one
profile to the shallowest in the next profile.

type the type of plot to draw, using the same scheme as plot(). If supplied, this is
increased to be the same length as which, if necessary, and then supplied to each
of the individual plot calls. If it is not supplied, then those plot calls use defaults
(e.g. using a line for plotProfile(), using dots for plotTS(), etc).

mgp three-element numerical vector specifying axis-label geometry, passed to par().
The default establishes tighter margins than in the usual R setup.

mar four-element numerical vector specifying margin geometry, passed to par().
The default establishes tighter margins than in the usual R setup. Note that
the value of mar is ignored for the map panel of multi-panel maps; instead, the
present value of par("mar") is used, which in the default call will make the map
plot region equal that of the previously-drawn profiles and TS plot.

inset logical value indicating whether this function is being used as an inset. The ef-
fect is to prevent the present function from adjusting margins, which is necessary
because margin adjustment is the basis for the method used by plotInset().

add logical value indicating whether to add to an existing plot. This only works if
length(which)=1, and it will yield odd results if the value of which does not
match that in the previous plots.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

... optional arguments passed to plotting functions.

Details

The default values of which and other arguments are chosen to be useful for quick overviews of
data. However, for detailed work it is common to call the present function with just a single value
of which, e.g. with four calls to get four panels. The advantage of this is that it provides much more
control over the display, and also it permits the addition of extra display elements (lines, points,
margin notes, etc.) to the individual panels.

Note that panels that draw more than one curve (e.g. which="salinity+temperature" draws
temperature and salinity profiles in one graph), the value of par("usr") is established by the second
profile to have been drawn. Some experimentation will reveal what this profile is, for each permitted
which case, although it seems unlikely that this will help much ... the simple fact is that drawing
two profiles in one graph is useful for a quick overview, but not useful for e.g. interactive analysis
with locator() to flag bad data, etc.

422 plot,ctd-method

History of Changes

• January 2022:

– Add ability to profile anything stored in the data slot, and anything that can be computed
from information in that slot. The list of possibilities is found by examining the data and
dataDerived elements of x[["?"]].

– Drop the lonlim and latlim parameters, marked for removal in 2014; use clongitude,
clatitude and span instead (see plot,coastline-method()).

• February 2016:

– Drop the fill parameter for land colour; use colCoastline instead.
– Add the borderCoastline argument, to control the colour of coastlines and international

boundaries.

Author(s)

Dan Kelley

See Also

The documentation for ctd explains the structure of CTD objects, and also outlines the other func-
tions dealing with them.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,gps-method,
plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plotProfile(),
plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

1. simple plot
library(oce)
data(ctd)
plot(ctd)

2. how to customize depth contours
par(mfrow = c(1, 2))
data(section)
stn <- section[["station", 105]]
plot(stn, which = "map", drawIsobaths = TRUE)

plot,echosounder-method 423

plot(stn, which = "map")
data(topoWorld)
tlon <- topoWorld[["longitude"]]
tlat <- topoWorld[["latitude"]]
tdep <- -topoWorld[["z"]]
contour(tlon, tlat, tdep,

drawlabels = FALSE,
levels = seq(1000, 6000, 1000), col = "lightblue", add = TRUE

)
contour(tlon, tlat, tdep,

vfont = c("sans serif", "bold"),
levels = stn[["waterDepth"]], col = "red", lwd = 2, add = TRUE

)

plot,echosounder-method

Plot an echosounder Object

Description

Plot echosounder data. Simple linear approximation is used when a newx value is specified with
the which=2 method, but arguably a gridding method should be used, and this may be added in the
future.

Usage

S4 method for signature 'echosounder'
plot(
x,
which = 1,
beam = "a",
newx,
xlab,
ylab,
xlim,
ylim,
zlim,
type = "l",
col,
lwd = 2,
despike = FALSE,
drawBottom,
ignore = 5,
drawTimeRange = FALSE,
drawPalette = TRUE,
radius,
coastline,

424 plot,echosounder-method

mgp = getOption("oceMgp"),
mar = c(mgp[1], mgp[1] + 1.5, mgp[2] + 1/2, 1/2),
atTop,
labelsTop,
tformat,
debug = getOption("oceDebug"),
...

)

Arguments

x an echosounder object.

which list of desired plot types: which=1 or which="zt image" gives a z-time im-
age, which=2 or which="zx image" gives a z-distance image, and which=3 or
which="map" gives a map showing the cruise track. In the image plots, the dis-
play is of log10() of amplitude, trimmed to zero for any amplitude values less
than 1 (including missing values, which equal 0). Add 10 to the numeric codes
to get the secondary data (non-existent for single-beam files,

beam a more detailed specification of the data to be plotted. For single-beam data,
this may only be "a". For dual-beam data, this may be "a" for the narrow-beam
signal, or "b" for the wide-beam signal. For split-beam data, this may be "a"
for amplitude, "b" for x-angle data, or "c" for y-angle data.

newx optional vector of values to appear on the horizontal axis if which=1, instead of
time. This must be of the same length as the time vector, because the image is
remapped from time to newx using approx().

xlab, ylab optional labels for the horizontal and vertical axes; if not provided, the labels
depend on the value of which.

xlim optional range for x axis.

ylim optional range for y axis.

zlim optional range for color scale.

type type of graph, "l" for line, "p" for points, or "b" for both.

col a function providing the color scale for image plots. This value is passed to
imagep(), which draws the images. Since imagep() defaults col to oceColorsViridis(),
that is effectively also the default for the present function. (Prior to 2023-03-18,
the present function defaulted col to oceColorsJet().)

lwd line width (ignored if type="p").

despike remove vertical banding by using smooth() to smooth across image columns,
row by row.

drawBottom optional flag used for section images. If TRUE, then the bottom is inferred as a
smoothed version of the ridge of highest image value, and data below that are
grayed out after the image is drawn. If drawBottom is a color, then that color
is used, instead of white. The bottom is detected with findBottom(), using the
ignore value described next.

ignore optional flag specifying the thickness in metres of a surface region to be ignored
during the bottom-detection process. This is ignored unless drawBottom=TRUE.

plot,echosounder-method 425

drawTimeRange if TRUE, the time range will be drawn at the top. Ignored except for which=2,
i.e. distance-depth plots.

drawPalette if TRUE, the palette will be drawn.

radius radius to use for maps; ignored unless which=3 or which="map".

coastline coastline to use for maps; ignored unless which=3 or which="map".

mgp 3-element numerical vector to use for par("mgp"), and also for par("mar"),
computed from this. The default is tighter than the R default, in order to use
more space for the data and less for the axes.

mar value to be used with par("mar").

atTop optional vector of time values, for labels at the top of the plot produced with
which=2. If labelsTop is provided, then it will hold the labels. If labelsTop
is not provided, the labels will be constructed with the format() function, and
these may be customized by supplying a format in the ... arguments.

labelsTop optional vector of character strings to be plotted above the atTop times. Ignored
unless atTop was provided.

tformat optional argument passed to imagep(), for plot types that call that function.
(See strptime() for the format used.)

debug set to an integer exceeding zero, to get debugging information during processing.

... optional arguments passed to plotting functions. For example, for maps, it is
possible to specify the radius of the view in kilometres, with radius.

Value

A list is silently returned, containing xat and yat, values that can be used by oce.grid() to add a
grid to the plot.

Author(s)

Dan Kelley, with extensive help from Clark Richards

See Also

Other things related to echosounder data: [[,echosounder-method, [[<-,echosounder-method,
as.echosounder(), echosounder, echosounder-class, findBottom(), read.echosounder(),
subset,echosounder-method, summary,echosounder-method

Examples

library(oce)
data(echosounder)
plot(echosounder, drawBottom = TRUE)

426 plot,gps-method

plot,gps-method Plot a gps Object

Description

This function plots a gps object. An attempt is made to use the whole space of the plot, and this
is done by limiting either the longitude range or the latitude range, as appropriate, by modifying
the eastern or northern limit, as appropriate. To get an inset map inside another map, draw the first
map, do par(new=TRUE), and then call plot.gps with a value of mar that moves the inset plot to a
desired location on the existing plot, and with bg="white".

Usage

S4 method for signature 'gps'
plot(
x,
xlab = "",
ylab = "",
asp,
clongitude,
clatitude,
span,
projection,
expand = 1,
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1, mgp[1] + 1, 1, 1),
bg,
axes = TRUE,
cex.axis = par("cex.axis"),
add = FALSE,
inset = FALSE,
geographical = 0,
debug = getOption("oceDebug"),
...

)

Arguments

x a gps object.

xlab label for x axis

ylab label for y axis

asp Aspect ratio for plot. The default is for plot.gps to set the aspect ratio to give
natural latitude-longitude scaling somewhere near the centre latitude on the plot.
Often, it makes sense to set asp yourself, e.g. to get correct shapes at 45N, use
asp=1/cos(45*pi/180). Note that the land mass is not symmetric about the
equator, so to get good world views you should set asp=1 or set ylim to be

plot,gps-method 427

symmetric about zero. Any given value of asp is ignored, if clongitude and
clatitude are given.

clongitude, clatitude
optional center latitude of map, in decimal degrees. If both clongitude and
clatitude are provided, then any provided value of asp is ignored, and instead
the plot aspect ratio is computed based on the center latitude. If clongitude
and clatitude are provided, then span must also be provided.

span optional suggested span of plot, in kilometers. The suggestion is an upper limit
on the scale; depending on the aspect ratio of the plotting device, the radius may
be smaller than span. A value for span must be supplied, if clongitude and
clatitude are supplied.

projection optional map projection to use (see mapPlot()); if not given, a cartesian frame
is used, scaled so that gps shapes near the centre of the plot are preserved. If a
projection is provided, the coordinate system will bear an indirect relationship
to longitude and longitude, and further adornment of the plot must be done with
e.g. mapPoints() instead of points().

expand numerical factor for the expansion of plot limits, showing area outside the plot,
e.g. if showing a ship track as a gps, and then an actual gps to show the ocean
boundary. The value of expand is ignored if either xlim or ylim is given.

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar").
bg optional color to be used for the background of the map. This comes in handy

for drawing insets (see “details”).
axes boolean, set to TRUE to plot axes.
cex.axis value for axis font size factor.
add boolean, set to TRUE to draw the gps on an existing plot. Note that this retains

the aspect ratio of that existing plot, so it is important to set that correctly, e.g.
with asp=1/cos(lat * pi / 180), where clat is the central latitude of the plot.

inset set to TRUE for use within plotInset(). The effect is to prevent the present
function from adjusting margins, which is necessary because margin adjustment
is the basis for the method used by plotInset().

geographical flag indicating the style of axes. If geographical=0, the axes are conventional,
with decimal degrees as the unit, and negative signs indicating the southern and
western hemispheres. If geographical=1, the signs are dropped, with axis val-
ues being in decreasing order within the southern and western hemispheres. If
geographical=2, the signs are dropped and the axes are labelled with degrees,
minutes and seconds, as appropriate.

debug set to TRUE to get debugging information during processing.
... optional arguments passed to plotting functions. For example, set yaxp=c(-90,90,4)

for a plot extending from pole to pole.

Author(s)

Dan Kelley

428 plot,ladp-method

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to gps data: [[,gps-method, [[<-,gps-method, as.gps(), gps-class, read.gps(),
summary,gps-method

plot,ladp-method Plot an ladp Object

Description

Uses plotProfile() to create panels of depth variation of easterly and northerly velocity compo-
nents.

Usage

S4 method for signature 'ladp'
plot(x, which = c("u", "v"), ...)

Arguments

x an ladp object.

which a character vector storing names of items to be plotted.

... Other arguments, passed to plotting functions.

Author(s)

Dan Kelley

See Also

Other things related to ladp data: [[,ladp-method, [[<-,ladp-method, as.ladp(), ladp-class,
summary,ladp-method

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,landsat-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

plot,landsat-method 429

plot,landsat-method Plot a landsat Object

Description

Plot the data within a landsat image, or information computed from the data. The second category
includes possibilities such as an estimate of surface temperature and the "terralook" estimate of
a natural-color view.

Usage

S4 method for signature 'landsat'
plot(
x,
band,
which = 1,
decimate = TRUE,
zlim,
utm = FALSE,
col = oce.colorsPalette,
drawPalette = TRUE,
showBandName = TRUE,
alpha.f = 1,
red.f = 1.7,
green.f = 1.5,
blue.f = 6,
offset = c(0, -0.05, -0.2, 0),
transform = diag(c(red.f, green.f, blue.f, alpha.f)),
debug = getOption("oceDebug"),
...

)

Arguments

x a landsat object.

band If given, the name of the band. For Landsat-8 data, this may be one of: "aerosol",
"blue", "green", "red", "nir", "swir1", "swir2", "panchromatic", "cirrus",
"tirs1", or "tirs2". For Landsat-7 data, this may be one of "blue", "green",
"red", "nir", "swir1", "tirs1", "tirs2", "swir2", or "panchromatic". For
Landsat data prior to Landsat-7, this may be one of "blue", "green", "red",
"nir", "swir1", "tirs1", "tirs2", or "swir2". If band is not given, the
("tirs1") will be used if it exists in the object data, or otherwise the first band
will be used. In addition to the above, using band="temperature" will plot an
estimate of at-satellite brightness temperature, computed from the tirs1 band,
and band="terralook" will plot a sort of natural color by combining the red,
green, blue and nir bands according to the formula provided at https://lta.cr.usgs.gov/terralook/what_is_terralook
(a website that worked once, but failed as of Feb 2, 2017).

430 plot,landsat-method

which Desired plot type; 1=image, 2=histogram.

decimate An indication of the desired decimation, passed to imagep() for image plots.
The default yields faster plotting. Some decimation is sensible for full-size im-
ages, since no graphical displays can show 16 thousand pixels on a side.

zlim Either a pair of numbers giving the limits for the colorscale, or "histogram" to
have a flattened histogram (i.e. to maximally increase contrast throughout the
domain.) If not given, the 1 and 99 percent quantiles are calculated and used as
limits.

utm A logical value indicating whether to use UTS (easting and northing) instead of
longitude and latitude on plot.

col Either a function yielding colors, taking a single integer argument with the de-
sired number of colors, or the string "natural", which combines the informa-
tion in the red, green and blue bands and produces a natural-hue image. In
the latter case, the band designation is ignored, and the object must contain the
three color bands.

drawPalette Indication of the type of palette to draw, if any. See imagep() for details.

showBandName A logical indicating whether the band name is to plotted in the top margin, near
the right-hand side.

alpha.f Argument used if col="natural", to adjust colors with adjustcolor().

red.f Argument used if col="natural", to adjust colors with adjustcolor(). Higher
values of red.f cause red hues to be emphasized (e.g. dry land).

green.f Argument used if col="natural", to adjust colors with adjustcolor(). Higher
values of green.f emphasize green hues (e.g. forests).

blue.f Argument used if band="terralook", to adjust colors with adjustcolor().
Higher values of blue.f emphasize blue hues (e.g. ocean).

offset Argument used if band="terralook", to adjust colors with adjustcolor().

transform Argument used if band="terralook", to adjust colors with adjustcolor().

debug Set to a positive value to get debugging information during processing.

... optional arguments passed to plotting functions.

Details

For Landsat-8 data, the band may be one of: "aerosol", "blue", "green", "red", "nir", "swir1",
"swir2", "panchromatic", "cirrus", "tirs1", or "tirs2".

For Landsat-7 data, band may be one of "blue", "green", "red", "nir", "swir1", "tirs1",
"tirs2", "swir2", or "panchromatic".

For Landsat data prior to Landsat-7, band may be one of "blue", "green", "red", "nir", "swir1",
"tirs1", "tirs2", or "swir2".

If band is not given, the ("tirs1") will be used if it exists in the object data, or otherwise the first
band will be used.

In addition to the above there are also some pseudo-bands that can be plotted, as follows.

• Setting band="temperature" will plot an estimate of at-satellite brightness temperature, com-
puted from the tirs1 band.

plot,lisst-method 431

• Setting band="terralook" will plot a sort of natural color by combining the red, green, blue
and nir bands according to the formula provided at https://lta.cr.usgs.gov/terralook/what_is_terralook
(a website that worked once, but failed as of Feb 2, 2017), namely that the red-band data are
provided as the red argument of the rgb() function, while the green argument is computed as
2/3 of the green-band data plus 1/3 of the nir-band data, and the blue argument is computed
as 2/3 of the green-band data minus 1/3 of the nir-band data. (This is not a typo: the blue
band is not used.)

Author(s)

Dan Kelley

See Also

Other things related to landsat data: [[,landsat-method, [[<-,landsat-method, landsat, landsat-class,
landsatAdd(), landsatTrim(), read.landsat(), summary,landsat-method

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,lisst-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

plot,lisst-method Plot a lisst Object

Description

Creates a multi-panel summary plot of data measured by LISST instrument.

Usage

S4 method for signature 'lisst'
plot(x, which = c(16, 37, 38), tformat, debug = getOption("oceDebug"), ...)

Arguments

x a lisst object.

which list of desired plot types. These are graphed in panels running down from the
top of the page. See “Details” for the meanings of various values of which.

tformat optional argument passed to oce.plot.ts(), for plot types that call that func-
tion. (See strptime() for the format used.)

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies.

... optional arguments passed to plotting functions.

432 plot,lisst-method

Details

The panels are controlled by the which argument, as follows.

• which=1 to 32, or which="C1" to "C32" for a time-series graph of the named column (a size
class).

• which=33 or which="lts" for a time-series plot of laser transmission sensor.

• which=34 or which="voltage" for a time-series plot of instrument voltage.

• which=35 or which="aux" for a time-series plot of the external auxiliary input.

• which=36 or which="lrs" for a time-series plot of the laser reference sensor.

• which=37 or which="pressure" for a time-series plot of pressure.

• which=38 or which="temperature" for a time-series plot of temperature.

• which=41 or which="transmission" for a time-series plot of transmission, in percent.

• which=42 or which="beam" for a time-series plot of beam-C, in 1/metre.

Author(s)

Dan Kelley

See Also

The documentation for lisst explains the structure of lisst objects, and also outlines the other func-
tions dealing with them.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lobo-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to lisst data: [[,lisst-method, [[<-,lisst-method, as.lisst(), lisst-class,
read.lisst(), summary,lisst-method

Examples

library(oce)
data(lisst)
plot(lisst)

plot,lobo-method 433

plot,lobo-method Plot a lobo object

Description

Plot a summary diagram for lobo data.

Usage

S4 method for signature 'lobo'
plot(
x,
which = c(1, 2, 3),
mgp = getOption("oceMgp"),
mar = c(mgp[2] + 1, mgp[1] + 1, 1, mgp[1] + 1.25),
debug = getOption("oceDebug"),
...

)

Arguments

x a lobo object.

which A vector of numbers or character strings, indicating the quantities to plot. These
are stacked in a single column. The possible values for which are as follows: 1
or "temperature" for a time series of temperature; 2 or "salinity" for salin-
ity; 3 or "TS" for a TS diagram (which uses eos="unesco"), 4 or "u" for a
timeseries of the u component of velocity; 5 or "v" for a timeseries of the v
component of velocity; 6 or "nitrate" for a timeseries of nitrate concentra-
tion; 7 or "fluorescence" for a timeseries of fluorescence value.

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar").

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

... optional arguments passed to plotting functions.

Author(s)

Dan Kelley

434 plot,met-method

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,met-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to lobo data: [[,lobo-method, [[<-,lobo-method, as.lobo(), lobo, lobo-class,
read.lobo(), subset,lobo-method, summary,lobo-method

plot,met-method Plot a met Object

Description

Creates a multi-panel summary plot of data measured in a meteorological data set. cast. The panels
are controlled by the which argument.

Usage

S4 method for signature 'met'
plot(x, which = 1:4, mgp, mar, tformat, debug = getOption("oceDebug"))

Arguments

x a met object.

which list of desired plot types.

• which=1 gives a time-series plot of temperature
• which=2 gives a time-series plot of pressure
• which=3 gives a time-series plot of the x (eastward) component of velocity
• which=4 gives a time-series plot of the y (northward) component of velocity
• which=5 gives a time-series plot of speed
• which=6 gives a time-series plot of direction (degrees clockwise from north;

note that the values returned by met[["direction"]] must be multiplied
by 10 to get the direction plotted)

mgp A 3-element numerical vector used with par("mgp") to control the spacing of
axis elements. The default is tighter than the R default.

mar A 4-element numerical vector used with par("mar") to control the plot margins.
The default is tighter than the R default.

tformat optional argument passed to oce.plot.ts(), for plot types that call that func-
tion. (See strptime() for the format used.)

plot,met-method 435

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

If more than one panel is drawn, then on exit from plot.met, the value of par will be reset to the
value it had before the function call. However, if only one panel is drawn, the adjustments to par
made within plot.met are left in place, so that further additions may be made to the plot.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to met data: [[,met-method, [[<-,met-method, as.met(), download.met(),
met, met-class, read.met(), subset,met-method, summary,met-method

Examples

library(oce)
data(met)
plot(met, which = 3:4)

Wind speed and direction during Hurricane Juan
Compare with the final figure in a white paper by Chris Fogarty
(available at http://www.novaweather.net/Hurricane_Juan_files/McNabs_plot.pdf
downloaded 2017-01-02).
library(oce)
data(met)
t0 <- as.POSIXct("2003-09-29 04:00:00", tz = "UTC")
dt <- 12 * 3600
juan <- subset(met, t0 - dt <= time & time <= t0 + dt)
par(mfrow = c(2, 1))
plot(juan, which = 5)
abline(v = t0)
plot(juan, which = 6)
abline(v = t0)

436 plot,odf-method

plot,oce-method Plot an oce Object

Description

This creates a pairs() plot of the elements in the data slot, if there are more than 2 elements there,
or a simple xy plot if 2 elements, or a histogram if 1 element.

Usage

S4 method for signature 'oce'
plot(x, y, ...)

Arguments

x a basic oce object, but not from any subclass that derive from this base, because
subclasses have their own plot methods, e.g. calling plot() on a ctd object
dispatches to plot,ctd-method().

y Ignored; only present here because S4 object for generic plot need to have a
second parameter before the ... parameter.

... Passed to hist(), plot(), or to pairs(), according to whichever does the plot-
ting.

Examples

library(oce)
o <- new("oce")
o <- oceSetData(o, "x", rnorm(10))
o <- oceSetData(o, "y", rnorm(10))
o <- oceSetData(o, "z", rnorm(10))
plot(o)

plot,odf-method Plot an odf Object

Description

Plot data contained within an ODF object, using oce.plot.ts() to create panels of time-series
plots for all the columns contained in the odf object (or just those that contain at least one finite
value, if blanks is FALSE). If the object’s data slot does not contain time, then pairs() is used to
plot all the elements in the data slot that contain at least one finite value. These actions are both
crude and there are no arguments to control the behaviour, but this function is really just a stop-gap
measure, since in practical work odf objects are usually cast to other types, and those types tend to
have more useful plots.

plot,rsk-method 437

Usage

S4 method for signature 'odf'
plot(x, blanks = TRUE, debug = getOption("oceDebug"))

Arguments

x an odf object.

blanks A logical value that indicates whether to include dummy plots for data items
that lack any finite values.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
ODFNames2oceNames(), [[,odf-method, [[<-,odf-method, odf-class, read.ctd.odf(), read.odf(),
subset,odf-method, summary,odf-method

plot,rsk-method Plot a rsk Object

Description

Rsk data may be in many forms, and it is not easy to devise a general plotting strategy for all of
them. The present function is quite crude, on the assumption that users will understand their own
datasets, and that they can devise plots that are best-suited to their applications. Sometimes, the
sensible scheme is to coerce the object into another form, e.g. using plot(as.ctd(rsk)) if the
object contains CTD-like data. Other times, users should extract data from the rsk object and
construct plots themselves. The idea is to use the present function mainly to get an overview, and
for that reason, the default plot type (set by which) is a set of time-series plots, because the one
thing that is definitely known about rsk objects is that they contain a time vector in their data slot.

438 plot,rsk-method

Usage

S4 method for signature 'rsk'
plot(
x,
which = "timeseries",
tlim,
ylim,
xlab,
ylab,
tformat,
drawTimeRange = getOption("oceDrawTimeRange"),
abbreviateTimeRange = getOption("oceAbbreviateTimeRange"),
useSmoothScatter = FALSE,
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1.5, mgp[1] + 1.5, 1.5, 1.5),
main = "",
debug = getOption("oceDebug"),
...

)

Arguments

x an rsk object.
which character indicating desired plot types. These are graphed in panels running

down from the top of the page. See “Details” for the meanings of various values
of which.

tlim optional limits for time axis. If not provided, the value will be inferred from the
data.

ylim optional limits for the y axis. If not provided, the value will be inferred from
the data. (It is helpful to specify this, if the auto-scaled value will be inappro-
priate, e.g. if more lines are to be added later). Note that this is ignored, unless
length(which) == 1 and which corresponds to one of the data fields. If a mul-
tipanel plot of a specific subset of the data fields is desired with ylim control, it
should be done panel by panel (see Examples).

xlab optional label for x axis.
ylab optional label for y axis.
tformat optional argument passed to oce.plot.ts(), for plot types that call that func-

tion. (See strptime() for the format used.)
drawTimeRange boolean that applies to panels with time as the horizontal axis, indicating whether

to draw the time range in the top-left margin of the plot.
abbreviateTimeRange

boolean that applies to panels with time as the horizontal axis, indicating whether
to abbreviate the second time in the time range (e.g. skipping the year, month,
day, etc. if it’s the same as the start time).

useSmoothScatter

a boolean to cause smoothScatter() to be used for profile plots, instead of
plot().

plot,rsk-method 439

mgp 3-element numerical vector to use for par("mgp"), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar").

main main title for plot, used just on the top panel, if there are several panels.

debug a flag that turns on debugging, if it exceeds 0.

... optional arguments passed to plotting functions.

Details

Plots produced are time series plots of the data in the object. The default, which="timeseries"
plots all data fields, and over-rides any other specification. Specific fields can be plotted by naming
the field, e.g. which="temperature" to plot a time series of just the temperature field.

Author(s)

Dan Kelley and Clark Richards

See Also

The documentation for rsk explains the structure of rsk objects, and also outlines the other functions
dealing with them.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,satellite-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(),
read.rsk(), rsk, rsk-class, rskPatm(), rskToc(), subset,rsk-method, summary,rsk-method

Examples

library(oce)
data(rsk)
1. default timeseries plot of all data fields
plot(rsk)
2. plot in ctd format
plot(as.ctd(rsk))

440 plot,sealevel-method

plot,satellite-method Plot a satellite Object

Description

For an example using g1sst data, see read.g1sst().

Usage

S4 method for signature 'satellite'
plot(x, y, asp, debug = getOption("oceDebug"), ...)

Arguments

x a satellite object.

y String indicating the quantity to be plotted.

asp Optional aspect ratio for plot.

debug A debugging flag, integer.

... extra arguments passed to imagep(), e.g. set col to control colors.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,sealevel-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

plot,sealevel-method Plot a sealevel Object

Description

Creates a plot for a sea-level dataset, in one of two varieties. Depending on the length of which,
either a single-panel or multi-panel plot is drawn. If there is just one panel, then the value of par
used in plot,sealevel-method is retained upon exit, making it convenient to add to the plot. For
multi-panel plots, par is returned to the value it had before the call.

plot,sealevel-method 441

Usage

S4 method for signature 'sealevel'
plot(
x,
which = 1:3,
drawTimeRange = getOption("oceDrawTimeRange"),
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 0.5, mgp[1] + 1.5, mgp[2] + 1, mgp[2] + 3/4),
marginsAsImage = FALSE,
grid = TRUE,
xlim,
ylim,
xaxs = "i",
yaxs = "r",
debug = getOption("oceDebug"),
...

)

Arguments

x a sealevel object.

which a numerical or string vector indicating desired plot types, with possibilities 1
or "all" for a time-series of all the elevations, 2 or "month" for a time-series
of just the first month, 3 or "spectrum" for a power spectrum (truncated to
frequencies below 0.1 cycles per hour, or 4 or "cumulativespectrum" for a
cumulative integral of the power spectrum.

drawTimeRange boolean that applies to panels with time as the horizontal axis, indicating whether
to draw the time range in the top-left margin of the plot.

mgp 3-element numerical vector to use for par("mgp"), and also for par("mar"),
computed from this. The default is tighter than the R default, in order to use
more space for the data and less for the axes.

mar value to be used with par("mar").

marginsAsImage logical value indicating whether to put a wide margin to the right of time-series
plots, matching the space used up by a palette in an imagep() plot.

grid logical value, indicating whether to draw a grid with grid().

xlim, ylim optional limits for axes. If not supplied, reasonable choices will be made

xaxs, yaxs axis-limit parameters, as for standard graphics. The default is to make the time
axis extend to the edges of the box, but to make the y axis have some space
above and below the range of the data.

debug a flag that turns on debugging, if it exceeds 0.

... optional arguments passed to plotting functions.

Value

None.

442 plot,section-method

Historical Note

Until 2020-02-06, sea-level plots had the mean value removed, and indicated with a tick mark and
margin note on the right-hand side of the plot. This behaviour was confusing. The change did
not go through the usual deprecation process, because the margin-note behaviour had not been
documented.

Author(s)

Dan Kelley

References

The example refers to Hurricane Juan, which caused a great deal of damage to Halifax in 2003.
Since this was in the era of the digital photo, a casual web search will uncover some spectacular
images of damage, from both wind and storm surge. Landfall, within 30km of this sealevel gauge,
was between 00:10 and 00:20 Halifax local time on Monday, Sept 29, 2003.

See Also

The documentation for the sealevel class explains the structure of sealevel objects, and also outlines
the other functions dealing with them.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,section-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to sealevel data: [[,sealevel-method, [[<-,sealevel-method, as.sealevel(),
read.sealevel(), sealevel, sealevel-class, sealevelTuktoyaktuk, subset,sealevel-method,
summary,sealevel-method

Examples

library(oce)
data(sealevel)
local Halifax time is UTC + 4h
juan <- as.POSIXct("2003-09-29 00:15:00", tz = "UTC") + 4 * 3600
plot(sealevel, which = 1, xlim = juan + 86400 * c(-7, 7))
abline(v = juan, col = "red")

plot,section-method Plot a section Object

Description

Creates a summary plot for a CTD section, with one panel for each value of which.

plot,section-method 443

Usage

S4 method for signature 'section'
plot(
x,
which = c(1, 2, 3, 99),
eos,
at = NULL,
labels = TRUE,
grid = FALSE,
contourLevels = NULL,
contourLabels = NULL,
stationIndices,
coastline = "best",
colLand = "gray",
xlim = NULL,
ylim = NULL,
zlim = NULL,
zbreaks = NULL,
zcol = NULL,
map.xlim = NULL,
map.ylim = NULL,
clongitude,
clatitude,
span,
projection = NULL,
xtype = "distance",
ytype = "depth",
ztype = "contour",
longitude0,
latitude0,
legend.loc = "bottomright",
legend.text = NULL,
showStations = FALSE,
showStart = TRUE,
stationTicks = TRUE,
showBottom = TRUE,
showSpine = TRUE,
drawPalette = TRUE,
axes = TRUE,
mgp,
mar,
col,
cex,
pch,
lwd,
labcex = par("cex"),
debug = getOption("oceDebug", 0),
...

444 plot,section-method

)

Arguments

x a section object.

which a list of desired plot types, as explained in “Details”. Plot types not listed in
“Details” can be generated using the name of the data in the section object.
There may be up to four panels in total, and the desired plots are placed in these
panels, in reading order. If only one panel is plotted, par is not adjusted, which
makes it easy to add to the plot with subsequent plotting commands.

eos Character indication of the seawater equation of state to use. The permitted
choices are "gsw" and "unesco". If eos is not supplied, it defaults to getOption("oceEOS",default="gsw").

at If NULL (the default), the x axis will indicate the distance of the stations from
the first in the section. (This may give errors in the contouring routine, if the
stations are not present in a geographical order.) If a list, then it indicates the
values at which stations will be plotted.

labels Either a logical, indicating whether to put labels on the x axis, or a vector that is
a list of labels to be placed at the x positions indicated by at.

grid If TRUE, points are drawn at data locations.

contourLevels Optional contour levels.

contourLabels Optional contour labels.

stationIndices Optional list of the indices of stations to use. Note that an index is not a station
number, e.g. to show the first 4 stations, use station.indices=1:4.

coastline Either a coastline object to be used, or a string. In the second case, the per-
mitted choices are "best" (the default) to pick a variant that suits the scale,
"coastlineWorld" for the coarse version that is provided by oce, "coastlineWorldMedium"
or "coastlineWorldFine" for two coastlines provided by the ocedata package,
or "none", to avoid drawing a coastline.

colLand colour used to fill in land areas if which is "map"; ignored otherwise.

xlim Optional limit for x axis (only in sections, not map).

ylim Optional limit for y axis (only in sections, not map)
zlim, zbreaks, zcol

Elements that control colours for image and points plot types, i.e. if ztype is
either "points" or "image". zlim is a two-element numerical vector specify-
ing the limit on the plotted field. If not provided, it defaults to the data range.
zbreaks controls the colour breaks, in a manner that is similar to the image()
parameter named breaks. If not provided, zbreaks is inferred from zlim. zcol,
which controls the colour scheme, may be a vector of colours (of length 1 less
than zbreaks), or a function that takes an integer as its sole argument and returns
that number of colours. If not provided, zcol defaults to oceColorsViridis().
These three parameters are used in Example 6, an illustration of Atlantic salinity
along 36N.

map.xlim, map.ylim
Optional limits for station map; map.ylim is ignored if map.xlim is provided.

https://CRAN.R-project.org/package=oce
https://CRAN.R-project.org/package=ocedata

plot,section-method 445

clongitude, clatitude, span
Optional map centre position and span (km).

projection Parameter specifying map projection; see mapPlot(). If projection="automatic",
however, a projection is devised from the data, with stereographic if the mean
latitude exceeds 70N and mollweide otherwise.

xtype Type of x axis, for contour plots, either "distance" for distance (in km) to the
first point in the section, "track" for distance along the cruise track, "longitude",
"latitude", "time" or "spine" (distance along a spine that was added with
addSpine()). Note that if the x values are not in order, they will be put in order,
and since that might not make physical sense, a warning will be issued.

ytype Type of y axis for contour plots, either "pressure" for pressure (in dbar, with
zero at the surface) or "depth" for depth (in m below the surface, calculated
from pressure with swDepth()).

ztype String indicating whether to how to indicate the "z" data (in the R sense, i.e.
this could be salinity, temperature, etc; it does not mean the vertical coordinate)
The choices are: "contour" for contours, "image" for an image (drawn with
imagep() with filledContours=TRUE), or "points" to draw points. In the
first two cases, the data must be gridded, with identical pressures at each station.

longitude0, latitude0
Location of the point from which distance is measured. These values are ignored
unless xtype is "distance".

legend.loc Location of legend, as supplied to legend(), or set to the empty string to avoid
plotting a legend.

legend.text character value indicating the text for the legend. If this is NULL (the default)
then the legend is automatically constructed by labelWithUnit(), based on the
value of which.

showStations Logical indicating whether to draw station numbers on maps.

showStart Logical indicating whether to indicate the first station with

stationTicks A logical value indicating whether to indicate station locations with ticks at the
top margin of cross-section plots. Setting this parameter to FALSE frees the user
up to do their own labelling at this spot.

showBottom a value indicating whether (and how) to indicate the ocean bottom on cross-
section views. There are three possibilities. (a) If showBottom is FALSE, then
the bottom is not rendered. If it is TRUE, then the bottom is rendered with a gray
polygon. (b) If showBottom is the character value "polygon", then a polygon is
drawn, and similarly lines are drawn for "lines", and points for "points". (c)
If showBottom is a topo object, then the station locations are interpolated to that
topography and the results are shown with a polygon. See “Examples”.

showSpine logical value used if which="map". If showSpine is TRUE and section has had
a spine added with addSpine(), then the spine is drawn in blue.

drawPalette logical value indicating whether to draw a palette when ztype="image" ignored
otherwise.

axes Logical value indicating whether to draw axes.

mgp A 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. If not provided, this defaults to getOption("oceMgp").

446 plot,section-method

mar Value to be used with par("mar"). If not provided, a default is set up.

col Color for line types. If not provided, this defaults to par("col"). See zcol, for
ztype="image" and ztype="points".

cex Numerical character-expansion factor, which defaults to par("cex").

pch Indication of symbol type; defaults to par("pch") for non-map or to 3 for map.

lwd line width; defaults to par("lwd").

labcex Size of characters in contour labels (passed to contour()).

debug an integer specifying whether debugging information is to be printed during
the processing. This is a general parameter that is used by many oce func-
tions. Generally, setting debug=0 turns off the printing, while higher values
suggest that more information be printed. If debug is not supplied, it defaults to
getOption("oceDebug").

... Optional arguments passed to the contouring function.

Details

The type of plot is governed by which, as follows.

• which=0 or "potential temperature" for potential temperature contours

• which=1 or "temperature" for in-situ temperature contours (the default)

• which=2 or "salinity" for salinity contours

• which=3 or "sigmaTheta" for sigma-theta contours

• which=4 or "nitrate" for nitrate concentration contours

• which=5 or "nitrite" for nitrite concentration contours

• which=6 or "oxygen" for oxygen concentration contours

• which=7 or "phosphate" for phosphate concentration contours

• which=8 or "silicate" for silicate concentration contours

• which=9 or "u" for eastward velocity

• which=10 or "uz" for vertical derivative of eastward velocity

• which=11 or "v" for northward velocity

• which=12 or "vz" for vertical derivative of northward velocity

• which=20 or "data" for a dot for each data location

• which=99 or "map" for a location map

The y-axis for the contours is pressure, plotted in the conventional reversed form, so that the water
surface appears at the top of the plot. The x-axis is more complicated. If at is not supplied, then
the routine calculates x as the distance between the first station in the section and each of the other
stations. (This will produce an error if the stations are not ordered geographically, because the
contour() routine cannot handle non-increasing axis coordinates.) If at is specified, then it is
taken to be the location, in arbitrary units, along the x-axis of labels specified by labels; the way
this works is designed to be the same as for axis().

plot,section-method 447

Value

If the original section was gridded, the return value is that section. Otherwise, the gridded section
that was constructed for the plot is returned. In both cases, the value is returned silently. The
purpose of returning the section is to enable subsequent processing of the grid, including adding
elements to the plot (see example 5).

Ancillary Examples

The following examples were once part of the “Examples” section, but were moved here in May
2022, to reduce the build-check time for CRAN submission.

library(oce)
data(section)
GS <- subset(section, 113<=stationId&stationId<=129)
GSg <- sectionGrid(GS, p=seq(0, 2000, 100))

Gulf Stream, salinity data and contoured
par(mfrow=c(2, 1))
plot(GS, which=1, ylim=c(2000, 0), ztype="points",

zbreaks=seq(0,30,2), pch=20, cex=3)
plot(GSg, which=1, ztype="image", zbreaks=seq(0,30,2))

Gulf Stream, temperature grid (image) and data (dots)
par(mfrow=c(1, 1))
plot(GSg, which=1, ztype="image")
T <- GS[["temperature"]]
col <- oceColorsViridis(100)[rescale(T, rlow=1, rhigh=100)]
points(GS[["distance"]],GS[["depth"]],pch=20,cex=3,col="white")
points(GS[["distance"]],GS[["depth"]],pch=20,cex=2.5,col=col)

4. Image of temperature, with a high-salinity contour on top;
note the Mediterranean water.
sec <- plot(section, which="temperature", ztype="image")
S <- sec[["salinity", "grid:distance-pressure"]]
contour(S$distance, S$pressure, S$field, level=35.8, lwd=3, add=TRUE)

5. Contours of salinity, with dots for high pressure and spice
plot(section, which="salinity")
distance <- section[["distance"]]
depth <- section[["depth"]]
spice <- section[["spice"]]
look <- spice > 1.8 & depth > 500
points(distance[look], depth[look], col="red")

Image of Absolute Salinity, with 4-minute bathymetry
It's easy to calculate the desired area for the bathymetry,
but for brevity we'll hard-code it. Note that download.topo()
requires the "ncdf4" package to have been installed.

448 plot,section-method

if (requireNamespace("ncdf4")) {
f <- download.topo(west=-80, east=0, south=35, north=40, resolution=4)
t <- read.topo(f)
plot(section, which="SA", xtype="longitude", ztype="image", showBottom=t)

}

Temperature with salinity added in red
plot(GSg, which="temperature")
distance <- GSg[["distance", "byStation"]]
depth <- GSg[["station", 1]][["depth"]]
S <- matrix(GSg[["salinity"]], byrow=TRUE, nrow=length(GSg[["station"]]))
contour(distance, depth, S, col=2, add=TRUE)

Image with controlled colours
plot(GSg, which="salinity", ztype="image",

zlim=c(35, 37.5),
zbreaks=seq(35, 37.5, 0.25),
zcol=oceColorsTurbo)

Author(s)

Dan Kelley, with help from Clark Richards and Chantelle Layton.

See Also

The documentation for section explains the structure of section objects, and also outlines the other
functions dealing with them.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, read.section(), section,
section-class, sectionAddStation(), sectionGrid(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

Examples

library(oce)
data(section)
GS <- subset(section, 113 <= stationId & stationId <= 129)
GSg <- sectionGrid(GS, p = seq(0, 2000, 100))

Gulf Stream, salinity and temperature contours
plot(GSg, which = c("salinity", "temperature"))

Gulf Stream, Temperature image

plot,tidem-method 449

plot(GSg,
which = "temperature", ztype = "image",
zbreaks = seq(0, 25, 2), zcol = oceColorsTemperature

)

plot,tidem-method Plot a tidem Object

Description

Plot a summary diagram for a tidal fit.

Usage

S4 method for signature 'tidem'
plot(
x,
which = 1,
constituents = c("SA", "O1", "K1", "M2", "S2", "M4"),
sides = NULL,
col = "blue",
log = "",
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1, mgp[1] + 1, mgp[2] + 0.25, mgp[2] + 1),
...

)

Arguments

x a tidem object.

which integer flag indicating plot type, 1 for stair-case spectral, 2 for spike spectral.

constituents character vector holding the names of constituents that are to be drawn and la-
belled. If NULL, then no constituents will be shown.

sides an integer vector of length equal to that of constituents, designating the side
on which the constituent labels are to be drawn. As in all R graphics, the value
1 indicates the bottom of the plot, and 3 indicates the top. If sides=NULL, the
default, then all labels are drawn at the top. Any value of sides that is not either
1 or 3 is converted to 3.

col a character vector naming colors to be used for constituents. Ignored if
sides=3. Repeated to be of the same length as constituents, otherwise.

log if set to "x", the frequency axis will be logarithmic.

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

450 plot,topo-method

mar value to be used with [par]("mar").

... optional arguments passed to plotting functions, not all of which are obeyed.
For example, if . . . contains type, that value will be ignored because it is set
internally, according to the value of which.

Sample of Usage

library(oce)
data(sealevel)
tide <- tidem(sealevel)
plot(tide)

Historical note

An argument named labelIf was removed in July 2016, because it was discovered never to have
worked as documented, and because the more useful argument constituents had been added.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,topo-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), predict.tidem(),
summary,tidem-method, tidalCurrent, tidedata, tidem, tidem-class, tidemAstron(), tidemVuf(),
webtide()

plot,topo-method Plot a topo Object

Description

This plots contours of topographic elevation. The plot aspect ratio is set based on the middle latitude
in the plot. The line properties, such as land.lwd, may either be a single item, or a vector; in the
latter case, the length must match the length of the corresponding properties, e.g. land.z.

plot,topo-method 451

Usage

S4 method for signature 'topo'
plot(
x,
xlab = "",
ylab = "",
asp,
clongitude,
clatitude,
span,
expand = 1.5,
water.z,
col.water,
lty.water,
lwd.water,
land.z,
col.land,
lty.land,
lwd.land,
geographical = FALSE,
location = "topright",
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1, mgp[1] + 1, 1, 1),
debug = getOption("oceDebug"),
...

)

Arguments

x a topo object.

xlab, ylab Character strings giving a label for the x and y axes.

asp Aspect ratio for plot. The default is for plot.coastline to set the aspect ratio
to give natural latitude-longitude scaling somewhere near the centre latitude on
the plot. Often, it makes sense to set asp yourself, e.g. to get correct shapes
at 45N, use asp=1/cos(45*pi/180). Note that the land mass is not symmetric
about the equator, so to get good world views you should set asp=1 or set ylim
to be symmetric about zero. Any given value of asp is ignored, if clongitude
and clatitude are given.

clongitude Optional center longitude of map, in degrees east; see clatitude.

clatitude Optional center latitude of map, in degrees north. If this and clongitude are
provided, then any provided value of asp is ignored, and instead the plot as-
pect ratio is computed based on the center latitude. Also, if clongitude and
clatitude are provided, then span must be, also.

span Optional suggested span of plot, in kilometers (must be supplied, if clongitude
and clatitude are supplied).

expand Numerical factor for the expansion of plot limits, showing area outside the plot,
e.g. if showing a ship track as a coastline, and then an actual coastline to show

452 plot,topo-method

the ocean boundary. The value of expand is ignored if either xlim or ylim is
given.

water.z Depths at which to plot water contours. If not provided, these are inferred from
the data.

col.water Colors corresponding to water.z values. If not provided, these will be "fill"
colors from oce.colorsGebco().

lty.water Line type(s) for water contours.

lwd.water Line width(s) for water contours.

land.z Depths at which to plot land contours. If not provided, these are inferred from
the data. If set to NULL, no land contours will be plotted.

col.land Colors corresponding to land.z values. If not provided, these will be "fill"
colors from oce.colorsGebco().

lty.land Line type(s) for land contours.

lwd.land Line width(s) for land contours.

geographical Logical, indicating whether to plot latitudes and longitudes without minus signs.

location Location for a legend (or "none", for no legend).

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar Four-element numerical vector to be used with par("mar").

debug Numerical value, with positive values indicating higher levels of debugging.

... Additional arguments passed on to plotting functions.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,windrose-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to topo data: [[,topo-method, [[<-,topo-method, as.topo(), download.topo(),
read.topo(), subset,topo-method, summary,topo-method, topo-class, topoInterpolate(),
topoWorld

Examples

library(oce)
data(topoWorld)
plot(topoWorld, clongitude = -60, clatitude = 45, span = 10000)

plot,windrose-method 453

plot,windrose-method Plot a windrose Object

Description

Plot a windrose object.

Usage

S4 method for signature 'windrose'
plot(
x,
type = c("count", "mean", "median", "fivenum"),
convention = c("meteorological", "oceanographic"),
mgp = getOption("oceMgp"),
mar = c(mgp[1], mgp[1], 1 + mgp[1], mgp[1]),
col,
debug = getOption("oceDebug")

)

Arguments

x a windrose object.

type The thing to be plotted, either the number of counts in the angle interval, the
mean of the values in the interval, the median of the values, or a fivenum()
representation of the values.

convention String indicating whether to use meteorological convention or oceanographic
convention for the arrows that emanate from the centre of the rose. In mete-
orological convection, an arrow emanates towards the right on the diagram if
the wind is from the east; in oceanographic convention, such an arrow indicates
flow to the east.

mgp Three-element numerical vector to use for par(mgp), and also for par(mar),
computed from this. The default is tighter than the R default, in order to use
more space for the data and less for the axes.

mar Four-element numerical vector to be used with par("mar").

col Optional list of colors to use. If not set, the colors will be c("red", "pink",
"blue", "lightgray"). For the first three types of plot, the first color in this
list is used to fill in the rose, the third is used for the petals of the rose, and the
fourth is used for grid lines. For the "fivenum" type, the region from the lower
hinge to the first quartile is coloured pink, the region from the first quartile to
the third quartile is coloured red, and the region from the third quartile to the
upper hinge is coloured pink. Then the median is drawn in black.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest

454 plot,xbt-method

that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,xbt-method, plotProfile(),
plotScan(), plotTS(), tidem-class
Other things related to windrose data: [[,windrose-method, [[<-,windrose-method, as.windrose(),
summary,windrose-method, windrose-class

Examples

library(oce)
set.seed(1234)
theta <- seq(0, 360, 0.25)
x <- 1 + cos(pi / 180 * theta) + rnorm(theta)
y <- sin(pi / 180 * theta) + rnorm(theta)
wr <- as.windrose(x, y)
plot(wr)
plot(wr, type = "fivenum")

plot,xbt-method Plot an xbt Object

Description

Plots data contained in an xbt object.

Usage

S4 method for signature 'xbt'
plot(
x,
which = 1,
type = "l",
mgp = getOption("oceMgp"),
mar,
debug = getOption("oceDebug"),
...

)

plot,xbt-method 455

Arguments

x an xbt object.

which list of desired plot types; see “Details” for the meanings of various values of
which.

type type of plot, as for plot().

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar").

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional arguments passed to plotting functions.

Details

The panels are controlled by the which argument, with choices as follows.

• which=1 for a temperature profile as a function of depth.

• which=2 for a soundSpeed profile as a function of depth.

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,windrose-method, plotProfile(),
plotScan(), plotTS(), tidem-class

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, as.xbt(), read.xbt(),
read.xbt.noaa1(), subset,xbt-method, summary,xbt-method, xbt, xbt-class, xbt.edf

Examples

library(oce)
data(xbt)
summary(xbt)
plot(xbt)

456 plotInset

plotInset Plot an Inset Diagram

Description

Adds an inset diagram to an existing plot. Note that if the inset is a map or coastline, it will be
necessary to supply inset=TRUE to prevent the inset diagram from occupying the whole device
width. After plotInset() has been called, any further plotting will take place within the inset, so
it is essential to finish a plot before drawing an inset.

Usage

plotInset(
xleft,
ybottom,
xright,
ytop,
expr,
mar = c(2, 2, 1, 1),
debug = getOption("oceDebug")

)

Arguments

xleft location of left-hand of the inset diagram, in the existing plot units. (PROVI-
SIONAL FEATURE: this may also be "bottomleft", to put the inset there.
Eventually, other positions may be added.)

ybottom location of bottom side of the inset diagram, in the existing plot units.

xright location of right-hand side of the inset diagram, in the existing plot units.

ytop location of top side of the inset diagram, in the existing plot units.

expr An expression that draws the inset plot. This may be a single plot command, or
a sequence of commands enclosed in curly braces.

mar margins, in line heights, to be used at the four sides of the inset diagram. (This
is often helpful to save space.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

Author(s)

Dan Kelley

plotPolar 457

Examples

library(oce)
power law in linear and log form
x <- 1:10
y <- x^2
plot(x, y, log = "xy", type = "l")
plotInset(3, 1, 10, 8,

expr = plot(x, y, type = "l", cex.axis = 3 / 4, mgp = c(3 / 2, 1 / 2, 0)),
mar = c(2.5, 2.5, 1, 1)

)

CTD data with location
data(ctd)
plot(ctd, which = "TS")
plotInset(29.9, 2.7, 31, 10,

expr = plot(ctd,
which = "map",
coastline = "coastlineWorld",
span = 5000, mar = NULL, cex.axis = 3 / 4

)
)

plotPolar Draw a Polar Plot

Description

Creates a crude polar plot.

Usage

plotPolar(r, theta, debug = getOption("oceDebug"), ...)

Arguments

r radii of points to plot.

theta angles of points to plot, in degrees.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional arguments passed to the lower-level plotting functions.

Author(s)

Dan Kelley

458 plotProfile

Examples

library(oce)
r <- rnorm(50, mean = 2, sd = 0.1)
theta <- runif(50, 0, 360)
plotPolar(r, theta)

plotProfile Plot a ctd Profile

Description

Plot a profile, showing variation of some quantity (or quantities) with pressure, using the oceano-
graphic convention of putting lower pressures nearer the top of the plot. This works for any oce
object that has a pressure column in its data slot. The colors (col.salinity, etc.) are only used if
two profiles appear on a plot.

Usage

plotProfile(
x,
xtype = "salinity+temperature",
ytype = "pressure",
eos = getOption("oceEOS", default = "gsw"),
lty = 1,
xlab = NULL,
ylab = NULL,
col = "black",
col.salinity = "darkgreen",
col.temperature = "red",
col.rho = "blue",
col.N2 = "brown",
col.dpdt = "darkgreen",
col.time = "darkgreen",
pt.bg = "transparent",
grid = TRUE,
col.grid = "lightgray",
lty.grid = "dotted",
Slim,
Clim,
Tlim,
densitylim,
sigmalim,
N2lim,
Rrholim,
dpdtlim,
timelim,
plim,

plotProfile 459

xlim,
ylim,
lwd = par("lwd"),
xaxs = "r",
yaxs = "r",
cex = 1,
pch = 1,
useSmoothScatter = FALSE,
df,
keepNA = FALSE,
type = "l",
mgp = getOption("oceMgp"),
mar,
add = FALSE,
inset = FALSE,
debug = getOption("oceDebug", 0),
...

)

Arguments

x a ctd object.

xtype item(s) to be plotted on the x axis, either a character value taken from the fol-
lowing list, or a numeric vector of length matching the pressure field stored in
x. (In the second case, as of version 1.7-11, a label is auto-constructed, unless
the user supplied a character value for xlab.)

• "salinity" Profile of salinity.
• "conductivity" Profile of conductivity.
• "temperature" Profile of in-situ temperature.
• "theta" Profile of potential temperature.
• "density" Profile of density (expressed as σθ).
• "index" Index of sample (useful for working with ctdTrim()).
• "salinity+temperature" Profile of salinity and temperature within a sin-

gle axis frame.
• "N2" Profile of square of buoyancy frequency N2, calculated with swN2()

with an optional argument setting of df=length(x[["pressure"]])/4 to
do some smoothing.

• "density+N2" Profile of sigma0 and the square of buoyancy frequency
within a single axis frame.

• "density+dpdt" Profile of sigma0 and dP/dt for the sensor. The latter is
useful in indicating problems with the deployment. It is calculated by first
differencing pressure and then using a smoothing spline on the result (to
avoid grid-point wiggles that result because the SBE software only writes
3 decimal places in pressure). Note that dP/dt may be off by a scale factor;
this should not be a problem if there is a time column in the data slot, or a
sample.rate in the metadata slot.

460 plotProfile

• "sigma0", "sigma1", "sigma2", "sigma3" and "sigma4" Profile of po-
tential density referenced to 0dbar (i.e. the surface), 1000dbar, 2000dbar,
3000dbar, and 4000dbar.

• "spice", "spiciness0" "spiciness1" or "spiciness2" Profile of named
quantity. For spice, swSpice() is called with the eos argument set to
"unesco". Otherwise, gsw::gsw_spiciness0()’, gsw::gsw_spiciness1()’
or gsw::gsw_spiciness2()’ is called.

• "Rrho" Profile of Rrho, defined in the diffusive sense.
• "RrhoSF" Profile of Rrho, defined in the salt-finger sense.

ytype variable to use on y axis. The valid choices are: "pressure" (the default), "z",
"depth", "sigmaTheta" and "sigma0".

eos equation of state to be used, either "unesco" or "gsw".

lty line type for the profile.

xlab optional label for x axis (at top of plot). If not provided, a label is inferred from
the value of xtype. For the user-supplied case, bear in mind that the easy way
to get units is to use an expression, e.g. xlab=expression("Acceleration
["*m/s^2*"]").

ylab optional label for y axis. See xlab for a note on units. Setting ylab="" prevents
labelling the axis.

col color for a general profile.

col.salinity color for salinity profile (see “Details”).
col.temperature

color for temperature (see “Details”).

col.rho color for density (see “Details”).

col.N2 color for square of buoyancy frequency (see “Details”).

col.dpdt color for dP/dt.

col.time color for delta-time.

pt.bg inside color for symbols with pch in 21:25

grid logical, set to TRUE to get a grid.

col.grid color for grid.

lty.grid line type for grid.

Slim optional limit for the salinity axis, which can either represent Practical Salinity
or Absolute Salinity.

Clim optional limit for the conductivity axis.

Tlim optional limit for the temperature axis, which can represent in-situ temperature,
potential temperature, or Conservative Temperature.

densitylim optional limit for density axis.

sigmalim optional limit for the density-anomaly axis, which can represent sigmaTheta,
sigma0, sigma1, sigma2, sigma3 or sigma4.

N2lim optional limit for the N2 axis.

Rrholim optional limit for the density ratio axis.

plotProfile 461

dpdtlim optional limit for the dp/dt axis.

timelim optional limit for the delta-time axis.

plim optional limit for the pressure axis, ignored unless ytype=="pressure", in
which case it takes precedence over ylim.

xlim optional limit for x axis, which can apply to any plot type. This is ignored if
the plotted x variable is something for which a limit may be specified with an
argument, e.g. xlim is ignored for a salinity profile, because Slim ought to be
given in such a case.

ylim optional limit for y axis, which can apply to any plot type, although is overridden
by plim if ytype is "pressure" or by densitylim if ytype is "sigmaTheta".

lwd line width value for data line

xaxs value of par() xaxs to use

yaxs value of par() yaxs to use

cex size to be used for plot symbols (see par())

pch code for plotting symbol (see par()).
useSmoothScatter

boolean, set to TRUE to use smoothScatter() instead of plot() to draw the
plot.

df optional argument, passed to swN2() if provided, and if a plot using N2 is re-
quested.

keepNA FALSE

type type of plot to draw, using the same scheme as plot().

mgp 3-element numerical vector to use for par(mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar Four-element numerical value to be used to set the plot margins, with a call to
par(mar) prior to the plot. If this is not supplied, a reasonable default will be set
up.

add A logical value that controls whether to add to an existing plot. (It makes sense
to use add=TRUE in the panel argument of a coplot(), for example.)

inset A logical value indicating whether to draw an inset plot. Setting this to TRUE
will prevent the present function from adjusting the margins, which is necessary
because margin adjustment is the basis for the method used by plotInset().

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional arguments passed to other functions. A common example is to set df,
for use in swN2() calculations.

Value

None.

462 plotScan

Author(s)

Dan Kelley

See Also

read.ctd() scans ctd information from a file, plot,ctd-method() is a general plotting function
for ctd objects, and plotTS() plots a temperature-salinity diagrams.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method,
plotScan(), plotTS(), tidem-class

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

library(oce)
data(ctd)
plotProfile(ctd, xtype = "temperature")

plotScan Plot a ctd Object in a Low-Level Fashion

Description

Plot CTD data as time-series against scan number, to help with trimming extraneous data from a
CTD cast.

Usage

plotScan(
x,
which = 1,
xtype = "scan",
flipy = FALSE,
type = "l",

plotScan 463

mgp = getOption("oceMgp"),
xlim = NULL,
ylim = NULL,
mar = c(mgp[1] + 1.5, mgp[1] + 1.5, mgp[1], mgp[1]),
...,
debug = getOption("oceDebug")

)

Arguments

x a ctd object.

which integer specifying the plot to be drawn: 1 for pressure vs ’x’, 2 for diff(pressure)
vs ’x’, 3 for temperature vs ’x’, and 4 for salinity vs ’x’ Here, the value of ’x’ is
determined by xtype.

xtype Character string indicating variable for the x axis. The permitted values are
"scan" (the default), "time" and "index". The last of these is created by using
seq_along() on the pressure column (which is assumed to be present in any ctd
object). Only xtype="index" is guaranteed to work for all objects, and indeed
that value is used, if either "scan" or "time" is requested, but unavailable.

flipy Logical value, ignored unless which is 1. If flipy is TRUE, then a pressure plot
will have high pressures at the bottom of the axis.

type Character indicating the line type, as for plot.default(). The default is "l",
meaning to connect data with line segments. Another good choice is "o", to add
points at the data.

mgp Three-element numerical vector to use for par(mgp), and also for par(mar),
computed from this. The default is tighter than the R default, in order to use
more space for the data and less for the axes.

xlim Limits on the x value. The default, NULL, is to select this from the data.

ylim Limits on the y value. The default, NULL, is to select this from the data.

mar Four-element vector be used with par("mar"). If set to NULL, then par("mar") is
used. A good choice for a TS diagram with a palette to the right is mar=par("mar")+c(0, 0, 0, 1)).

... Optional arguments passed to plotting functions.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Historical Note

On 2022-12-07, xtype was expanded to include "index", and an undocumented multi-panel feature
was removed.

Author(s)

Dan Kelley

464 plotSticks

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method,
plotProfile(), plotTS(), tidem-class

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), woceUnit2oceUnit(), write.ctd()

Examples

library(oce)
data(ctdRaw)
plotScan(ctdRaw)
abline(v = c(130, 350), col = "red") # useful for ctdTrim()

plotSticks Draw a Stick Plot

Description

The arrows are drawn with directions on the graph that match the directions indicated by the u and
v components. The arrow size is set relative to the units of the y axis, according to the value of
yscale, which has the unit of v divided by the unit of y. The interpretation of diagrams produced
by plotSticks can be difficult, owing to overlap in the arrows. For this reason, it is often a good
idea to smooth u and v before using this function.

Usage

plotSticks(
x,
y,
u,
v,
yscale = 1,
add = FALSE,
length = 1/20,
mgp = getOption("oceMgp"),

plotSticks 465

mar = c(mgp[1] + 1, mgp[1] + 1, 1, 1 + par("cex")),
xlab = "",
ylab = "",
col = 1,
...

)

Arguments

x x coordinates of stick origins.

y y coordinates of stick origins. If not supplied, 0 will be used; if length is less
than that of x, the first number is repeated and the rest are ignored.

u x component of stick length.

v y component of stick length.

yscale scale from u and v to y (see “Description”).

add boolean, set TRUE to add to an existing plot.

length value to be provided to arrows(); here, we set a default that is smaller than
normally used, because these plots tend to be crowded in oceanographic appli-
cations.

mgp 3-element numerical vector to use for par("mgp"). Note that the default mar is
computed from the mgp value. The default is tighter than the R default, in order
to use more space for the data and less for the axes.

mar value to be used with par("mar").

xlab, ylab labels for the plot axes. The default is not to label them.

col color of sticks, in either numerical or character format. This is made to have
length matching that of x by a call to rep(), which can be handy in e.g. coloriz-
ing a velocity field by day.

... graphical parameters passed down to arrows(). It is common, for example, to
use smaller arrow heads than arrows() uses; see “Examples”.

Author(s)

Dan Kelley

Examples

library(oce)

Flow from a point source
n <- 16
x <- rep(0, n)
y <- rep(0, n)
theta <- seq(0, 2 * pi, length.out = n)
u <- sin(theta)
v <- cos(theta)
plotSticks(x, y, u, v, xlim = c(-2, 2), ylim = c(-2, 2))
rm(n, x, y, theta, u, v)

466 plotTaylor

Oceanographic example
data(met)
t <- met[["time"]]
u <- met[["u"]]
v <- met[["v"]]
p <- met[["pressure"]]
oce.plot.ts(t, p)
plotSticks(t, 99, u, v, yscale = 25, add = TRUE)

plotTaylor Plot a Model-data Comparison Diagram

Description

Creates a diagram as described by Taylor (2001). The graph is in the form of a semicircle, with
radial lines and spokes connecting at a focus point on the flat (lower) edge. The radius of a point
on the graph indicates the standard deviation of the corresponding quantity, i.e. x and the columns
in y. The angle connecting a point on the graph to the focus provides an indication of correlation
coefficient with respect to x.

Usage

plotTaylor(x, y, scale, pch = 1, col = 1, labels, pos = 2, cex = 1)

Arguments

x a vector of reference values of some quantity, e.g. measured over time or space.

y a matrix whose columns hold values of values to be compared with those in x.
(If y is a vector, it is converted first to a one-column matrix).

scale optional scale, interpreted as the maximum value of the standard deviation.

pch vector of plot symbols, used for points on the plot. If this is of length less than
the number of columns in y, then it it is repeated as needed to match those
columns.

col vector of colors for points on the plot, repeated as necessary (see pch).

labels optional vector of strings to use for labelling the points.

pos optional vector of positions for labelling strings, repeated as necessary (see pch).

cex character expansion factor, repeated if necessary (see pch).

Details

The “east” side of the graph indicates R = 1, while R = 0 is at the "north" edge and R = −1 is at
the "west" side. The x data are indicated with a bullet on the graph, appearing on the lower edge to
the right of the focus at a distance indicating the standard deviation of ‘x‘. The other points on the
graph represent the columns of ‘y‘, coded automatically or with the supplied values of ‘pch‘ and
‘col‘. The example shows three tidal models of the Halifax sealevel data, computed with tidem()
with only the M2 component, only the S2 component, or all (auto-selected) components.

plotTS 467

Author(s)

Dan Kelley

References

Taylor, Karl E. "Summarizing Multiple Aspects of Model Performance in a Single Diagram." Jour-
nal of Geophysical Research: Atmospheres 106, no. D7 (April 16, 2001): 7183–92. https://doi.org/10.1029/2000JD900719.

Examples

library(oce)
data(sealevel)
x <- sealevel[["elevation"]]
M2 <- predict(tidem(sealevel, constituents = "M2"))
S2 <- predict(tidem(sealevel, constituents = "S2"))
all <- predict(tidem(sealevel))
plotTaylor(x, cbind(M2, S2, all), labels = c("M2", "S2", "all"))

plotTS Plot Temperature-Salinity Diagram

Description

Creates a temperature-salinity plot for a CTD cast, with labeled isopycnals.

Usage

plotTS(
x,
inSitu = FALSE,
type = "p",
referencePressure = 0,
nlevels = 6,
levels,
grid = TRUE,
col.grid = "lightgray",
lty.grid = "dotted",
rho1000 = FALSE,
eos = getOption("oceEOS", default = "gsw"),
cex = par("cex"),
col = par("col"),
pch = par("pch"),
bg = "white",
pt.bg = "transparent",
col.rho = gray(0.5),
cex.rho = 3/4 * par("cex"),

468 plotTS

rotate = TRUE,
useSmoothScatter = FALSE,
xlab,
ylab,
Slim,
Tlim,
drawFreezing = TRUE,
trimIsopycnals = TRUE,
gridIsopycnals = c(30, 50),
mgp = getOption("oceMgp"),
mar = c(mgp[1] + 1.5, mgp[1] + 1.5, mgp[1], mgp[1]),
lwd = par("lwd"),
lty = par("lty"),
lwd.rho = par("lwd"),
lty.rho = par("lty"),
add = FALSE,
inset = FALSE,
debug = getOption("oceDebug"),
...

)

Arguments

x a ctd, argo or section object, or a list containing solely ctd objects or argo objects.

inSitu A boolean indicating whether to use in-situ temperature or (the default) potential
temperature, calculated with reference pressure given by referencePressure.
This is ignored if eos="gsw", because those cases the y axis is necessarily the
conservative formulation of temperature.

type representation of data, "p" for points, "l" for connecting lines, "b" for spaced
connecting lines, or "n" for no indication.

referencePressure

reference pressure, to be used in calculating potential temperature, if inSitu is
FALSE.

nlevels Number of automatically-selected isopycnal levels (ignored if levels is sup-
plied).

levels Optional vector of desired isopycnal levels.

grid a flag that can be set to TRUE to get a grid.

col.grid color for grid.

lty.grid line type for grid.

rho1000 if TRUE, label isopycnals as e.g. 1024; if FALSE, label as e.g. 24

eos equation of state to be used, either "unesco" or "gsw".

cex character-expansion factor for symbols, as in par("cex").

col color for symbols.

pch symbol type, as in par("pch").

plotTS 469

bg optional color to be painted under plotting area, before plotting. (This is useful
for cases in which inset=TRUE.)

pt.bg inside color for symbols with pch in 21:25
col.rho color for isopycnal lines and their labels.
cex.rho size of the isopycnal labels.
rotate if TRUE, labels in right-hand margin are written vertically
useSmoothScatter

if TRUE, use smoothScatter() to plot the points.
xlab optional label for the x axis, with default "Salinity [PSU]".
ylab optional label for the y axis, with default "Temperature [C]".
Slim optional limits for salinity axis, otherwise inferred from visible data (i.e. the

data that have finite values for both salinity and temperature).
Tlim as Slim, but for temperature.
drawFreezing logical indication of whether to draw a freezing-point line. This is based on zero

pressure. If eos="unesco" then swTFreeze() is used to compute the curve,
whereas if eos="gsw" then gsw::gsw_CT_freezing() is used; in each case,
zero pressure is used.

trimIsopycnals logical value (TRUE by default) that indicates whether to trim isopycnal curves
to the region of temperature-salinity space for which density computations are
considered to be valid in the context of the chosen eos; see “Details”.

gridIsopycnals a parameter that controls how the isopycnals are computed. This may be NULL,
or an integer vector of length 2. Case 1: the isopycnals are drawn by tracing
density isopleths in salinity-temperature space. This method was used as the
default prior to version 1.7-11, but it was found to yield staircase-like isopycnal
curves for highly zoomed-in plots (e.g. with millidegree temperature ranges).
Case 2: a grid of density is constructed, with gridIsopycnals[1] salinity lev-
els and gridIsopycnals[2] temperature levels, and then contourLines() is
used to trace the isopycnals.

mgp 3-element numerical vector to use for [par](mgp), and also for par(mar), com-
puted from this. The default is tighter than the R default, in order to use more
space for the data and less for the axes.

mar value to be used with par("mar"). If set to NULL, then par("mar") is used. A
good choice for a TS diagram with a palette to the right is mar=par("mar")+c(0, 0, 0, 1)).

lwd line width of lines or symbols.
lty line type of lines or symbols.
lwd.rho line width for density curves.
lty.rho line type for density curves.
add a flag that controls whether to add to an existing plot. (It makes sense to use

add=TRUE in the panel argument of a coplot(), for example.)
inset set to TRUE for use within plotInset(). The effect is to prevent the present

function from adjusting margins, which is necessary because margin adjustment
is the basis for the method used by plotInset().

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional arguments passed to plotting functions.

470 plotTS

Details

The isopycnal curves (along which density is constant) are drawn with drawIsopycnals(), which
also places labels in the margins showing density minus 1000 kg/m3. If trimIsopycnals is TRUE
(which is the default), these curves are trimmed to the region within which the results of density
calculation in the chosen equation of state (eos) are considered to be reliable.

With eos="unesco" this region includes Practical Salinity from 0 to 42 and Potential Temperature
from -2C to 40C, in accordance with Fofonoff and Millard (1983, page 23).

With eos="gsw" the lower limit of Absolute Salinity validity is taken as 0 g/kg, in accordance with
both McDougall et al. (2003 section 3) and the TEOS-10/gsw Matlab code for the so-called "funnel"
of validity. However, an appropriate upper limit on Absolute Salinity is not as clear. Here, the value
42 g/kg is chosen to match the "funnel" Matlab code as of July 2020, but two other choices might
have been made. One is 50 g/kg, since gsw::gsw_SA_from_rho() returns NA values for Absolute
Salinities exceeding that value, and another is 40 g/kg, as in McDougall et al. (2003 section 3). The
Conservative Temperature range is set to run from -2C to 33C, as in McDougall et al. (2003 section
3), even though the "funnel" imposes no upper limit on this variable.

Value

A list is silently returned, containing xat and yat, values that can be used by oce.grid() to add a
grid to the plot.

Author(s)

Dan Kelley

References

• Fofonoff, N. P., and R. C. Millard. "Algorithms for Computation of Fundamental Properties
of Seawater." UNESCO Technical Papers in Marine Research. SCOR working group on Eval-
uation of CTD data; UNESCO/ICES/SCOR/IAPSO Joint Panel on Oceanographic Tables and
Standards, 1983. https://unesdoc.unesco.org/ark:/48223/pf0000059832.

• McDougall, Trevor J., David R. Jackett, Daniel G. Wright, and Rainer Feistel. "Accurate
and Computationally Efficient Algorithms for Potential Temperature and Density of Seawa-
ter." Journal of Atmospheric and Oceanic Technology 20, no. 5 (May 1, 2003): 730-41.
https://journals.ametsoc.org/jtech/article/20/5/730/2543/Accurate-and-Computationally-Efficient-Algorithms.

See Also

summary,ctd-method() summarizes the information, while read.ctd() scans it from a file.

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method,
plotProfile(), plotScan(), tidem-class

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),

plotTS 471

ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), woceUnit2oceUnit(), write.ctd()

Examples

1. ctd object
library(oce)
data(ctd)
plotTS(ctd)

2. section object (note the outlier!)
data(section)
plotTS(section)

3. argo object
data(argo)
plotTS(handleFlags(argo))

4. oxygen-based colormap
marOrig <- par("mar") # so later plots with palettes have same margins
cm <- colormap(section[["oxygen"]])
drawPalette(colormap = cm, zlab = "Oxygen")
plotTS(section, pch = 19, col = cm$zcol, mar = par("mar")) # the mar adjusts for the palette

5. waters near Gulf Stream, colour-coded for longitude.
sec <- subset(section, abs(longitude + 71.6) < 1)
cm <- colormap(sec[["longitude", "byStation"]], col = oceColors9B)
par(mar = c(3.3, 3.3, 1, 1.5))
drawPalette(colormap = cm, zlab = "Longitude")
plotTS(sec, type = "n", xaxs = "r", mar = par("mar"))
jnk <- mapply(

function(s, col) {
plotTS(s, type = "o", col = "gray", pt.bg = col, pch = 21, add = TRUE)

},
sec[["station"]],
col = cm$zcol

)

6. with added spiciness contours
data(ctd)
plotTS(ctd, eos = "gsw") # MANDATORY so x=SA and y=CT
usr <- par("usr")
n <- 100
SAgrid <- seq(usr[1], usr[2], length.out = n)
CTgrid <- seq(usr[3], usr[4], length.out = n)
g <- expand.grid(SA = SAgrid, CT = CTgrid)
spiciness <- matrix(gsw::gsw_spiciness0(gSA, gCT), nrow = n)

472 predict.tidem

contour(SAgrid, CTgrid, spiciness, col = 2, labcex = 1, add = TRUE)

predict.tidem Predict a Tidal Signal

Description

This creates a time-series of predicted tides, based on a tidal model object that was created by
as.tidem() or tidem().

Usage

S3 method for class 'tidem'
predict(object, newdata, ...)

Arguments

object a tidem object.

newdata vector of POSIXt times at which to make the prediction. For models created with
tidem(), the newdata argument is optional, and if it is not provided, then the
predictions are at the observation times given to tidem(). However, newdata is
required if as.tidem() had been used to create object.

... optional arguments passed on to children.

Details

All the tidal constituents that are stored in object are used, not just those that are statistically signif-
icant or that have amplitude exceeding any particular value. In this respect, predict.tidem() fol-
lows a pattern established by e.g. predict.lm(). Note that the constituents in object are straight-
forward if it was constructed with as.tidem(), but considerably more complicated for tidem(),
and so the documentation for the latter ought to be studied closely, especially with regard to the
Rayleigh criterion.

Value

A vector of predictions.

Sample of Usage

prediction at specified times
data(sealevel)
m <- tidem(sealevel)
Check fit over 2 days (interpolating to finer timescale)
look <- 1:48
time <- sealevel[["time"]]
elevation <- sealevel[["elevation"]]

preferAdjusted 473

oce.plot.ts(time[look], elevation[look])
360s = 10 minute timescale
t <- seq(from=time[1], to=time[max(look)], by=360)
lines(t, predict(m, newdata=t), col="red")
legend("topright", col=c("black","red"),
legend=c("data","model"),lwd=1)

Author(s)

Dan Kelley

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
summary,tidem-method, tidalCurrent, tidedata, tidem, tidem-class, tidemAstron(), tidemVuf(),
webtide()

Examples

Show non-tidal sealevel signal in Halifax Harbour during
the year 2002. The spike resulted from Hurricane Juan.
library(oce)
data(sealevel)
time <- sealevel[["time"]]
elevation <- sealevel[["elevation"]]
prediction <- tidem(sealevel) |> predict()
oce.plot.ts(time, elevation - prediction)

preferAdjusted Set Preference for Adjusted Values

Description

argo data can contain "adjusted" forms of data items, which may be more trustworthy than the
original data, and preferAdjusted lets the user express a preference for such adjusted data. This
means that using [[,argo-method on the results returned by preferAdjusted will (if possible)
return adjusted data, and also use those adjusted data in computations of derived quantities such as
Absolute Salinity. The preference applies also to units and to data-quality flags, both of which can
be returned by [[,argo-method, as discussed in “Details”.

Usage

preferAdjusted(argo, which = "all", fallback = TRUE)

474 preferAdjusted

Arguments

argo An argo object.

which A character vector naming the items for which (depending also on the value of
fallback) adjusted values are to be sought by future calls to [[,argo-method.
The short names are used, e.g. which="oxygen" means that adjusted oxygen is
to be returned in future calls such as argo[["oxygen"]]. The default, "all",
means to use adjusted values for any item in argo that has adjusted values.

fallback A logical value indicating whether to fall back to unadjusted values for any data
field in which the adjusted values are all NA. The default value, TRUE, avoids
a problem with biogeochemical fields, where adjustment of any one field may
lead to insertion of "adjusted" values for other fields that consist of nothing more
than NAs.

Details

preferAdjusted() merely sets two items in the metadata slot of the returned argo object. The
real action is carried out by [[,argo-method but, for convenience, the details are explained here.

Consider salinity, for example. If which equals "all", or if it is a character vector containing
"salinity", then using [[,argo-method on the returned object will yield the adjusted forms of
the salinity data, its associated flags, or its units. Thus, in the salinity case,

• argo[["salinity"]] will attempt to return argo@data$salinityAdjusted instead of re-
turning argo@data$salinity, although if the adjusted values are all NA then, depending on
the value of fallback, the unadjusted values may be returned; similarly

• argo[["salinityFlags"]] will attempt to return argo@metadata$flags$salinityAdjusted
instead of argo@metadata$flags$salinity, and

• argo[["salinityUnits"]] will attempt to return argo@metadata$units$salinityAdjusted
instead of argo@metadata$units$salinity.

The default value, which="all", indicates that this preference for adjusted values will apply to all
the elements of the data slot of the returned object, along with associated flags and units. This can
be handy for quick work, but analysts may also choose to restrict their use of adjusted values to a
subset of variables, based on their own decisions about data quality or accuracy.

The default value fallback=TRUE indicates that later calls to [[,argo-method should return unad-
justed values for any data items that have NA for all the adjusted values. This condition is rare for
core variables (salinity, temperature and pressure) but is annoyingly common for biogeochemical
variables; see e.g. Section 2.2.5 of Reference 1 for a discussion of the conditions under which Argo
NetCDF files contain adjusted values. Setting fallback=FALSE means that adjusted values (if they
exist) will always be returned, even if they are a useless collection of NA values.

Error fields, such as salinityAdjustedError, are returned as-is by [[,argo-method, regardless
of whether the object was created by preferAdjusted.

It should be noted that, regardless of whether preferAdjusted has been used, the analyst can
always access either unadjusted or adjusted data directly, using the original variable names stored
in the source NetCDF file. For example, argo[["PSAL"]] yields unadjusted salinity values, and
argo[["PSAL_ADJUSTED"]] yields adjusted values (if they exist, or NULL if they do not). Similarly,
adjusted value can always be obtained by using a form like argo[["salinityAdjusted"]].

presentTime 475

Value

An argo object its metadata slot altered (in its adjustedWhich and adjustedFallback elements)
as a signal for how [[,argo-method should function on the object.

Author(s)

Dan Kelley, based on discussions with Jaimie Harbin (with respect to the [[,argo-method inter-
face) and Clark Richards (with respect to storing the preference in the metadata slot).

References

1. Argo Data Management Team. "Argo User’s Manual V3.3." Ifremer, November 28, 2019.
doi:10.13155/29825

Examples

library(oce)
data(argo)
argoAdjusted <- preferAdjusted(argo)
all.equal(argo[["salinityAdjusted"]], argoAdjusted[["salinity"]])
all.equal(argo[["salinityFlagsAdjusted"]], argoAdjusted[["salinityFlags"]])
all.equal(argo[["salinityUnitsAdjusted"]], argoAdjusted[["salinityUnits"]])

presentTime Get the Present Time, in a Stated Timezone

Description

Get the Present Time, in a Stated Timezone

Usage

presentTime(tz = "UTC")

Arguments

tz String indicating the desired timezone. The default is to use UTC, which is used
very commonly in oceanographic work. To get the local time, use tz="" or
tz=NULL,

Value

A POSIXct()-style object holding the present time, in the indicated timezone.

Examples

presentTime() # UTC
presentTime("") # the local timezone

https://doi.org/10.13155/29825

476 processingLog<-

prettyPosition Pretty Longitude/Latitude in Degree-Minute-Second Format

Description

Round a geographical positions in degrees, minutes, and seconds Depending on the range of values
in x, rounding is done to degrees, half-degrees, minutes, etc.

Usage

prettyPosition(x, debug = getOption("oceDebug"))

Arguments

x a series of one or more values of a latitude or longitude, in decimal degrees

debug set to a positive value to get debugging information during processing.

Value

A vector of numbers that will yield good axis labels if formatPosition() is used.

Author(s)

Dan Kelley

Examples

library(oce)
formatPosition(prettyPosition(10 + 1:10 / 60 + 2.8 / 3600))

processingLog<- Add an Item to a Processing Log

Description

Add an Item to a Processing Log

Usage

processingLog(x) <- value

Arguments

x an oce object.

value A character string with the description of the logged activity.

processingLogAppend 477

See Also

Other things related to processing logs: processingLogAppend(), processingLogItem(), processingLogShow()

Examples

data(ctd)
processingLogShow(ctd)
processingLog(ctd) <- "test"
processingLogShow(ctd)

processingLogAppend Append an Item to a Processing Log

Description

Append an Item to a Processing Log

Usage

processingLogAppend(h, value = "")

Arguments

h either the processingLog slot of an object, or an oce object from which the
processingLog will be extracted

value A string indicating the text of the log entry.

Value

An list() containing items named time and value, i.e. the times of entries and the text notations
of those entries..

See Also

Other things related to processing logs: processingLog<-(), processingLogItem(), processingLogShow()

478 processingLogShow

processingLogItem Create an Item That can be Inserted into a Processing Log

Description

A function is used internally to initialize processing logs. Users will probably prefer to use processingLogAppend()
instead.

Usage

processingLogItem(value = "")

Arguments

value A string that will be used for the item.

Value

A list() containing time, which is the time in UTC (calculated with presentTime()) at the
moment the function is called and value, a string that is set to the argument of the same name.

See Also

Other things related to processing logs: processingLog<-(), processingLogAppend(), processingLogShow()

processingLogShow Show the Processing Log of an oce Object

Description

Show the Processing Log of an oce Object

Usage

processingLogShow(x)

Arguments

x an oce object.

See Also

Other things related to processing logs: processingLog<-(), processingLogAppend(), processingLogItem()

pwelch 479

pwelch Welch Periodogram

Description

Compute periodogram using the Welch (1967) method. This is somewhat analogous to the Matlab
function of the same name, but it is not intended as a drop-in replacement.

Usage

pwelch(
x,
window,
noverlap,
nfft,
fs,
spec,
demean = FALSE,
detrend = TRUE,
plot = TRUE,
debug = getOption("oceDebug"),
...

)

Arguments

x a vector or timeseries to be analyzed. If x is a timeseries, then it there is no need
to fs, and doing so will result in an error if it does not match the value inferred
from x.

window optional numeric vector specifying a window to be applied to the timeseries sub-
samples. This is ignored if spec is provided. Otherwise, if window is provided,
then it must either be of the same length as nfft or be of length 1. In the first
case, the vector is multiplied into the timeseries subsample, and the length of
window must equal nfft is that is supplied. In the second then window is taken
to be the number of sub-intervals into which the time series is to be broken up,
with a hamming window being used for each sub-interval. If window is not spec-
ified and nfft is given, then the window is constructed as a hamming window
with length nfft. And, if neither window nor nfft are specified, then x will be
broken up into 8 portions.

noverlap number of points to overlap between windows. If not specified, this will be set
to half the window length.

nfft length of FFT. See window for how nfft interacts with that argument.

fs frequency of time-series. If x is a time-series, and if fs is supplied, then time-
series is altered to have frequency fs.

480 pwelch

spec optional function to be used for the computation of the spectrum, to allow finer-
grained control of the processing. If provided, spec must accept a time-series
as its first argument, and must return a list containing the spectrum in spec and
the frequency in freq. Note that no window will be applied to the data after
subsampling, and an error will be reported if window and spec are both given.
An error will be reported if spec is given but nfft is not given. Note that the
values of demean, detrend and plot are ignored if spec is given. However, the
. . . argument is passed to spec.

demean, detrend logical values that can control the spectrum calculation, in the default case of
spec. These are passed to spectrum() and thence spec.pgram(); see the help
pages for the latter for an explanation.

plot logical, set to TRUE to plot the spectrum.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional extra arguments to be passed to spectrum(), or to spec, if the latter is
given.

Details

First, x is broken up into chunks, overlapping as specified by noverlap. These chunks are then
multiplied by the window, and then passed to spectrum(). The resulting spectra are then averaged,
with the results being stored in spec of the return value. Other entries of the return value mimic
those returned by spectrum().

It should be noted that the actions of several parameters are interlocked, so this can be a complex
function to use. For example, if window is given and has length exceeding 1, then its length must
equal nfft, if the latter is also provided.

Value

pwelch returns a list mimicking the return value from spectrum(), containing frequency freq,
spectral power spec, degrees of freedom df, bandwidth bandwidth, etc.

Bugs

Both bandwidth and degrees of freedom are just copied from the values for one of the chunk spectra,
and are thus incorrect. That means the cross indicated on the graph is also incorrect.

Historical notes

• 2021-06-26: Until this date, pwelch() passed the subsampled timeseries portions through
detrend() before applying the window. This practice was dropped because it could lead
to over-estimates of low frequency energy (as noticed by Holger Foysi of the University
of Siegen), perhaps because detrend() considers only endpoints and therefore can yield
inaccurate trend estimates. In a related change, demean and detrend were added as for-
mal arguments, to avoid users having to trace the documentation for spectrum() and then
spec.pgram(), to learn how to remove means and trends from data. For more control, the
spec argument was added to let users sidestep spectrum() entirely, by providing their own
spectral computation functions.

rangeExtended 481

Author(s)

Dan Kelley

References

Welch, P. D., 1967. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Transactions on
Audio Electroacoustics, AU-15, 70–73.

Examples

library(oce)
Fs <- 1000
t <- seq(0, 0.296, 1 / Fs)
x <- cos(2 * pi * t * 200) + rnorm(n = length(t))
X <- ts(x, frequency = Fs)
s <- spectrum(X, spans = c(3, 2), main = "random + 200 Hz", log = "no")
w <- pwelch(X, plot = FALSE)
lines(w$freq, w$spec, col = "red")
w2 <- pwelch(X, nfft = 75, plot = FALSE)
lines(w2$freq, w2$spec, col = "green")
abline(v = 200, col = "blue", lty = "dotted")
cat("Checking spectral levels with Parseval's theorem:\n")
cat("var(x) = ", var(x), "\n")
cat("2 * sum(s$spec) * diff(s$freq[1:2]) = ", 2 * sum(s$spec) * diff(s$freq[1:2]), "\n")
cat("sum(w$spec) * diff(s$freq[1:2]) = ", sum(w$spec) * diff(w$freq[1:2]), "\n")
cat("sum(w2$spec) * diff(s$freq[1:2]) = ", sum(w2$spec) * diff(w2$freq[1:2]), "\n")
co2
par(mar = c(3, 3, 2, 1), mgp = c(2, 0.7, 0))
s <- spectrum(co2, plot = FALSE)
plot(log10(s$freq), s$spec * s$freq,

xlab = expression(log[10] * Frequency), ylab = "Power*Frequency", type = "l"
)
title("Variance-preserving spectrum")
pw <- pwelch(co2, nfft = 256, plot = FALSE)
lines(log10(pw$freq), pw$spec * pw$freq, col = "red")

rangeExtended Calculate Range, Extended a Little, as is Done for Axes

Description

This is analogous to what is done as part of the R axis range calculation, in the case where xaxs="r".

Usage

rangeExtended(x, extend = 0.04)

482 rangeLimit

Arguments

x a numeric vector.

extend fraction to extend on either end

Value

A two-element vector with the extended range of x.

Author(s)

Dan Kelley

rangeLimit Substitute NA for Data Outside a Range

Description

Substitute NA for data outside a range, e.g. to remove wild spikes in data.

Usage

rangeLimit(x, min, max)

Arguments

x vector of values

min minimum acceptable value. If not supplied, and if max is also not supplied, a
min of the 0.5 percentile will be used.

max maximum acceptable value. If not supplied, and if min is also not supplied, a
min of the 0.995 percentile will be used.

Author(s)

Dan Kelley

Examples

ten.to.twenty <- rangeLimit(1:100, 10, 20)

read.adp 483

read.adp Read an adp File

Description

Read an ADP data file, producing an adp object.

Usage

read.adp(
file,
from,
to,
by,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
manufacturer,
encoding = NA,
monitor = FALSE,
despike = FALSE,
processingLog,
debug = getOption("oceDebug"),
...

)

Arguments

file a connection or a character string giving the name of the file to load. (For
read.adp.sontek.serial, this is generally a list of files, which will be con-
catenated.)

from indication of the first profile to read. This can be an integer, the sequence num-
ber of the first profile to read, or a POSIXt time before which profiles should
be skipped, or a character string that converts to a POSIXt time (assuming UTC
timezone). See “Examples”, and make careful note of the use of the tz argu-
ment. If from is not supplied, it defaults to 1.

to an optional indication of the last profile to read, in a format as described for
from. As a special case, to=0 means to read the file to the end. If to is not
supplied, then it defaults to 0.

by an optional indication of the stride length to use while walking through the file.
If this is an integer, then by-1 profiles are skipped between each pair of profiles
that is read, e.g. the default by=1 means to read all the data. (For RDI files only,
there are some extra features to avoid running out of memory; see “Memory
considerations”.)

tz character string indicating time zone to be assumed in the data.

484 read.adp

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

manufacturer an optional character string indicating the manufacturer, used by the general
function read.adp to select a subsidiary function to use. If this is not given,
then oceMagic() is used to try to infer the type. If this is provided, then
the value "rdi" will cause read.adp.rdi() to be used, "nortek" will cause
read.adp.nortek() to be used, and "sontek" will cause read.adp.sontek()
to be used.

encoding ignored.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

despike if TRUE, despike() will be used to clean anomalous spikes in heading, etc.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional additional arguments that some (but not all) read.adp.*() functions
pass to lower-level functions.

Details

Several file types can be handled. Some of these functions are wrappers that map to device names,
e.g. read.aquadoppProfiler does its work by calling read.adp.nortek; in this context, it is
worth noting that the “aquadopp” instrument is a one-cell profiler that might just as well have been
documented under the heading read.adv().

Value

An adp object. The contents of that object make sense for the particular instrument type under
study, e.g. if the data file contains NMEA strings, then navigational data will be stored in an item
called nmea in the data slot).

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

read.adp.ad2cp 485

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley and Clark Richards

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that read adp data: read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler()

read.adp.ad2cp Read an adp File in Nortek AD2CP Format

Description

This function is under active development and may change without notice. In contrast with other
oce reading functions, read.adp.ad2cp() focusses just on one data type within the source file.
Another difference is that it can either return an object holding the data or just a data frame holding
a description of the data types in the file; indeed, the latter is the default. See “Details” for more on
the reasons for these departures from the usual oce pattern.

Usage

read.adp.ad2cp(
file,
from = 1L,
to = 0L,
by = 1L,
dataType = NULL,
dataSet = 1L,

486 read.adp.ad2cp

tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
plan,
TOC = FALSE,
debug = getOption("oceDebug"),
orientation,
distance,
monitor,
despike,
...

)

Arguments

file a connection or a character string giving the name of the file to load.

from an integer indicating the index number of the first record to read. This must
equal 1, for this version of read.adp.ad2cp. (If not provided, from defaults to
1.)

to an integer indicating the final record to read. If to is 0L, which is the default,
then the value is changed internally to 1e9, and reading stops at the end of the
file.

by ignored.

dataType an indication of the data type to be extracted. If this is NULL (the default) then
read.adp.ad2cp() returns a data frame indicating the data type occurrence rate
in the file. Otherwise, dataType must be either a numeric or character value (see
“Details”). In the numeric case, which includes both base-10 numbers and raw
values, dataType is converted to an integer that is taken to indicate the data type
via ID. The permitted values follow the Nortek convention, a summary of which
is shown the table at the start of the “Details” section. In the character case, it
must be a string taken from that same table.

dataSet a positive integer that indicates which of the possibly several data sets stored
within a file is to be focussed upon. By default, the first data set is chosen.
Note that data sets are found by trying to match each text data chunk against the
regular expression "^GETCLOCKSTR,TIME=".

tz a character value indicating time zone. This is used in interpreting times stored
in the file.

longitude, latitude
numerical values indicating the observation location.

plan optional integer specifying which ’plan’ to focus on (see

TOC a logical value. If this is FALSE (the default) then the other parameters of the
function are used to select data from the indicated filename, and an adp object
is returned. However, if TOC is TRUE, then the number of datasets held within
the file is returned.

read.adp.ad2cp 487

debug an integer value indicating the level of debugging. Set to 1 to get a moderate
amount of debugging information, from the R code only, to 2 to get some de-
bugging information from the C++ code that is used to parse the data chunks, or
to 3 for intensive debugging at both levels.

orientation, distance, monitor, despike
ignored, provided only for calling compatibility with other functions that read
adp files. A warning is issued if any of these is supplied in a call to read.adp.ad2cp().

... ignored parameters that might be passed to read.adp.ad2cp() by read.oce().

Details

Why does read.adp.ad2cp() focus only on parts of the data file? The answer lies in the AD2CP
format itself, which may combine data subsets of such differing natures as to break with the oce
system of pairing a metadata slot with a data slot. For example, in a conventional ADP dataset,
the metadata slot has items for the sampling times, the number of beams, the blanking distance,
the cell size, the number of cells, etc. Such items have a natural pairing with elements of the data
slot, and oce uses this pairing in constructing plots and other items. However, an AD2CP file might
combine such data with echosounder measurements, and these will have different values for number
of beams and so forth. This poses a challenge in naming conventions within the oce object, with
ripple effects for plotting and data access. Those ripple effects would extend beyond oce itself to
user code. To avoid such problems, read.adp.ad2cp() is designed to focus on one data type at a
time, relying on users to keep track of the resultant object, perhaps to combine it with other objects
from within the AD2CP file or other files, in the normal R manner.

The permitted values for dataType are shown in the table below; the dataType argument of
read.adp.ad2cp() may be chosen from any of the three columns in this table.

code (raw) code (integer) oce name
———- ————– —————–

0x15 21 burst
0x16 22 average
0x17 23 bottomTrack
0x18 24 interleavedBurst
0x1a 26 burstAltimeterRaw
0x1b 27 DVLBottomTrack
0x1c 28 echosounder
0x1d 29 DVLWaterTrack
0x1e 30 altimeter
0x1f 31 averageAltimeter
0x23 35 echosounderRaw
0xa0 160 text

Value

read.adp.ad2cp() returns either an adp object or the number of data sets within the file, according
to the value of TOC.

488 read.adp.ad2cp

Sample of Usage

d <- read.adp.ad2cp("~/test.ad2cp", to=100) # or read.oce()

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.
2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or

subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

Nortek AS. “Signature Integration 55|250|500|1000kHz.” Nortek AS, 2017.

Nortek AS. “Signature Integration 55|250|500|1000kHz.” Nortek AS, 2018.

Nortek AS. “Signature Integration 55|250|500|1000kHz.” Nortek AS, March 31, 2022.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to ad2cp data: ad2cpCodeToName(), ad2cpHeaderValue(), adpAd2cpFileTrim(),
is.ad2cp()

Other functions that read adp data: read.adp(), read.adp.nortek(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler()

read.adp.nortek 489

Examples

library(oce)
You can run this within the oce directory, if you clone from github.
file <- "tests/testthat/local_data/ad2cp/S102791A002_Barrow_v2.ad2cp"
if (file.exists(file)) {

library(oce)
d <- read.oce(file)

}

read.adp.nortek Read an adp File in Nortek Format

Description

Read an adp File in Nortek Format

Usage

read.adp.nortek(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
type = NULL,
orientation,
distance,
encoding = NA,
monitor = FALSE,
despike = FALSE,
processingLog,
debug = getOption("oceDebug"),
...

)

Arguments

file a connection or a character string giving the name of the file to load. (For
read.adp.sontek.serial, this is generally a list of files, which will be con-
catenated.)

from indication of the first profile to read. This can be an integer, the sequence num-
ber of the first profile to read, or a POSIXt time before which profiles should
be skipped, or a character string that converts to a POSIXt time (assuming UTC
timezone). See “Examples”, and make careful note of the use of the tz argu-
ment. If from is not supplied, it defaults to 1.

490 read.adp.nortek

to an optional indication of the last profile to read, in a format as described for
from. As a special case, to=0 means to read the file to the end. If to is not
supplied, then it defaults to 0.

by an optional indication of the stride length to use while walking through the file.
If this is an integer, then by-1 profiles are skipped between each pair of profiles
that is read, e.g. the default by=1 means to read all the data. (For RDI files only,
there are some extra features to avoid running out of memory; see “Memory
considerations”.)

tz character string indicating time zone to be assumed in the data.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

type a character string indicating the type of instrument. If NULL (the default), then
oceMagic() is used to infer the type. If non-NULL, then the value must be one
of: "aquadoppHR", "aquadoppProfiler", "aquadopp", or "aquadoppPlusMagnetometer".

orientation an optional character string specifying the orientation of the sensor, provided for
those cases in which it cannot be inferred from the data file. The valid choices
are "upward", "downward", and "sideward".

distance an optional vector holding the distances of bin centres from the sensor. This
argument is ignored except for Nortek profilers, and need not be given if the
function determines the distances correctly from the data. The problem is that
the distance is poorly documented in the Nortek System Integrator Guide (2008
edition, page 31), so the function must rely on word-of-mouth formulae that do
not work in all cases.

encoding ignored.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

despike a logical value indicating whether to use despike() to remove anomalous spikes
in heading, etc.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional additional arguments that some (but not all) read.adp.*() functions
pass to lower-level functions.

Value

An adp object. The contents of that object make sense for the particular instrument type under
study, e.g. if the data file contains NMEA strings, then navigational data will be stored in an item
called nmea in the data slot).

read.adp.nortek 491

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

1. Information on Nortek profilers (including the System Integrator Guide, which explains the
data format byte-by-byte) is available at https://www.nortekusa.com/. (One must join the
site to see the manuals.)

2. The Nortek Knowledge Center https://www.nortekusa.com/en/knowledge-center may
be of help if problems arise in dealing with data from Nortek instruments.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that read adp data: read.adp(), read.adp.ad2cp(), read.adp.rdi(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler()

492 read.adp.rdi

read.adp.rdi Read an adp File in Teledyne/RDI Format

Description

Read a Teledyne/RDI ADCP file (called ’adp’ in oce). This can handle a variety of file/instrument
types, by recognizing telltale byte sequences in the data. The scope is limited to types that are
documented adequately in Teledyne/RDI manuals. In some instances, the manuals provide some
information but not enough to enable inclusion here, for example in the case for wave data (see
https://github.com/dankelley/oce/issues/2216).

Usage

read.adp.rdi(
file,
from,
to,
by,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
type = c("workhorse"),
which,
encoding = NA,
monitor = FALSE,
despike = FALSE,
processingLog,
testing = FALSE,
debug = getOption("oceDebug"),
...

)

Arguments

file a connection or a character string giving the name of the file to load. (For
read.adp.sontek.serial, this is generally a list of files, which will be con-
catenated.)

from indication of the first profile to read. This can be an integer, the sequence num-
ber of the first profile to read, or a POSIXt time before which profiles should
be skipped, or a character string that converts to a POSIXt time (assuming UTC
timezone). See “Examples”, and make careful note of the use of the tz argu-
ment. If from is not supplied, it defaults to 1.

to an optional indication of the last profile to read, in a format as described for
from. As a special case, to=0 means to read the file to the end. If to is not
supplied, then it defaults to 0.

https://github.com/dankelley/oce/issues/2216

read.adp.rdi 493

by an optional indication of the stride length to use while walking through the file.
If this is an integer, then by-1 profiles are skipped between each pair of profiles
that is read, e.g. the default by=1 means to read all the data. (For RDI files only,
there are some extra features to avoid running out of memory; see “Memory
considerations”.)

tz character string indicating time zone to be assumed in the data.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

type character string indicating the type of instrument.

which optional character value. If this is "??" then the only other parameters that are
examined are file and debug, read.adp.rdi() works by locating the indices
in file at which data segments begin, and storing them as index in a list that is
returned. The other entry of the list is time, the time of the observation.

encoding ignored.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

despike if TRUE, despike() will be used to clean anomalous spikes in heading, etc.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

testing logical value (IGNORED).

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional additional arguments that some (but not all) read.adp.*() functions
pass to lower-level functions.

Details

If a heading bias had been set with the EB command during the setup for the deployment, then a
heading bias will have been stored in the file’s header. This value is stored in the object’s metadata
as metadata$heading.bias. Importantly, this value is subtracted from the headings stored in the
file, and the result of this subtraction is stored in the objects heading value (in data$heading). It
should be noted that read.adp.rdi() was tested for firmware version 16.30. For other versions,
there may be problems. For example, the serial number is not recognized properly for version 16.28.

In Teledyne/RDI ADP data files, velocities are coded to signed 2-byte integers, with a scale factor
being used to convert to velocity in metres per second. These two facts control the maximum
recordable velocity and the velocity resolution, values that may be retrieved for an ADP object
name d with d[["velocityMaximum"]] and d[["velocityResolution"]].

Value

An adp object. The contents of that object make sense for the particular instrument type under
study, e.g. if the data file contains NMEA strings, then navigational data will be stored in an item
called nmea in the data slot).

494 read.adp.rdi

Handling of old file formats

Early PD0 file formats stored the year of sampling with a different base year than that used in
modern files. To accommodate this, read.adp.rdi examines the inferred year, and if it is greater
than 2050, then 100 years are subtracted from the time. This offset was inferred by tests with
sample files, but not from RDI documentation, so it is somewhat risky. If the authors can find RDI
documentation that indicates the condition in which this century offset is required, then a change
will be made to the code. Even if not, the method should not cause problems for a long time.

Names of items in data slot

The names of items in the data slot are below. Not all items are present for ll file varieties; use
e.g. names(d[["data"]]) to determine the names used in an object named d. In this list, items are
either a vector (with one sample per time of measurement), a matrix with first index for time and
second for bin number, or an array with first index for time, second for bin number, and third for
beam number. Items are of vector type, unless otherwise indicated.

Item Meaning
a signal amplitude array (units?)

ambientTemp ambient temperature (degC)
attitude attitude (deg)

attitudeTemp (FIXME add a description here)
avgMagnitudeVelocityEast (FIXME add a description here)
avgMagnitudeVelocityNorth (FIXME add a description here)

avgSpeed (FIXME add a description here)
avgTrackMagnetic (FIXME add a description here)

avgTrackTrue (FIXME add a description here)
avgTrueVelocityEast (FIXME add a description here)

avgTrueVelocityNorth (FIXME add a description here)
br bottom range matrix (m)
bv bottom velocity matrix (m/s)

contaminationSensor (FIXME add a description here)
depth depth (m)

directionMadeGood (FIXME add a description here)
distance (FIXME add a description here)

firstLatitude latitude at start of profile (deg)
firstLongitude longitude at start of profile (deg)

firstTime (FIXME add a description here)
g data goodness matrix (units?)

heading instrument heading (degrees)
headingStd instrument heading std-dev (deg)

lastLatitude latitude at end of profile (deg)
lastLongitude longitude at end of profile (deg)

lastTime (FIXME add a description here)
numberOfHeadingSamplesAveraged (FIXME add a description here)

numberOfMagneticTrackSamplesAveraged (FIXME add a description here)
numberOfPitchRollSamplesAveraged (FIXME add a description here)

numberOfSpeedSamplesAveraged (FIXME add a description here)
numberOfTrueTrackSamplesAveraged (FIXME add a description here)

read.adp.rdi 495

pitch instrument pitch (deg)
pitchStd instrument pitch std-dev (deg)
pressure pressure (dbar)

pressureMinus (FIXME add a description here)
pressurePlus (FIXME add a description here)
pressureStd pressure std-dev (dbar)
primaryFlags (FIXME add a description here)

q data quality array
roll instrument roll (deg)

rollStd instrument roll std-dev (deg)
salinity salinity

shipHeading ship heading (deg)
shipPitch ship pitch (deg)
shipRoll ship roll (deg)

soundSpeed sound speed (m/s)
speedMadeGood speed over ground (?) (m/s)

speedMadeGoodEast (FIXME add a description here)
speedMadeGoodNorth (FIXME add a description here)

temperature temperature (degC)
time profile time (POSIXct)

v velocity array (m/s)
xmitCurrent transmit current (unit?)
xmitVoltage transmit voltage

Memory considerations

For RDI files only, and only in the case where by is not specified, an attempt is made to avoid
running out of memory by skipping some profiles in large input files. This only applies if from and
to are both integers; if they are times, none of the rest of this section applies.

A key issue is that RDI files store velocities in 2-byte values, which is not a format that R supports.
These velocities become 8-byte (numeric) values in R. Thus, the R object created by read.adp.rdi
will require more memory than that of the data file. A scale factor can be estimated by ignoring
vector quantities (e.g. time, which has just one value per profile) and concentrating on matrix prop-
erties such as velocity, backscatter, and correlation. These three elements have equal dimensions.
Thus, each 4-byte slide in the data file (2 bytes + 1 byte + 1 byte) corresponds to 10 bytes in the
object (8 bytes + 1 byte + 1 byte). Rounding up the resultant 10/4 to 3 for safety, we conclude that
any limit on the size of the R object corresponds to a 3X smaller limit on file size.

Various things can limit the size of objects in R, but a strong upper limit is set by the space
the operating system provides to R. The least-performant machines in typical use appear to be
Microsoft-Windows systems, which limit R objects to about 2e6 bytes (see ?Memory-limits).
Since R routinely duplicates objects for certain tasks (e.g. for call-by-value in function evaluation),
read.adp.rdi uses a safety factor in its calculation of when to auto-decimate a file. This factor is
set to 3, based partly on the developers’ experience with datasets in their possession. Multiplied by
the previously stated safety factor of 3, this suggests that the 2 GB limit on R objects corresponds
to approximately a 222 MB limit on file size. In the present version of read.adp.rdi, this value is
lowered to 200 MB for simplicity. Larger files are considered to be "big", and are decimated unless
the user supplies a value for the by argument.

496 read.adp.rdi

The decimation procedure has two cases.

1. If from=1 and to=0 (or if neither from or to is given), then the intention is to process the full
span of the data. If the input file is under 200 MB, then by defaults to 1, so that all profiles are
read. For larger files, by is set to the ceiling() of the ratio of input file size to 200 MB.

2. If from exceeds 1, and/or to is nonzero, then the intention is to process only an interior subset
of the file. In this case, by is calculated as the ceiling() of the ratio of bbp*(1+to-from)
to 200 MB, where bbp is the number of file bytes per profile. Of course, by is set to 1, if this
ratio is less than 1.

If the result of these calculations is that by exceeds 1, then messages are printed to alert the user that
the file will be decimated, and also monitor is set to TRUE, so that a textual progress bar is shown
(if the session is interactive).

Development Notes

An important part of the work of this function is to recognize what will be called "data chunks" by
two-byte ID sequences. This function is developed in a practical way, with emphasis being focussed
on data files in the possession of the developers. Since Teledyne-RDI tends to introduce new ID
codes with new instruments, that means that read.adp.rdi may not work on recently-developed
instruments.

The following two-byte ID codes are recognized by read.adp.rdi at this time (with bytes listed
in natural order, LSB byte before MSB). Items preceded by an asterisk are recognized, but not
handled, and so produce a warning.

Byte 1 Byte 2 Meaning
0x00 0x01 velocity
0x00 0x01 velocity
0x00 0x02 correlation
0x00 0x03 echo intensity
0x00 0x04 percent good
0x00 0x06 bottom track
0x00 0x0a Sentinel vertical beam velocity
0x00 0x0b Sentinel vertical beam correlation
0x00 0x0c Sentinel vertical beam amplitude
0x00 0x0d Sentinel vertical beam percent good
0x00 0x20 VMDASS
0x00 0x30 Binary Fixed Attitude header
0x00 0x32 Sentinel transformation matrix
0x00 0x0a Sentinel data
0x00 0x0b Sentinel correlation
0x00 0x0c Sentinel amplitude
0x00 0x0d Sentinel percent good
0x01 0x0f ?? something to do with V series and 4-beam

Lacking a comprehensive Teledyne-RDI listing of ID codes, the authors have cobbled together a
listing from documents to which they have access, as follows.

read.adp.rdi 497

• Table 33 of reference 3 lists codes as follows:

Standard ID Standard plus 1D DESCRIPTION
MSB LSB MSB LSB

— — — —
7F 7F 7F 7F Header
00 00 00 01 Fixed Leader
00 80 00 81 Variable Leader
01 00 01 01 Velocity Profile Data
02 00 02 01 Correlation Profile Data
03 00 03 01 Echo Intensity Profile Data
04 00 04 01 Percent Good Profile Data
05 00 05 01 Status Profile Data
06 00 06 01 Bottom Track Data
20 00 20 00 Navigation
30 00 30 00 Binary Fixed Attitude

30 40-F0 30 40-F0 Binary Variable Attitude

• Table 6 on p90 of reference 4 lists "Fixed Leader Navigation" ID codes (none of which are
handled by read.adp.rdi yet) as follows (the format is reproduced literally; note that e.g.
0x2100 is 0x00,0x21 in the oce notation):

ID Description
0x2100 $xxDBT
0x2101 $xxGGA
0x2102 $xxVTG
0x2103 $xxGSA
0x2104 $xxHDT, $xxHGD or $PRDID

and following pages in that manual reveal the following meanings

Symbol Meaning
DBT depth below transducer
GGA global positioning system
VTA track made good and ground speed
GSA GPS DOP and active satellites
HDT heading, true
HDG heading, deviation, and variation

PRDID heading, pitch and roll

Error recovery

Files can sometimes be corrupted, and read.adp.rdi has ways to handle two types of error that
have been noticed in files supplied by users.

498 read.adp.rdi

1. There are two bytes within each ensemble that indicate the number of bytes to check within
that ensemble, to get the checksum. Sometimes, those two bytes can be erroneous, so that the
wrong number of bytes are checked, leading to a failed checksum. As a preventative measure,
read.adp.rdi checks the stated ensemble length, whenever it detects a failed checksum. If
that length agrees with the length of the most recent ensemble that had a good checksum, then
the ensemble is declared as faulty and is ignored. However, if the length differs from that of
the most recent accepted ensemble, then read.adp.rdi goes back to just after the start of the
ensemble, and searches forward for the next two-byte pair, namely 0x7f 0x7f, that designates
the start of an ensemble. Distinct notifications are given about these two cases, and they give
the byte numbers in the original file, as a way to help analysts who want to look at the data
stream with other tools.

2. At the end of an ensemble, the next two characters ought to be 0x7f 0x7f, and if they are not,
then the next ensemble is faulty. If this error occurs, read.adp.rdi attempts to recover by
searching forward to the next instance of this two-byte pair, discarding any information that is
present in the mangled ensemble.

In each of these cases, warnings are printed about ensembles that seem problematic. Advanced
users who want to diagnose the problem further might find it helpful to examine the original data
file using other tools. To this end, read.adp.rdi inserts an element named ensembleInFile into
the metadata slot. This gives the starting byte number of each inferred ensemble within the original
data file. For example, if d is an object read with read.adp.rdi, then using

plot(d[["time"]][-1], diff(d[["ensembleInFile"]]))

can be a good way to narrow in on problems.

Changes

• The bq (bottom-track quality) field was called bc until 2023-02-09. See https://github.com/dankelley/oce/issues/2039
for discussion.

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.
2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or

subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

read.adp.sontek 499

Author(s)

Dan Kelley and Clark Richards

References

1. Teledyne-RDI, 2007. WorkHorse commands and output data format. P/N 957-6156-00 (Novem-
ber 2007). (Section 5.3 h details the binary format, e.g. the file should start with the byte
0x7f repeated twice, and each profile starts with the bytes 0x80, followed by 0x00, followed
by the sequence number of the profile, represented as a little-endian two-byte short integer.
read.adp.rdi uses these sequences to interpret data files.)

2. Teledyne RD Instruments, 2015. V Series monitor, sentinel Output Data Format. P/N 95D-
6022-00 (May 2015). SV_ODF_May15.pdf

3. Teledyne RD Instruments, 2014. Ocean Surveyor / Ocean Observer Technical Manual. P/N
95A-6012-00 (April 2014). OS_TM_Apr14.pdf

4. Teledyne RD Instruments, 2001. WinRiver User’s Guide International Version. P/N 957-
6171-00 (June 2001) WinRiver User Guide International Version.pdf.pdf

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that read adp data: read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.sontek(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler()

Examples

adp <- read.adp.rdi(system.file("extdata", "adp_rdi.000", package = "oce"))
summary(adp)

read.adp.sontek Read an adp File in Sontek Format

Description

Read a Sontek acoustic-Doppler profiler file (see reference 1).

500 read.adp.sontek

Usage

read.adp.sontek(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
type = c("adp", "pcadp"),
encoding = NA,
monitor = FALSE,
despike = FALSE,
processingLog,
debug = getOption("oceDebug"),
...

)

Arguments

file a connection or a character string giving the name of the file to load. (For
read.adp.sontek.serial, this is generally a list of files, which will be con-
catenated.)

from indication of the first profile to read. This can be an integer, the sequence num-
ber of the first profile to read, or a POSIXt time before which profiles should
be skipped, or a character string that converts to a POSIXt time (assuming UTC
timezone). See “Examples”, and make careful note of the use of the tz argu-
ment. If from is not supplied, it defaults to 1.

to an optional indication of the last profile to read, in a format as described for
from. As a special case, to=0 means to read the file to the end. If to is not
supplied, then it defaults to 0.

by an optional indication of the stride length to use while walking through the file.
If this is an integer, then by-1 profiles are skipped between each pair of profiles
that is read, e.g. the default by=1 means to read all the data. (For RDI files only,
there are some extra features to avoid running out of memory; see “Memory
considerations”.)

tz character string indicating time zone to be assumed in the data.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

type A character string indicating the type of instrument.

encoding ignored.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

despike if TRUE, despike() will be used to clean anomalous spikes in heading, etc.

read.adp.sontek 501

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional additional arguments that some (but not all) read.adp.*() functions
pass to lower-level functions.

Value

An adp object. The contents of that object make sense for the particular instrument type under
study, e.g. if the data file contains NMEA strings, then navigational data will be stored in an item
called nmea in the data slot).

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley and Clark Richards

References

1. Information about Sontek profilers is available at https://www.sontek.com.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,

502 read.adp.sontek.serial

is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that read adp data: read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler()

read.adp.sontek.serial

Read an adp File in Serial Sontek Format

Description

Read a Sontek acoustic-Doppler profiler file, in a serial form that is possibly unique to Dalhousie
University.

Usage

read.adp.sontek.serial(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
type = c("adp", "pcadp"),
beamAngle = 25,
orientation,
encoding = NA,
monitor = FALSE,
processingLog,
debug = getOption("oceDebug"),
...

)

Arguments

file a connection or a character string giving the name of the file to load. (For
read.adp.sontek.serial, this is generally a list of files, which will be con-
catenated.)

from indication of the first profile to read. This can be an integer, the sequence num-
ber of the first profile to read, or a POSIXt time before which profiles should
be skipped, or a character string that converts to a POSIXt time (assuming UTC
timezone). See “Examples”, and make careful note of the use of the tz argu-
ment. If from is not supplied, it defaults to 1.

read.adp.sontek.serial 503

to an optional indication of the last profile to read, in a format as described for
from. As a special case, to=0 means to read the file to the end. If to is not
supplied, then it defaults to 0.

by an optional indication of the stride length to use while walking through the file.
If this is an integer, then by-1 profiles are skipped between each pair of profiles
that is read, e.g. the default by=1 means to read all the data. (For RDI files only,
there are some extra features to avoid running out of memory; see “Memory
considerations”.)

tz character string indicating time zone to be assumed in the data.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

type a character string indicating the type of instrument.

beamAngle angle between instrument axis and beams, in degrees.

orientation optional character string specifying the orientation of the sensor, provided for
those cases in which it cannot be inferred from the data file. The valid choices
are "upward", "downward", and "sideward".

encoding ignored.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional additional arguments that some (but not all) read.adp.*() functions
pass to lower-level functions.

Value

An adp object. The contents of that object make sense for the particular instrument type under
study, e.g. if the data file contains NMEA strings, then navigational data will be stored in an item
called nmea in the data slot).

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

504 read.adv

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley and Clark Richards

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(), rotateAboutZ(),
setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that read adp data: read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler()

read.adv Read an adv File

Description

Read an ADV data file, producing an object of type adv. This function works by transferring control
to a more specialized function, e.g. read.adp.nortek() and read.adp.sontek(), and in many
cases users will find it preferable to either use these or the several even more specialized functions,
if the file type is known.

Usage

read.adv(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
type = c("nortek", "sontek", "sontek.adr", "sontek.text"),
header = TRUE,

read.adv 505

encoding = NA,
longitude = NA,
latitude = NA,
start = NULL,
deltat = NA,
debug = getOption("oceDebug"),
monitor = FALSE,
processingLog = NULL

)

Arguments

file a connection or a character string giving the name of the file to load. It is also
possible to give file as a vector of filenames, to handle the case of data split
into files by a data logger. In the multi-file case, header must be FALSE, start
must be a vector of times, and deltat must be provided.

from index number of the first profile to be read, or the time of that profile, as cre-
ated with as.POSIXct() (hint: use tz="UTC"). This argument is ignored if
header==FALSE. See “Examples”.

to indication of the last profile to read, in a format matching that of from. This is
ignored if header==FALSE.

by an indication of the stride length to use while walking through the file. This is
ignored if header==FALSE. Otherwise, if this is an integer, then by-1 profiles
are skipped between each pair of profiles that is read. This may not make much
sense, if the data are not equi-spaced in time. If by is a string representing a time
interval, in colon-separated format, then this interval is divided by the sampling
interval, to get the stride length. BUG: by only partially works; see “Bugs”.

tz character string indicating time zone to be assumed in the data.

type character string indicating type of file, and used by read.adv to dispatch to one
of the speciality functions.

header A logical value indicating whether the file starts with a header. (This will not be
the case for files that are created by data loggers that chop the raw data up into
a series of sub-files, e.g. once per hour.)

encoding ignored.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

start the time of the first sample, typically created with as.POSIXct(). This may be
a vector of times, if filename is a vector of file names.

deltat the time between samples. (This is mandatory if header=FALSE.)

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies. For example, read.adv.nortek() calls
read.header.nortek(), so that read.adv.nortek(...,debug=2) provides
information about not just the main body of the data file, but also the details
of the header.

506 read.adv

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

Details

Files without headers may be created in experiments in which a data logger was set up to monitor the
serial data stream from an instrument. The lack of header information places a burden on the user,
who must supply such basic information as the times of observations, the instrument orientation,
the instrument coordinate system, etc. Example 3 below shows how to deal with such files. Three
things should be noted.

1. The user must choose the appropriate read.adv variant corresponding to the instrument in
question. (This is necessary because oceMagic(), which is used by the generic read.oce()
routine, cannot determine the type of instrument by examining a file that lacks a header.)

2. The call to the read function must include a start time (start) and the number of seconds
between data (deltat), again, because the instrument data stream may lack those things when
the device is set to a serial mode. Also, of course, it is necessary to set header=FALSE in the
function call.

3. Once the file has been read in, the user will be obliged to specify other information, for the
object to be well-formed. For example, the read function will have no way of knowing the
instrument orientation, the coordinate system being used, the transformation matrix to go from
"beam" to "xyz" coordinates, or the instrument heading, pitch, and roll, to go from "xyz"
coordinates to "enu" coordinates. Such things are illustrated in example 3 below.

In ADV data files, velocities are coded to signed 2-byte integers, with a scale factor being used
to convert to velocity in metres per second. These two facts control the maximum recordable ve-
locity and the velocity resolution, values that may be retrieved for an ADV object name d with
d[["velocityMaximum"]] and d[["velocityResolution"]].

Value

An adv object that contains measurements made with an ADV device.

The metadata contains information as given in the following table. The Nortek name'' is the name used in the Nortek System Integrator Guide (reference 1) and the Son-
tek name” is the name used in the relevant Sontek documentation. References are given in square
brackets.

metadata name Nortek name Sontek name Meaning
manufacturer - - Either "nortek" or "sontek"
instrumentType - - Either "vector" or "adv"
filename - - Name of data file(s)
latitude - - Latitude of mooring (if applicable)
longitude - - Longitude of mooring (if applicable)
numberOfSamples - - Number of data samples in file
numberOfBeams NBeams (reference 1, p18) - Number of beams (always 3)

read.adv 507

numberOfBeamSequencesPerBurst NPings - number of beam sequences per burst
measurementInterval MeasInterval (reference 1 p31) -
samplingRate 512/(AvgInterval) (reference 1 p30; reference 4) - #’

The data list contains items with names corresponding to adp objects, with an exception for
Nortek data. Nortek instruments report some things at a time interval that is longer than the ve-
locity sampling, and these are stored in data as timeSlow, headingSlow, pitchSlow, rollSlow,
and temperatureSlow; if burst sampling was used, there will also be items recordsBurst and
timeBurst.

The processingLog is in the standard format.

Nortek files

Sampling-rate and similar issues

The data format is inferred from the System Integrator Guide (reference 1A) and System Integrator
Manual (reference 1B). These document lacks clarity in spots, and so read.adv.nortek contains
some assumptions that are noted here, so that users will be aware of possible problems.

A prominent example is the specification of the sampling rate, stored in metadata$sampingRate in
the return value. Repeated examination of the System Integrator Guide (reference 1) failed to indi-
cate where this value is stored in the various headers contained in Vector datasets. After some exper-
imentation with a few data files, read.adv.nortek was set up to calculate metadata$samplingRate
as 512/AvgInterval where AvgInterval is a part of the User Configuration'' header (reference 1 p30), where the explanation is av-
erage interval in seconds”). This formula was developed through trial and error, but it was confirmed
later on the Nortek discussion group, and it should appear in upcoming versions of (reference 1).

Another basic issue is the determination of whether an instrument had recorded in continuous mode
or burst mode. One might infer that TimCtrlReg in the User Configuration'' header (reference 1 p30) determines this, in bits 1 and 2. However, this was the case in test files available to the author. For this reason, `read.adv.nortek` infers the mode by reverse engineering of data files of known configuration. The present version of `read.adv.nortek` determines the sampling mode from the ```NRecords`'' item of the Vec-
tor Velocity Data” header, which seems to be 0 for data collected continuously, and non-zero for
data collected in bursts.

Taking these things together, we come upon the issue of how to infer sampling times for Nortek
instruments. There do not seem to be definitive documents on this, and so read.adv.nortek is
based partly on information (of unknown quality) found on Nortek discussion boards. The present
version of read.adv.nortek infers the times of velocity observations differently, depending on
whether the instrument was set to record in burst mode or continuous mode. For burst mode, times
stated in the burst headers are used, but for continuous mode, times stated in the “vector system
data” are used. On the advice found on a Nortek discussion board, the burst-mode times are offset
by 2 seconds to allow for the instrument warm-up period.

Handling IMU (inertial measurement unit) data

Starting in March 2016, read.adv.nortek has offered some support for handling IMU (inertial
measurement unit) data incorporated into Nortek binary files. This is not described in the Nortek
document named System Integrator Guide'' (reference 1A) but it appeared in System
Integrator Manual” (reference 1B; reference 1C). Confusingly, 1B described 3 varieties of data,
whereas 1C does not describe any of these, but describes instead a fourth variety. As of March
2016, read.adv.nortek handles all 4 varieties, because files in the various schemes appear to
exist. In oce, the varieties are named after the byte code that flags them. (Variety c3 is the one

508 read.adv

described in (reference 1C); the others were described in (reference 1B).) The variety is stored in
the metadata slot of the returned object as a string named IMUtype.

For each variety, the reader is cautioned that strong tests have not been performed on the code.
One way to test the code is to compare with textual data files produced by the Nortek software. In
March 2016, an oce user shared a dataset of the c3 variety, and this permitted detailed comparison
between the text file and the values inferred by read.adv.nortek. The test suggested agreement (to
within the resolution printed in the text file) for velocity (v in the data slot), signal amplitude (a),
correlation (q), pressure (p), the three components of IMU delta angle (IMUdeltaAngleX etc), and
all components of the rotation matrix (IMUrotation). However, the delta velocity signals did not
match, with IMUdeltaVelocityX disagreeing in the second decimal place, IMUdeltaVelocityY
component disagreeing in the first, and IMUdeltaVelocityZ being out by a factor of about 10.
This is github issue 893 (https://github.com/dankelley/oce/issues/893).

• Variety c3 (signalled by byte 5 of a sequence being 0xc3) provides information on what Nortek
calls DeltaAngle, DeltaVelocity and Orientation Matrix. (Apart from the orientation matrix,
Nortek provides no documentation on what these quantities mean.) In the object returned by
read.adv.nortek, these are stored in the data slot as IMUdeltaAngleX, IMUdeltaAngleY,
IMUdeltaAngleZ, IMUdeltaVelocityX, IMUdeltaVelocityY, IMUdeltaVelocityZ, and IMUrotation,
all vectors except the last, which is a 3D array. In addition to these, IMUtimestamp is a time-
stamp, which is not defined in the Nortek documents but seems, from IMU documents (refer-
ence 5), to be defined based on a clock that ticks once per 16 microseconds. Caution may be
required in dealing with this timestamp, since it seemed sensible in one test case (variety d3)
but kept reseting to zero in another (variety c3). The lack of Nortek documentation on most
of these quantities is a roadblock to implementing oce functions dealing with IMU-enabled
datasets

• Variety cc (signalled by byte 5 of a sequence being 0xcc) provides information on accel-
eration, angular rotation rate, magnetic vector and orientation matrix. Each is a timeseries.
Acceleration is stored in the data slot as IMUaccelX, IMUaccelY, IMUaccelz. The angu-
lar rotation components are IMUngrtX, IMUngrtY and IMUngrtz. The magnetic data are in
IMUmagrtx, IMUmagrty and IMUmagrtz. Finally, IMUmatrix is a rotation matrix made up
from elements named M11, M12, etc in the Nortek documentation. In addition to all of these,
IMUtime stores time in seconds, with an origin whose definition is not stated in reference 1B.

• Variety d2 (signalled by byte 5 being 0xd2) provides information on gyro-stabilized accel-
eration, angular rate and magnetometer vectors. The data stored MUaccelX, IMUangrtX,
IMUmagrtX, with similar for Y and Z. Again, time is in IMUtime. This data type has not been
tested as of mid-March 2016, because the developers do not have a test file with which to test.

• Variety d3 (signalled by byte 5 being 0xd3) provides information on DeltaAngle, DeltaVeloc-
ity and magnetometer vectors, stored in IMUdeltaAngleX, IMUdeltaVelocityX, and IMUdeltaMagVectorX,
with similar for Y and Z. Again, time is in IMUtime. This data type has not been tested as of
mid-March 2016, because the developers do not have a test file with which to test.

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

read.adv 509

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

1A. Nortek AS. System Integrator Guide (paradopp family of products). June 2008. (Doc No:
PSI00-0101-0608). (Users may find it helpful to also examine newer versions of the guide.)

1B. Nortek AS. System Integrator Manual. Dec 2014. (system-integrator-manual_Dec2014_jan.pdf)

1C. Nortek AS. System Integrator Manual. March 2016. (system-integrator-manual_Mar2016.pdf)

1. SonTek/YSI ADVField/Hydra Acoustic Doppler Velocimeter (Field) Technical Documenta-
tion (Sept 1, 2001).

2. Appendix 2.2.3 of the Sontek ADV operation Manual, Firmware Version 4.0 (Oct 1997).

3. Nortek Knowledge Center (http://www.nortekusa.com/en/knowledge-center)

4. A document describing an IMU unit that seems to be close to the one named in (references 1B
and C) as being an adjunct to Nortek Vector systems is at http://files.microstrain.com/3DM-GX3-35-Data-Communications-Protocol.pdf

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
toEnuAdv(), velocityStatistics(), xyzToEnu(), xyzToEnuAdv()

Examples

Not run:
library(oce)
A nortek Vector file
d <- read.oce("/data/archive/sleiwex/2008/moorings/m05/adv/nortek_1943/raw/adv_nortek_1943.vec",

from=as.POSIXct("2008-06-26 00:00:00", tz="UTC"),
to=as.POSIXct("2008-06-26 00:00:10", tz="UTC"))

510 read.adv.nortek

plot(d, which=c(1:3,15))

End(Not run)

read.adv.nortek Read an adv File

Description

Read an ADV data file, producing an object of type adv. This function works by transferring control
to a more specialized function, e.g. read.adp.nortek() and read.adp.sontek(), and in many
cases users will find it preferable to either use these or the several even more specialized functions,
if the file type is known.

Usage

read.adv.nortek(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
header = TRUE,
longitude = NA,
latitude = NA,
encoding = NA,
type = c("vector", "aquadopp"),
haveAnalog1 = FALSE,
haveAnalog2 = FALSE,
debug = getOption("oceDebug"),
monitor = FALSE,
processingLog = NULL

)

Arguments

file a connection or a character string giving the name of the file to load. It is also
possible to give file as a vector of filenames, to handle the case of data split
into files by a data logger. In the multi-file case, header must be FALSE, start
must be a vector of times, and deltat must be provided.

from index number of the first profile to be read, or the time of that profile, as cre-
ated with as.POSIXct() (hint: use tz="UTC"). This argument is ignored if
header==FALSE. See “Examples”.

to indication of the last profile to read, in a format matching that of from. This is
ignored if header==FALSE.

read.adv.nortek 511

by an indication of the stride length to use while walking through the file. This is
ignored if header==FALSE. Otherwise, if this is an integer, then by-1 profiles
are skipped between each pair of profiles that is read. This may not make much
sense, if the data are not equi-spaced in time. If by is a string representing a time
interval, in colon-separated format, then this interval is divided by the sampling
interval, to get the stride length. BUG: by only partially works; see “Bugs”.

tz character string indicating time zone to be assumed in the data.

header A logical value indicating whether the file starts with a header. (This will not be
the case for files that are created by data loggers that chop the raw data up into
a series of sub-files, e.g. once per hour.)

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

encoding ignored.

type A string indicating which type of Nortek device produced the data file, vector
or aquadopp.

haveAnalog1 A logical value indicating whether the data file has ’analog1’ data.

haveAnalog2 A logical value indicating whether the data file has ’analog2’ data.

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies. For example, read.adv.nortek() calls
read.header.nortek(), so that read.adv.nortek(...,debug=2) provides
information about not just the main body of the data file, but also the details
of the header.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

Details

Files without headers may be created in experiments in which a data logger was set up to monitor the
serial data stream from an instrument. The lack of header information places a burden on the user,
who must supply such basic information as the times of observations, the instrument orientation,
the instrument coordinate system, etc. Example 3 below shows how to deal with such files. Three
things should be noted.

1. The user must choose the appropriate read.adv variant corresponding to the instrument in
question. (This is necessary because oceMagic(), which is used by the generic read.oce()
routine, cannot determine the type of instrument by examining a file that lacks a header.)

2. The call to the read function must include a start time (start) and the number of seconds
between data (deltat), again, because the instrument data stream may lack those things when
the device is set to a serial mode. Also, of course, it is necessary to set header=FALSE in the
function call.

512 read.adv.nortek

3. Once the file has been read in, the user will be obliged to specify other information, for the
object to be well-formed. For example, the read function will have no way of knowing the
instrument orientation, the coordinate system being used, the transformation matrix to go from
"beam" to "xyz" coordinates, or the instrument heading, pitch, and roll, to go from "xyz"
coordinates to "enu" coordinates. Such things are illustrated in example 3 below.

In ADV data files, velocities are coded to signed 2-byte integers, with a scale factor being used
to convert to velocity in metres per second. These two facts control the maximum recordable ve-
locity and the velocity resolution, values that may be retrieved for an ADV object name d with
d[["velocityMaximum"]] and d[["velocityResolution"]].

Value

An adv object that contains measurements made with an ADV device.

The metadata contains information as given in the following table. The Nortek name'' is the name used in the Nortek System Integrator Guide (reference 1) and the Son-
tek name” is the name used in the relevant Sontek documentation. References are given in square
brackets.

metadata name Nortek name Sontek name Meaning
manufacturer - - Either "nortek" or "sontek"
instrumentType - - Either "vector" or "adv"
filename - - Name of data file(s)
latitude - - Latitude of mooring (if applicable)
longitude - - Longitude of mooring (if applicable)
numberOfSamples - - Number of data samples in file
numberOfBeams NBeams (reference 1, p18) - Number of beams (always 3)
numberOfBeamSequencesPerBurst NPings - number of beam sequences per burst
measurementInterval MeasInterval (reference 1 p31) -
samplingRate 512/(AvgInterval) (reference 1 p30; reference 4) - #’

The data list contains items with names corresponding to adp objects, with an exception for
Nortek data. Nortek instruments report some things at a time interval that is longer than the ve-
locity sampling, and these are stored in data as timeSlow, headingSlow, pitchSlow, rollSlow,
and temperatureSlow; if burst sampling was used, there will also be items recordsBurst and
timeBurst.

The processingLog is in the standard format.

Nortek files

Sampling-rate and similar issues
The data format is inferred from the System Integrator Guide (reference 1A) and System Integrator
Manual (reference 1B). These document lacks clarity in spots, and so read.adv.nortek contains
some assumptions that are noted here, so that users will be aware of possible problems.

A prominent example is the specification of the sampling rate, stored in metadata$sampingRate in
the return value. Repeated examination of the System Integrator Guide (reference 1) failed to indi-
cate where this value is stored in the various headers contained in Vector datasets. After some exper-
imentation with a few data files, read.adv.nortek was set up to calculate metadata$samplingRate

read.adv.nortek 513

as 512/AvgInterval where AvgInterval is a part of the User Configuration'' header (reference 1 p30), where the explanation is av-
erage interval in seconds”). This formula was developed through trial and error, but it was confirmed
later on the Nortek discussion group, and it should appear in upcoming versions of (reference 1).

Another basic issue is the determination of whether an instrument had recorded in continuous mode
or burst mode. One might infer that TimCtrlReg in the User Configuration'' header (reference 1 p30) determines this, in bits 1 and 2. However, this was the case in test files available to the author. For this reason, `read.adv.nortek` infers the mode by reverse engineering of data files of known configuration. The present version of `read.adv.nortek` determines the sampling mode from the ```NRecords`'' item of the Vec-
tor Velocity Data” header, which seems to be 0 for data collected continuously, and non-zero for
data collected in bursts.

Taking these things together, we come upon the issue of how to infer sampling times for Nortek
instruments. There do not seem to be definitive documents on this, and so read.adv.nortek is
based partly on information (of unknown quality) found on Nortek discussion boards. The present
version of read.adv.nortek infers the times of velocity observations differently, depending on
whether the instrument was set to record in burst mode or continuous mode. For burst mode, times
stated in the burst headers are used, but for continuous mode, times stated in the “vector system
data” are used. On the advice found on a Nortek discussion board, the burst-mode times are offset
by 2 seconds to allow for the instrument warm-up period.

Handling IMU (inertial measurement unit) data
Starting in March 2016, read.adv.nortek has offered some support for handling IMU (inertial
measurement unit) data incorporated into Nortek binary files. This is not described in the Nortek
document named System Integrator Guide'' (reference 1A) but it appeared in System
Integrator Manual” (reference 1B; reference 1C). Confusingly, 1B described 3 varieties of data,
whereas 1C does not describe any of these, but describes instead a fourth variety. As of March
2016, read.adv.nortek handles all 4 varieties, because files in the various schemes appear to
exist. In oce, the varieties are named after the byte code that flags them. (Variety c3 is the one
described in (reference 1C); the others were described in (reference 1B).) The variety is stored in
the metadata slot of the returned object as a string named IMUtype.

For each variety, the reader is cautioned that strong tests have not been performed on the code.
One way to test the code is to compare with textual data files produced by the Nortek software. In
March 2016, an oce user shared a dataset of the c3 variety, and this permitted detailed comparison
between the text file and the values inferred by read.adv.nortek. The test suggested agreement (to
within the resolution printed in the text file) for velocity (v in the data slot), signal amplitude (a),
correlation (q), pressure (p), the three components of IMU delta angle (IMUdeltaAngleX etc), and
all components of the rotation matrix (IMUrotation). However, the delta velocity signals did not
match, with IMUdeltaVelocityX disagreeing in the second decimal place, IMUdeltaVelocityY
component disagreeing in the first, and IMUdeltaVelocityZ being out by a factor of about 10.
This is github issue 893 (https://github.com/dankelley/oce/issues/893).

• Variety c3 (signalled by byte 5 of a sequence being 0xc3) provides information on what Nortek
calls DeltaAngle, DeltaVelocity and Orientation Matrix. (Apart from the orientation matrix,
Nortek provides no documentation on what these quantities mean.) In the object returned by
read.adv.nortek, these are stored in the data slot as IMUdeltaAngleX, IMUdeltaAngleY,
IMUdeltaAngleZ, IMUdeltaVelocityX, IMUdeltaVelocityY, IMUdeltaVelocityZ, and IMUrotation,
all vectors except the last, which is a 3D array. In addition to these, IMUtimestamp is a time-
stamp, which is not defined in the Nortek documents but seems, from IMU documents (refer-
ence 5), to be defined based on a clock that ticks once per 16 microseconds. Caution may be
required in dealing with this timestamp, since it seemed sensible in one test case (variety d3)
but kept reseting to zero in another (variety c3). The lack of Nortek documentation on most
of these quantities is a roadblock to implementing oce functions dealing with IMU-enabled
datasets

514 read.adv.nortek

• Variety cc (signalled by byte 5 of a sequence being 0xcc) provides information on accel-
eration, angular rotation rate, magnetic vector and orientation matrix. Each is a timeseries.
Acceleration is stored in the data slot as IMUaccelX, IMUaccelY, IMUaccelz. The angu-
lar rotation components are IMUngrtX, IMUngrtY and IMUngrtz. The magnetic data are in
IMUmagrtx, IMUmagrty and IMUmagrtz. Finally, IMUmatrix is a rotation matrix made up
from elements named M11, M12, etc in the Nortek documentation. In addition to all of these,
IMUtime stores time in seconds, with an origin whose definition is not stated in reference 1B.

• Variety d2 (signalled by byte 5 being 0xd2) provides information on gyro-stabilized accel-
eration, angular rate and magnetometer vectors. The data stored MUaccelX, IMUangrtX,
IMUmagrtX, with similar for Y and Z. Again, time is in IMUtime. This data type has not been
tested as of mid-March 2016, because the developers do not have a test file with which to test.

• Variety d3 (signalled by byte 5 being 0xd3) provides information on DeltaAngle, DeltaVeloc-
ity and magnetometer vectors, stored in IMUdeltaAngleX, IMUdeltaVelocityX, and IMUdeltaMagVectorX,
with similar for Y and Z. Again, time is in IMUtime. This data type has not been tested as of
mid-March 2016, because the developers do not have a test file with which to test.

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

1A. Nortek AS. System Integrator Guide (paradopp family of products). June 2008. (Doc No:
PSI00-0101-0608). (Users may find it helpful to also examine newer versions of the guide.)

1B. Nortek AS. System Integrator Manual. Dec 2014. (system-integrator-manual_Dec2014_jan.pdf)

1C. Nortek AS. System Integrator Manual. March 2016. (system-integrator-manual_Mar2016.pdf)

read.adv.sontek.adr 515

1. SonTek/YSI ADVField/Hydra Acoustic Doppler Velocimeter (Field) Technical Documenta-
tion (Sept 1, 2001).

2. Appendix 2.2.3 of the Sontek ADV operation Manual, Firmware Version 4.0 (Oct 1997).

3. Nortek Knowledge Center (http://www.nortekusa.com/en/knowledge-center)

4. A document describing an IMU unit that seems to be close to the one named in (references 1B
and C) as being an adjunct to Nortek Vector systems is at http://files.microstrain.com/3DM-GX3-35-Data-Communications-Protocol.pdf

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.sontek.adr(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

Examples

Not run:
library(oce)
A nortek Vector file
d <- read.oce("/data/archive/sleiwex/2008/moorings/m05/adv/nortek_1943/raw/adv_nortek_1943.vec",

from=as.POSIXct("2008-06-26 00:00:00", tz="UTC"),
to=as.POSIXct("2008-06-26 00:00:10", tz="UTC"))

plot(d, which=c(1:3,15))

End(Not run)

read.adv.sontek.adr Read an adv File

Description

Read an ADV data file, producing an object of type adv. This function works by transferring control
to a more specialized function, e.g. read.adp.nortek() and read.adp.sontek(), and in many
cases users will find it preferable to either use these or the several even more specialized functions,
if the file type is known.

Usage

read.adv.sontek.adr(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
header = TRUE,
longitude = NA,

516 read.adv.sontek.adr

latitude = NA,
encoding = NA,
debug = getOption("oceDebug"),
monitor = FALSE,
processingLog = NULL

)

Arguments

file a connection or a character string giving the name of the file to load. It is also
possible to give file as a vector of filenames, to handle the case of data split
into files by a data logger. In the multi-file case, header must be FALSE, start
must be a vector of times, and deltat must be provided.

from index number of the first profile to be read, or the time of that profile, as cre-
ated with as.POSIXct() (hint: use tz="UTC"). This argument is ignored if
header==FALSE. See “Examples”.

to indication of the last profile to read, in a format matching that of from. This is
ignored if header==FALSE.

by an indication of the stride length to use while walking through the file. This is
ignored if header==FALSE. Otherwise, if this is an integer, then by-1 profiles
are skipped between each pair of profiles that is read. This may not make much
sense, if the data are not equi-spaced in time. If by is a string representing a time
interval, in colon-separated format, then this interval is divided by the sampling
interval, to get the stride length. BUG: by only partially works; see “Bugs”.

tz character string indicating time zone to be assumed in the data.

header A logical value indicating whether the file starts with a header. (This will not be
the case for files that are created by data loggers that chop the raw data up into
a series of sub-files, e.g. once per hour.)

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

encoding ignored.

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies. For example, read.adv.nortek() calls
read.header.nortek(), so that read.adv.nortek(...,debug=2) provides
information about not just the main body of the data file, but also the details
of the header.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

read.adv.sontek.adr 517

Details

Files without headers may be created in experiments in which a data logger was set up to monitor the
serial data stream from an instrument. The lack of header information places a burden on the user,
who must supply such basic information as the times of observations, the instrument orientation,
the instrument coordinate system, etc. Example 3 below shows how to deal with such files. Three
things should be noted.

1. The user must choose the appropriate read.adv variant corresponding to the instrument in
question. (This is necessary because oceMagic(), which is used by the generic read.oce()
routine, cannot determine the type of instrument by examining a file that lacks a header.)

2. The call to the read function must include a start time (start) and the number of seconds
between data (deltat), again, because the instrument data stream may lack those things when
the device is set to a serial mode. Also, of course, it is necessary to set header=FALSE in the
function call.

3. Once the file has been read in, the user will be obliged to specify other information, for the
object to be well-formed. For example, the read function will have no way of knowing the
instrument orientation, the coordinate system being used, the transformation matrix to go from
"beam" to "xyz" coordinates, or the instrument heading, pitch, and roll, to go from "xyz"
coordinates to "enu" coordinates. Such things are illustrated in example 3 below.

In ADV data files, velocities are coded to signed 2-byte integers, with a scale factor being used
to convert to velocity in metres per second. These two facts control the maximum recordable ve-
locity and the velocity resolution, values that may be retrieved for an ADV object name d with
d[["velocityMaximum"]] and d[["velocityResolution"]].

Value

An adv object that contains measurements made with an ADV device.

The metadata contains information as given in the following table. The Nortek name'' is the name used in the Nortek System Integrator Guide (reference 1) and the Son-
tek name” is the name used in the relevant Sontek documentation. References are given in square
brackets.

metadata name Nortek name Sontek name Meaning
manufacturer - - Either "nortek" or "sontek"
instrumentType - - Either "vector" or "adv"
filename - - Name of data file(s)
latitude - - Latitude of mooring (if applicable)
longitude - - Longitude of mooring (if applicable)
numberOfSamples - - Number of data samples in file
numberOfBeams NBeams (reference 1, p18) - Number of beams (always 3)
numberOfBeamSequencesPerBurst NPings - number of beam sequences per burst
measurementInterval MeasInterval (reference 1 p31) -
samplingRate 512/(AvgInterval) (reference 1 p30; reference 4) - #’

The data list contains items with names corresponding to adp objects, with an exception for
Nortek data. Nortek instruments report some things at a time interval that is longer than the ve-
locity sampling, and these are stored in data as timeSlow, headingSlow, pitchSlow, rollSlow,

518 read.adv.sontek.adr

and temperatureSlow; if burst sampling was used, there will also be items recordsBurst and
timeBurst.

The processingLog is in the standard format.

Nortek files

Sampling-rate and similar issues

The data format is inferred from the System Integrator Guide (reference 1A) and System Integrator
Manual (reference 1B). These document lacks clarity in spots, and so read.adv.nortek contains
some assumptions that are noted here, so that users will be aware of possible problems.

A prominent example is the specification of the sampling rate, stored in metadata$sampingRate in
the return value. Repeated examination of the System Integrator Guide (reference 1) failed to indi-
cate where this value is stored in the various headers contained in Vector datasets. After some exper-
imentation with a few data files, read.adv.nortek was set up to calculate metadata$samplingRate
as 512/AvgInterval where AvgInterval is a part of the User Configuration'' header (reference 1 p30), where the explanation is av-
erage interval in seconds”). This formula was developed through trial and error, but it was confirmed
later on the Nortek discussion group, and it should appear in upcoming versions of (reference 1).

Another basic issue is the determination of whether an instrument had recorded in continuous mode
or burst mode. One might infer that TimCtrlReg in the User Configuration'' header (reference 1 p30) determines this, in bits 1 and 2. However, this was the case in test files available to the author. For this reason, `read.adv.nortek` infers the mode by reverse engineering of data files of known configuration. The present version of `read.adv.nortek` determines the sampling mode from the ```NRecords`'' item of the Vec-
tor Velocity Data” header, which seems to be 0 for data collected continuously, and non-zero for
data collected in bursts.

Taking these things together, we come upon the issue of how to infer sampling times for Nortek
instruments. There do not seem to be definitive documents on this, and so read.adv.nortek is
based partly on information (of unknown quality) found on Nortek discussion boards. The present
version of read.adv.nortek infers the times of velocity observations differently, depending on
whether the instrument was set to record in burst mode or continuous mode. For burst mode, times
stated in the burst headers are used, but for continuous mode, times stated in the “vector system
data” are used. On the advice found on a Nortek discussion board, the burst-mode times are offset
by 2 seconds to allow for the instrument warm-up period.

Handling IMU (inertial measurement unit) data

Starting in March 2016, read.adv.nortek has offered some support for handling IMU (inertial
measurement unit) data incorporated into Nortek binary files. This is not described in the Nortek
document named System Integrator Guide'' (reference 1A) but it appeared in System
Integrator Manual” (reference 1B; reference 1C). Confusingly, 1B described 3 varieties of data,
whereas 1C does not describe any of these, but describes instead a fourth variety. As of March
2016, read.adv.nortek handles all 4 varieties, because files in the various schemes appear to
exist. In oce, the varieties are named after the byte code that flags them. (Variety c3 is the one
described in (reference 1C); the others were described in (reference 1B).) The variety is stored in
the metadata slot of the returned object as a string named IMUtype.

For each variety, the reader is cautioned that strong tests have not been performed on the code.
One way to test the code is to compare with textual data files produced by the Nortek software. In
March 2016, an oce user shared a dataset of the c3 variety, and this permitted detailed comparison
between the text file and the values inferred by read.adv.nortek. The test suggested agreement (to
within the resolution printed in the text file) for velocity (v in the data slot), signal amplitude (a),
correlation (q), pressure (p), the three components of IMU delta angle (IMUdeltaAngleX etc), and
all components of the rotation matrix (IMUrotation). However, the delta velocity signals did not

read.adv.sontek.adr 519

match, with IMUdeltaVelocityX disagreeing in the second decimal place, IMUdeltaVelocityY
component disagreeing in the first, and IMUdeltaVelocityZ being out by a factor of about 10.
This is github issue 893 (https://github.com/dankelley/oce/issues/893).

• Variety c3 (signalled by byte 5 of a sequence being 0xc3) provides information on what Nortek
calls DeltaAngle, DeltaVelocity and Orientation Matrix. (Apart from the orientation matrix,
Nortek provides no documentation on what these quantities mean.) In the object returned by
read.adv.nortek, these are stored in the data slot as IMUdeltaAngleX, IMUdeltaAngleY,
IMUdeltaAngleZ, IMUdeltaVelocityX, IMUdeltaVelocityY, IMUdeltaVelocityZ, and IMUrotation,
all vectors except the last, which is a 3D array. In addition to these, IMUtimestamp is a time-
stamp, which is not defined in the Nortek documents but seems, from IMU documents (refer-
ence 5), to be defined based on a clock that ticks once per 16 microseconds. Caution may be
required in dealing with this timestamp, since it seemed sensible in one test case (variety d3)
but kept reseting to zero in another (variety c3). The lack of Nortek documentation on most
of these quantities is a roadblock to implementing oce functions dealing with IMU-enabled
datasets

• Variety cc (signalled by byte 5 of a sequence being 0xcc) provides information on accel-
eration, angular rotation rate, magnetic vector and orientation matrix. Each is a timeseries.
Acceleration is stored in the data slot as IMUaccelX, IMUaccelY, IMUaccelz. The angu-
lar rotation components are IMUngrtX, IMUngrtY and IMUngrtz. The magnetic data are in
IMUmagrtx, IMUmagrty and IMUmagrtz. Finally, IMUmatrix is a rotation matrix made up
from elements named M11, M12, etc in the Nortek documentation. In addition to all of these,
IMUtime stores time in seconds, with an origin whose definition is not stated in reference 1B.

• Variety d2 (signalled by byte 5 being 0xd2) provides information on gyro-stabilized accel-
eration, angular rate and magnetometer vectors. The data stored MUaccelX, IMUangrtX,
IMUmagrtX, with similar for Y and Z. Again, time is in IMUtime. This data type has not been
tested as of mid-March 2016, because the developers do not have a test file with which to test.

• Variety d3 (signalled by byte 5 being 0xd3) provides information on DeltaAngle, DeltaVeloc-
ity and magnetometer vectors, stored in IMUdeltaAngleX, IMUdeltaVelocityX, and IMUdeltaMagVectorX,
with similar for Y and Z. Again, time is in IMUtime. This data type has not been tested as of
mid-March 2016, because the developers do not have a test file with which to test.

References

1. SonTek/YSI Incorporated. "ADVField/Hydra Operation Manual," September 1, 2001.
2. SonTek/YSI Incorporated. "Argonaut Acoustic Doppler Current Meter Operation Manual

Firmware Version 7.9." SonTek/YSI, May 1, 2001. https://eng.ucmerced.edu/snsjho/files/San_Joaquin/Sensors_and_Loggers/SonTek/SonTek_Argonaut/ArgonautXR.pdf.

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.
2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or

subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

520 read.adv.sontek.adr

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

1A. Nortek AS. System Integrator Guide (paradopp family of products). June 2008. (Doc No:
PSI00-0101-0608). (Users may find it helpful to also examine newer versions of the guide.)

1B. Nortek AS. System Integrator Manual. Dec 2014. (system-integrator-manual_Dec2014_jan.pdf)

1C. Nortek AS. System Integrator Manual. March 2016. (system-integrator-manual_Mar2016.pdf)

1. SonTek/YSI ADVField/Hydra Acoustic Doppler Velocimeter (Field) Technical Documenta-
tion (Sept 1, 2001).

2. Appendix 2.2.3 of the Sontek ADV operation Manual, Firmware Version 4.0 (Oct 1997).

3. Nortek Knowledge Center (http://www.nortekusa.com/en/knowledge-center)

4. A document describing an IMU unit that seems to be close to the one named in (references 1B
and C) as being an adjunct to Nortek Vector systems is at http://files.microstrain.com/3DM-GX3-35-Data-Communications-Protocol.pdf

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.serial(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

Examples

Not run:
library(oce)
A nortek Vector file
d <- read.oce("/data/archive/sleiwex/2008/moorings/m05/adv/nortek_1943/raw/adv_nortek_1943.vec",

from=as.POSIXct("2008-06-26 00:00:00", tz="UTC"),
to=as.POSIXct("2008-06-26 00:00:10", tz="UTC"))

plot(d, which=c(1:3,15))

End(Not run)

read.adv.sontek.serial 521

read.adv.sontek.serial

Read an adv File

Description

Read an ADV data file, producing an object of type adv. This function works by transferring control
to a more specialized function, e.g. read.adp.nortek() and read.adp.sontek(), and in many
cases users will find it preferable to either use these or the several even more specialized functions,
if the file type is known.

Usage

read.adv.sontek.serial(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
start = NULL,
deltat = NULL,
encoding = NA,
monitor = FALSE,
debug = getOption("oceDebug"),
processingLog = NULL

)

Arguments

file a connection or a character string giving the name of the file to load. It is also
possible to give file as a vector of filenames, to handle the case of data split
into files by a data logger. In the multi-file case, header must be FALSE, start
must be a vector of times, and deltat must be provided.

from index number of the first profile to be read, or the time of that profile, as cre-
ated with as.POSIXct() (hint: use tz="UTC"). This argument is ignored if
header==FALSE. See “Examples”.

to indication of the last profile to read, in a format matching that of from. This is
ignored if header==FALSE.

by an indication of the stride length to use while walking through the file. This is
ignored if header==FALSE. Otherwise, if this is an integer, then by-1 profiles
are skipped between each pair of profiles that is read. This may not make much
sense, if the data are not equi-spaced in time. If by is a string representing a time
interval, in colon-separated format, then this interval is divided by the sampling
interval, to get the stride length. BUG: by only partially works; see “Bugs”.

522 read.adv.sontek.serial

tz character string indicating time zone to be assumed in the data.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

start the time of the first sample, typically created with as.POSIXct(). This may be
a vector of times, if filename is a vector of file names.

deltat the time between samples.

encoding ignored.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies. For example, read.adv.nortek() calls
read.header.nortek(), so that read.adv.nortek(...,debug=2) provides
information about not just the main body of the data file, but also the details
of the header.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

Details

Files without headers may be created in experiments in which a data logger was set up to monitor the
serial data stream from an instrument. The lack of header information places a burden on the user,
who must supply such basic information as the times of observations, the instrument orientation,
the instrument coordinate system, etc. Example 3 below shows how to deal with such files. Three
things should be noted.

1. The user must choose the appropriate read.adv variant corresponding to the instrument in
question. (This is necessary because oceMagic(), which is used by the generic read.oce()
routine, cannot determine the type of instrument by examining a file that lacks a header.)

2. The call to the read function must include a start time (start) and the number of seconds
between data (deltat), again, because the instrument data stream may lack those things when
the device is set to a serial mode. Also, of course, it is necessary to set header=FALSE in the
function call.

3. Once the file has been read in, the user will be obliged to specify other information, for the
object to be well-formed. For example, the read function will have no way of knowing the
instrument orientation, the coordinate system being used, the transformation matrix to go from
"beam" to "xyz" coordinates, or the instrument heading, pitch, and roll, to go from "xyz"
coordinates to "enu" coordinates. Such things are illustrated in example 3 below.

In ADV data files, velocities are coded to signed 2-byte integers, with a scale factor being used
to convert to velocity in metres per second. These two facts control the maximum recordable ve-
locity and the velocity resolution, values that may be retrieved for an ADV object name d with
d[["velocityMaximum"]] and d[["velocityResolution"]].

read.adv.sontek.serial 523

Value

An adv object that contains measurements made with an ADV device.

The metadata contains information as given in the following table. The Nortek name'' is the name used in the Nortek System Integrator Guide (reference 1) and the Son-
tek name” is the name used in the relevant Sontek documentation. References are given in square
brackets.

metadata name Nortek name Sontek name Meaning
manufacturer - - Either "nortek" or "sontek"
instrumentType - - Either "vector" or "adv"
filename - - Name of data file(s)
latitude - - Latitude of mooring (if applicable)
longitude - - Longitude of mooring (if applicable)
numberOfSamples - - Number of data samples in file
numberOfBeams NBeams (reference 1, p18) - Number of beams (always 3)
numberOfBeamSequencesPerBurst NPings - number of beam sequences per burst
measurementInterval MeasInterval (reference 1 p31) -
samplingRate 512/(AvgInterval) (reference 1 p30; reference 4) - #’

The data list contains items with names corresponding to adp objects, with an exception for
Nortek data. Nortek instruments report some things at a time interval that is longer than the ve-
locity sampling, and these are stored in data as timeSlow, headingSlow, pitchSlow, rollSlow,
and temperatureSlow; if burst sampling was used, there will also be items recordsBurst and
timeBurst.

The processingLog is in the standard format.

Nortek files

Sampling-rate and similar issues
The data format is inferred from the System Integrator Guide (reference 1A) and System Integrator
Manual (reference 1B). These document lacks clarity in spots, and so read.adv.nortek contains
some assumptions that are noted here, so that users will be aware of possible problems.

A prominent example is the specification of the sampling rate, stored in metadata$sampingRate in
the return value. Repeated examination of the System Integrator Guide (reference 1) failed to indi-
cate where this value is stored in the various headers contained in Vector datasets. After some exper-
imentation with a few data files, read.adv.nortek was set up to calculate metadata$samplingRate
as 512/AvgInterval where AvgInterval is a part of the User Configuration'' header (reference 1 p30), where the explanation is av-
erage interval in seconds”). This formula was developed through trial and error, but it was confirmed
later on the Nortek discussion group, and it should appear in upcoming versions of (reference 1).

Another basic issue is the determination of whether an instrument had recorded in continuous mode
or burst mode. One might infer that TimCtrlReg in the User Configuration'' header (reference 1 p30) determines this, in bits 1 and 2. However, this was the case in test files available to the author. For this reason, `read.adv.nortek` infers the mode by reverse engineering of data files of known configuration. The present version of `read.adv.nortek` determines the sampling mode from the ```NRecords`'' item of the Vec-
tor Velocity Data” header, which seems to be 0 for data collected continuously, and non-zero for
data collected in bursts.

Taking these things together, we come upon the issue of how to infer sampling times for Nortek
instruments. There do not seem to be definitive documents on this, and so read.adv.nortek is
based partly on information (of unknown quality) found on Nortek discussion boards. The present

524 read.adv.sontek.serial

version of read.adv.nortek infers the times of velocity observations differently, depending on
whether the instrument was set to record in burst mode or continuous mode. For burst mode, times
stated in the burst headers are used, but for continuous mode, times stated in the “vector system
data” are used. On the advice found on a Nortek discussion board, the burst-mode times are offset
by 2 seconds to allow for the instrument warm-up period.

Handling IMU (inertial measurement unit) data

Starting in March 2016, read.adv.nortek has offered some support for handling IMU (inertial
measurement unit) data incorporated into Nortek binary files. This is not described in the Nortek
document named System Integrator Guide'' (reference 1A) but it appeared in System
Integrator Manual” (reference 1B; reference 1C). Confusingly, 1B described 3 varieties of data,
whereas 1C does not describe any of these, but describes instead a fourth variety. As of March
2016, read.adv.nortek handles all 4 varieties, because files in the various schemes appear to
exist. In oce, the varieties are named after the byte code that flags them. (Variety c3 is the one
described in (reference 1C); the others were described in (reference 1B).) The variety is stored in
the metadata slot of the returned object as a string named IMUtype.

For each variety, the reader is cautioned that strong tests have not been performed on the code.
One way to test the code is to compare with textual data files produced by the Nortek software. In
March 2016, an oce user shared a dataset of the c3 variety, and this permitted detailed comparison
between the text file and the values inferred by read.adv.nortek. The test suggested agreement (to
within the resolution printed in the text file) for velocity (v in the data slot), signal amplitude (a),
correlation (q), pressure (p), the three components of IMU delta angle (IMUdeltaAngleX etc), and
all components of the rotation matrix (IMUrotation). However, the delta velocity signals did not
match, with IMUdeltaVelocityX disagreeing in the second decimal place, IMUdeltaVelocityY
component disagreeing in the first, and IMUdeltaVelocityZ being out by a factor of about 10.
This is github issue 893 (https://github.com/dankelley/oce/issues/893).

• Variety c3 (signalled by byte 5 of a sequence being 0xc3) provides information on what Nortek
calls DeltaAngle, DeltaVelocity and Orientation Matrix. (Apart from the orientation matrix,
Nortek provides no documentation on what these quantities mean.) In the object returned by
read.adv.nortek, these are stored in the data slot as IMUdeltaAngleX, IMUdeltaAngleY,
IMUdeltaAngleZ, IMUdeltaVelocityX, IMUdeltaVelocityY, IMUdeltaVelocityZ, and IMUrotation,
all vectors except the last, which is a 3D array. In addition to these, IMUtimestamp is a time-
stamp, which is not defined in the Nortek documents but seems, from IMU documents (refer-
ence 5), to be defined based on a clock that ticks once per 16 microseconds. Caution may be
required in dealing with this timestamp, since it seemed sensible in one test case (variety d3)
but kept reseting to zero in another (variety c3). The lack of Nortek documentation on most
of these quantities is a roadblock to implementing oce functions dealing with IMU-enabled
datasets

• Variety cc (signalled by byte 5 of a sequence being 0xcc) provides information on accel-
eration, angular rotation rate, magnetic vector and orientation matrix. Each is a timeseries.
Acceleration is stored in the data slot as IMUaccelX, IMUaccelY, IMUaccelz. The angu-
lar rotation components are IMUngrtX, IMUngrtY and IMUngrtz. The magnetic data are in
IMUmagrtx, IMUmagrty and IMUmagrtz. Finally, IMUmatrix is a rotation matrix made up
from elements named M11, M12, etc in the Nortek documentation. In addition to all of these,
IMUtime stores time in seconds, with an origin whose definition is not stated in reference 1B.

• Variety d2 (signalled by byte 5 being 0xd2) provides information on gyro-stabilized accel-
eration, angular rate and magnetometer vectors. The data stored MUaccelX, IMUangrtX,

read.adv.sontek.serial 525

IMUmagrtX, with similar for Y and Z. Again, time is in IMUtime. This data type has not been
tested as of mid-March 2016, because the developers do not have a test file with which to test.

• Variety d3 (signalled by byte 5 being 0xd3) provides information on DeltaAngle, DeltaVeloc-
ity and magnetometer vectors, stored in IMUdeltaAngleX, IMUdeltaVelocityX, and IMUdeltaMagVectorX,
with similar for Y and Z. Again, time is in IMUtime. This data type has not been tested as of
mid-March 2016, because the developers do not have a test file with which to test.

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

1A. Nortek AS. System Integrator Guide (paradopp family of products). June 2008. (Doc No:
PSI00-0101-0608). (Users may find it helpful to also examine newer versions of the guide.)

1B. Nortek AS. System Integrator Manual. Dec 2014. (system-integrator-manual_Dec2014_jan.pdf)

1C. Nortek AS. System Integrator Manual. March 2016. (system-integrator-manual_Mar2016.pdf)

1. SonTek/YSI ADVField/Hydra Acoustic Doppler Velocimeter (Field) Technical Documenta-
tion (Sept 1, 2001).

2. Appendix 2.2.3 of the Sontek ADV operation Manual, Firmware Version 4.0 (Oct 1997).

3. Nortek Knowledge Center (http://www.nortekusa.com/en/knowledge-center)

4. A document describing an IMU unit that seems to be close to the one named in (references 1B
and C) as being an adjunct to Nortek Vector systems is at http://files.microstrain.com/3DM-GX3-35-Data-Communications-Protocol.pdf

526 read.adv.sontek.text

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.text(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

Examples

Not run:
library(oce)
A nortek Vector file
d <- read.oce("/data/archive/sleiwex/2008/moorings/m05/adv/nortek_1943/raw/adv_nortek_1943.vec",

from=as.POSIXct("2008-06-26 00:00:00", tz="UTC"),
to=as.POSIXct("2008-06-26 00:00:10", tz="UTC"))

plot(d, which=c(1:3,15))

End(Not run)

read.adv.sontek.text Read an adv File

Description

Read an ADV data file, producing an object of type adv. This function works by transferring control
to a more specialized function, e.g. read.adp.nortek() and read.adp.sontek(), and in many
cases users will find it preferable to either use these or the several even more specialized functions,
if the file type is known.

Usage

read.adv.sontek.text(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
originalCoordinate = "xyz",
transformationMatrix,
longitude = NA,
latitude = NA,
encoding = "latin1",
monitor = FALSE,
debug = getOption("oceDebug"),
processingLog = NULL

)

read.adv.sontek.text 527

Arguments

file a connection or a character string giving the name of the file to load. It is also
possible to give file as a vector of filenames, to handle the case of data split
into files by a data logger. In the multi-file case, header must be FALSE, start
must be a vector of times, and deltat must be provided.

from index number of the first profile to be read, or the time of that profile, as cre-
ated with as.POSIXct() (hint: use tz="UTC"). This argument is ignored if
header==FALSE. See “Examples”.

to indication of the last profile to read, in a format matching that of from. This is
ignored if header==FALSE.

by an indication of the stride length to use while walking through the file. This is
ignored if header==FALSE. Otherwise, if this is an integer, then by-1 profiles
are skipped between each pair of profiles that is read. This may not make much
sense, if the data are not equi-spaced in time. If by is a string representing a time
interval, in colon-separated format, then this interval is divided by the sampling
interval, to get the stride length. BUG: by only partially works; see “Bugs”.

tz character string indicating time zone to be assumed in the data.

originalCoordinate

character string indicating coordinate system, one of "beam", "xyz", "enu" or
"other". (This is needed for the case of multiple files that were created by a
data logger, because the header information is normally lost in such instances.)

transformationMatrix

transformation matrix to use in converting beam coordinates to xyz coordinates.
This will over-ride the matrix in the file header, if there is one. An example
is rbind(c(2.710, -1.409,-1.299), c(0.071, 2.372, -2.442), c(0.344,
0.344, 0.344)).

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies. For example, read.adv.nortek() calls
read.header.nortek(), so that read.adv.nortek(...,debug=2) provides
information about not just the main body of the data file, but also the details
of the header.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

528 read.adv.sontek.text

Details

Files without headers may be created in experiments in which a data logger was set up to monitor the
serial data stream from an instrument. The lack of header information places a burden on the user,
who must supply such basic information as the times of observations, the instrument orientation,
the instrument coordinate system, etc. Example 3 below shows how to deal with such files. Three
things should be noted.

1. The user must choose the appropriate read.adv variant corresponding to the instrument in
question. (This is necessary because oceMagic(), which is used by the generic read.oce()
routine, cannot determine the type of instrument by examining a file that lacks a header.)

2. The call to the read function must include a start time (start) and the number of seconds
between data (deltat), again, because the instrument data stream may lack those things when
the device is set to a serial mode. Also, of course, it is necessary to set header=FALSE in the
function call.

3. Once the file has been read in, the user will be obliged to specify other information, for the
object to be well-formed. For example, the read function will have no way of knowing the
instrument orientation, the coordinate system being used, the transformation matrix to go from
"beam" to "xyz" coordinates, or the instrument heading, pitch, and roll, to go from "xyz"
coordinates to "enu" coordinates. Such things are illustrated in example 3 below.

In ADV data files, velocities are coded to signed 2-byte integers, with a scale factor being used
to convert to velocity in metres per second. These two facts control the maximum recordable ve-
locity and the velocity resolution, values that may be retrieved for an ADV object name d with
d[["velocityMaximum"]] and d[["velocityResolution"]].

Value

An adv object that contains measurements made with an ADV device.

The metadata contains information as given in the following table. The Nortek name'' is the name used in the Nortek System Integrator Guide (reference 1) and the Son-
tek name” is the name used in the relevant Sontek documentation. References are given in square
brackets.

metadata name Nortek name Sontek name Meaning
manufacturer - - Either "nortek" or "sontek"
instrumentType - - Either "vector" or "adv"
filename - - Name of data file(s)
latitude - - Latitude of mooring (if applicable)
longitude - - Longitude of mooring (if applicable)
numberOfSamples - - Number of data samples in file
numberOfBeams NBeams (reference 1, p18) - Number of beams (always 3)
numberOfBeamSequencesPerBurst NPings - number of beam sequences per burst
measurementInterval MeasInterval (reference 1 p31) -
samplingRate 512/(AvgInterval) (reference 1 p30; reference 4) - #’

The data list contains items with names corresponding to adp objects, with an exception for
Nortek data. Nortek instruments report some things at a time interval that is longer than the ve-
locity sampling, and these are stored in data as timeSlow, headingSlow, pitchSlow, rollSlow,

read.adv.sontek.text 529

and temperatureSlow; if burst sampling was used, there will also be items recordsBurst and
timeBurst.

The processingLog is in the standard format.

Nortek files

Sampling-rate and similar issues

The data format is inferred from the System Integrator Guide (reference 1A) and System Integrator
Manual (reference 1B). These document lacks clarity in spots, and so read.adv.nortek contains
some assumptions that are noted here, so that users will be aware of possible problems.

A prominent example is the specification of the sampling rate, stored in metadata$sampingRate in
the return value. Repeated examination of the System Integrator Guide (reference 1) failed to indi-
cate where this value is stored in the various headers contained in Vector datasets. After some exper-
imentation with a few data files, read.adv.nortek was set up to calculate metadata$samplingRate
as 512/AvgInterval where AvgInterval is a part of the User Configuration'' header (reference 1 p30), where the explanation is av-
erage interval in seconds”). This formula was developed through trial and error, but it was confirmed
later on the Nortek discussion group, and it should appear in upcoming versions of (reference 1).

Another basic issue is the determination of whether an instrument had recorded in continuous mode
or burst mode. One might infer that TimCtrlReg in the User Configuration'' header (reference 1 p30) determines this, in bits 1 and 2. However, this was the case in test files available to the author. For this reason, `read.adv.nortek` infers the mode by reverse engineering of data files of known configuration. The present version of `read.adv.nortek` determines the sampling mode from the ```NRecords`'' item of the Vec-
tor Velocity Data” header, which seems to be 0 for data collected continuously, and non-zero for
data collected in bursts.

Taking these things together, we come upon the issue of how to infer sampling times for Nortek
instruments. There do not seem to be definitive documents on this, and so read.adv.nortek is
based partly on information (of unknown quality) found on Nortek discussion boards. The present
version of read.adv.nortek infers the times of velocity observations differently, depending on
whether the instrument was set to record in burst mode or continuous mode. For burst mode, times
stated in the burst headers are used, but for continuous mode, times stated in the “vector system
data” are used. On the advice found on a Nortek discussion board, the burst-mode times are offset
by 2 seconds to allow for the instrument warm-up period.

Handling IMU (inertial measurement unit) data

Starting in March 2016, read.adv.nortek has offered some support for handling IMU (inertial
measurement unit) data incorporated into Nortek binary files. This is not described in the Nortek
document named System Integrator Guide'' (reference 1A) but it appeared in System
Integrator Manual” (reference 1B; reference 1C). Confusingly, 1B described 3 varieties of data,
whereas 1C does not describe any of these, but describes instead a fourth variety. As of March
2016, read.adv.nortek handles all 4 varieties, because files in the various schemes appear to
exist. In oce, the varieties are named after the byte code that flags them. (Variety c3 is the one
described in (reference 1C); the others were described in (reference 1B).) The variety is stored in
the metadata slot of the returned object as a string named IMUtype.

For each variety, the reader is cautioned that strong tests have not been performed on the code.
One way to test the code is to compare with textual data files produced by the Nortek software. In
March 2016, an oce user shared a dataset of the c3 variety, and this permitted detailed comparison
between the text file and the values inferred by read.adv.nortek. The test suggested agreement (to
within the resolution printed in the text file) for velocity (v in the data slot), signal amplitude (a),
correlation (q), pressure (p), the three components of IMU delta angle (IMUdeltaAngleX etc), and
all components of the rotation matrix (IMUrotation). However, the delta velocity signals did not

530 read.adv.sontek.text

match, with IMUdeltaVelocityX disagreeing in the second decimal place, IMUdeltaVelocityY
component disagreeing in the first, and IMUdeltaVelocityZ being out by a factor of about 10.
This is github issue 893 (https://github.com/dankelley/oce/issues/893).

• Variety c3 (signalled by byte 5 of a sequence being 0xc3) provides information on what Nortek
calls DeltaAngle, DeltaVelocity and Orientation Matrix. (Apart from the orientation matrix,
Nortek provides no documentation on what these quantities mean.) In the object returned by
read.adv.nortek, these are stored in the data slot as IMUdeltaAngleX, IMUdeltaAngleY,
IMUdeltaAngleZ, IMUdeltaVelocityX, IMUdeltaVelocityY, IMUdeltaVelocityZ, and IMUrotation,
all vectors except the last, which is a 3D array. In addition to these, IMUtimestamp is a time-
stamp, which is not defined in the Nortek documents but seems, from IMU documents (refer-
ence 5), to be defined based on a clock that ticks once per 16 microseconds. Caution may be
required in dealing with this timestamp, since it seemed sensible in one test case (variety d3)
but kept reseting to zero in another (variety c3). The lack of Nortek documentation on most
of these quantities is a roadblock to implementing oce functions dealing with IMU-enabled
datasets

• Variety cc (signalled by byte 5 of a sequence being 0xcc) provides information on accel-
eration, angular rotation rate, magnetic vector and orientation matrix. Each is a timeseries.
Acceleration is stored in the data slot as IMUaccelX, IMUaccelY, IMUaccelz. The angu-
lar rotation components are IMUngrtX, IMUngrtY and IMUngrtz. The magnetic data are in
IMUmagrtx, IMUmagrty and IMUmagrtz. Finally, IMUmatrix is a rotation matrix made up
from elements named M11, M12, etc in the Nortek documentation. In addition to all of these,
IMUtime stores time in seconds, with an origin whose definition is not stated in reference 1B.

• Variety d2 (signalled by byte 5 being 0xd2) provides information on gyro-stabilized accel-
eration, angular rate and magnetometer vectors. The data stored MUaccelX, IMUangrtX,
IMUmagrtX, with similar for Y and Z. Again, time is in IMUtime. This data type has not been
tested as of mid-March 2016, because the developers do not have a test file with which to test.

• Variety d3 (signalled by byte 5 being 0xd3) provides information on DeltaAngle, DeltaVeloc-
ity and magnetometer vectors, stored in IMUdeltaAngleX, IMUdeltaVelocityX, and IMUdeltaMagVectorX,
with similar for Y and Z. Again, time is in IMUtime. This data type has not been tested as of
mid-March 2016, because the developers do not have a test file with which to test.

Note on file name

The file argument does not actually name a file. It names a basename for a file. The actual file
names are created by appending suffix .hd1 for one file and .ts1 for another.

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

read.adv.sontek.text 531

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

1A. Nortek AS. System Integrator Guide (paradopp family of products). June 2008. (Doc No:
PSI00-0101-0608). (Users may find it helpful to also examine newer versions of the guide.)

1B. Nortek AS. System Integrator Manual. Dec 2014. (system-integrator-manual_Dec2014_jan.pdf)

1C. Nortek AS. System Integrator Manual. March 2016. (system-integrator-manual_Mar2016.pdf)

1. SonTek/YSI ADVField/Hydra Acoustic Doppler Velocimeter (Field) Technical Documenta-
tion (Sept 1, 2001).

2. Appendix 2.2.3 of the Sontek ADV operation Manual, Firmware Version 4.0 (Oct 1997).

3. Nortek Knowledge Center (http://www.nortekusa.com/en/knowledge-center)

4. A document describing an IMU unit that seems to be close to the one named in (references 1B
and C) as being an adjunct to Nortek Vector systems is at http://files.microstrain.com/3DM-GX3-35-Data-Communications-Protocol.pdf

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

Examples

Not run:
library(oce)
A nortek Vector file
d <- read.oce("/data/archive/sleiwex/2008/moorings/m05/adv/nortek_1943/raw/adv_nortek_1943.vec",

from=as.POSIXct("2008-06-26 00:00:00", tz="UTC"),
to=as.POSIXct("2008-06-26 00:00:10", tz="UTC"))

plot(d, which=c(1:3,15))

End(Not run)

532 read.aquadopp

read.amsr Read an amsr File

Description

Read an amsr file, generating an amsr object. Two file types are handled: type 1 is from gzipped
files that were available until perhaps the year 2022, and type 2 is from NetCDF files that were
available afterwards. The type is stored in the metadata slot as type, and this is detected in other
functions relating to amsr data. The best way to locate amsr files is to use download.amsr(), but if
this fails, it may be necessary to search the web for a source.

Usage

read.amsr(file, encoding = NA, debug = getOption("oceDebug"))

Arguments

file String indicating the name of a compressed file. See “File sources”.

encoding ignored.

debug A debugging flag, integer.

Author(s)

Dan Kelley and Chantelle Layton

See Also

plot,amsr-method() for an example.

Other things related to amsr data: [[,amsr-method, [[<-,amsr-method, amsr, amsr-class, composite,amsr-method,
download.amsr(), plot,amsr-method, subset,amsr-method, summary,amsr-method

read.aquadopp Read an adp File in Nortek Aquadopp Format

Description

The R code is based on information in the Nortek System Integrator Guide (2017), postings on the
Nortek “knowledge center” discussion board, and discussions with Nortek engineers (Dec. 2020).

read.aquadopp 533

Usage

read.aquadopp(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
type = "aquadopp",
orientation,
distance,
monitor = FALSE,
despike = FALSE,
encoding = NA,
processingLog,
debug = getOption("oceDebug"),
...

)

Arguments

file a connection or a character string giving the name of the file to load. (For
read.adp.sontek.serial, this is generally a list of files, which will be con-
catenated.)

from indication of the first profile to read. This can be an integer, the sequence num-
ber of the first profile to read, or a POSIXt time before which profiles should
be skipped, or a character string that converts to a POSIXt time (assuming UTC
timezone). See “Examples”, and make careful note of the use of the tz argu-
ment. If from is not supplied, it defaults to 1.

to an optional indication of the last profile to read, in a format as described for
from. As a special case, to=0 means to read the file to the end. If to is not
supplied, then it defaults to 0.

by an optional indication of the stride length to use while walking through the file.
If this is an integer, then by-1 profiles are skipped between each pair of profiles
that is read, e.g. the default by=1 means to read all the data. (For RDI files only,
there are some extra features to avoid running out of memory; see “Memory
considerations”.)

tz character string indicating time zone to be assumed in the data.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

type Either "aquadopp" for a standard aquadopp file (the default), or "aquadoppPlus-
Magnetometer" for a file which includes the raw magnetometer data.

orientation Optional character string specifying the orientation of the sensor, provided for
those cases in which it cannot be inferred from the data file. The valid choices
are "upward", "downward", and "sideward".

534 read.aquadopp

distance Optional vector holding the distances of bin centres from the sensor. This argu-
ment is ignored except for Nortek profilers, and need not be given if the func-
tion determines the distances correctly from the data. The problem is that the
distance is poorly documented in the Nortek System Integrator Guide (2008 edi-
tion, page 31), so the function must rely on word-of-mouth formulae that do not
work in all cases.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

despike if TRUE, despike() will be used to clean anomalous spikes in heading, etc.

encoding ignored.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional additional arguments that some (but not all) read.adp.*() functions
pass to lower-level functions.

Value

An adp object. The contents of that object make sense for the particular instrument type under
study, e.g. if the data file contains NMEA strings, then navigational data will be stored in an item
called nmea in the data slot).

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley and Clark Richards

read.aquadoppHR 535

References

1. Information on Nortek profilers (including the System Integrator Guide, which explains the
data format byte-by-byte) is available at https://www.nortekusa.com/. (One must join the
site to see the manuals.)

2. The Nortek Knowledge Center https://www.nortekusa.com/en/knowledge-center may
be of help if problems arise in dealing with data from Nortek instruments.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that read adp data: read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadoppHR(), read.aquadoppProfiler()

read.aquadoppHR Read Nortek Aquadopp-HR File

Description

The R code is based on information in the Nortek System Integrator Guide (2008) and on post-
ings on the Nortek “knowledge center” discussion board. One might assume that the latter is
less authoritative than the former. For example, the inference of cell size follows advice found at
https://www.nortekusa.com/en/knowledge-center/forum/hr-profilers/736804717, which
contains a typo in an early posting that is corrected later on.

Usage

read.aquadoppHR(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
orientation = orientation,
distance,
monitor = FALSE,
despike = FALSE,

536 read.aquadoppHR

encoding = NA,
processingLog,
debug = getOption("oceDebug"),
...

)

Arguments

file a connection or a character string giving the name of the file to load. (For
read.adp.sontek.serial, this is generally a list of files, which will be con-
catenated.)

from indication of the first profile to read. This can be an integer, the sequence num-
ber of the first profile to read, or a POSIXt time before which profiles should
be skipped, or a character string that converts to a POSIXt time (assuming UTC
timezone). See “Examples”, and make careful note of the use of the tz argu-
ment. If from is not supplied, it defaults to 1.

to an optional indication of the last profile to read, in a format as described for
from. As a special case, to=0 means to read the file to the end. If to is not
supplied, then it defaults to 0.

by an optional indication of the stride length to use while walking through the file.
If this is an integer, then by-1 profiles are skipped between each pair of profiles
that is read, e.g. the default by=1 means to read all the data. (For RDI files only,
there are some extra features to avoid running out of memory; see “Memory
considerations”.)

tz character string indicating time zone to be assumed in the data.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

orientation Optional character string specifying the orientation of the sensor, provided for
those cases in which it cannot be inferred from the data file. The valid choices
are "upward", "downward", and "sideward".

distance Optional vector holding the distances of bin centres from the sensor. This argu-
ment is ignored except for Nortek profilers, and need not be given if the func-
tion determines the distances correctly from the data. The problem is that the
distance is poorly documented in the Nortek System Integrator Guide (2008 edi-
tion, page 31), so the function must rely on word-of-mouth formulae that do not
work in all cases.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

despike if TRUE, despike() will be used to clean anomalous spikes in heading, etc.

encoding ignored.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

read.aquadoppHR 537

... optional additional arguments that some (but not all) read.adp.*() functions
pass to lower-level functions.

Value

An adp object. The contents of that object make sense for the particular instrument type under
study, e.g. if the data file contains NMEA strings, then navigational data will be stored in an item
called nmea in the data slot).

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

1. Information on Nortek profilers (including the System Integrator Guide, which explains the
data format byte-by-byte) is available at https://www.nortekusa.com/. (One must join the
site to see the manuals.)

2. The Nortek Knowledge Center https://www.nortekusa.com/en/knowledge-center may
be of help if problems arise in dealing with data from Nortek instruments.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),

538 read.aquadoppProfiler

read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that read adp data: read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppProfiler()

read.aquadoppProfiler Read an adp File in Nortek Aquadopp Format

Description

The R code is based on information in the Nortek System Integrator Guide (2008) and on post-
ings on the Nortek “knowledge center” discussion board. One might assume that the latter is
less authoritative than the former. For example, the inference of cell size follows advice found at
https://www.nortekusa.com/en/knowledge-center/forum/hr-profilers/736804717, which
contains a typo in an early posting that is corrected later on.

Usage

read.aquadoppProfiler(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
longitude = NA,
latitude = NA,
orientation,
distance,
monitor = FALSE,
despike = FALSE,
encoding = NA,
processingLog,
debug = getOption("oceDebug"),
...

)

Arguments

file a connection or a character string giving the name of the file to load. (For
read.adp.sontek.serial, this is generally a list of files, which will be con-
catenated.)

from indication of the first profile to read. This can be an integer, the sequence num-
ber of the first profile to read, or a POSIXt time before which profiles should
be skipped, or a character string that converts to a POSIXt time (assuming UTC
timezone). See “Examples”, and make careful note of the use of the tz argu-
ment. If from is not supplied, it defaults to 1.

read.aquadoppProfiler 539

to an optional indication of the last profile to read, in a format as described for
from. As a special case, to=0 means to read the file to the end. If to is not
supplied, then it defaults to 0.

by an optional indication of the stride length to use while walking through the file.
If this is an integer, then by-1 profiles are skipped between each pair of profiles
that is read, e.g. the default by=1 means to read all the data. (For RDI files only,
there are some extra features to avoid running out of memory; see “Memory
considerations”.)

tz character string indicating time zone to be assumed in the data.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

orientation Optional character string specifying the orientation of the sensor, provided for
those cases in which it cannot be inferred from the data file. The valid choices
are "upward", "downward", and "sideward".

distance Optional vector holding the distances of bin centres from the sensor. This argu-
ment is ignored except for Nortek profilers, and need not be given if the func-
tion determines the distances correctly from the data. The problem is that the
distance is poorly documented in the Nortek System Integrator Guide (2008 edi-
tion, page 31), so the function must rely on word-of-mouth formulae that do not
work in all cases.

monitor boolean value indicating whether to indicate the progress of reading the file, by
using txtProgressBar() or otherwise. The value of monitor is changed to
FALSE automatically, for non-interactive sessions.

despike if TRUE, despike() will be used to clean anomalous spikes in heading, etc.

encoding ignored.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... optional additional arguments that some (but not all) read.adp.*() functions
pass to lower-level functions.

Value

An adp object. The contents of that object make sense for the particular instrument type under
study, e.g. if the data file contains NMEA strings, then navigational data will be stored in an item
called nmea in the data slot).

How the binary file is decoded

This file type, like other acoustic-Doppler types, is read with a hybrid R/C++ system, for efficiency.
The processing steps are sketched below, for users who want to inspect the code or build upon it.

1. In R, readBin() is used to insert the file contents into a vector of type raw.

540 read.argo

2. In C++, this raw vector is scanned byte by byte, to find the starting indices of data "chunks", or
subsections of the data that correspond to individual sampling times. Checksum computations
are also done at this stage, to detect possible data corruption. Warnings are issued for any bad
chunks, and they are skipped in further processing. The valid starting points are then passed
back to R as a vector of type integer.

3. In R, readBin() is used to read the components of each chunk. For speed, this is done in a
vectorized fashion. For example, all the velocities in the whole file are read in a single call to
readBin(). This process is done for each of the data fields that are to be handled. Importantly,
these readBin() calls are tailored to the data, using values of the size, endian and signed
parameters that are tailored to the structure of the given component. Scaling factors are then
applied as required, to convert the components to physical units.

4. Finally, in R, the acquired items are inserted into the data or metadata slot of the return value,
according to oce convention.

Author(s)

Dan Kelley

References

1. Information on Nortek profilers (including the System Integrator Guide, which explains the
data format byte-by-byte) is available at https://www.nortekusa.com/. (One must join the
site to see the manuals.)

2. The Nortek Knowledge Center https://www.nortekusa.com/en/knowledge-center may
be of help if problems arise in dealing with data from Nortek instruments.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), rotateAboutZ(),
setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that read adp data: read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR()

read.argo Read an Argo Data File

Description

read.argo is used to read an Argo file, producing an argo object. The file must be in the ARGO-
style NetCDF format described in the Argo documentation (see references 2 and 3).

read.argo 541

Usage

read.argo(
file,
encoding = NA,
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file A character string giving the name of the file to load.

encoding ignored.

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

processingLog If provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

... additional arguments, passed to called routines.

Details

See the Argo documentation (see references 2 and 3) for some details on what files contain. Many
items listed in section 2.2.3 of reference 3 are read from the file and stored in the metadata slot,
with the exception of longitude and latitude, which are stored in the data slot, alongside hy-
drographic information. The details of storage in the return value are somewhat complex, although
the following notes might be helpful to readers seeking to learn more.

1. Variable renaming.

The names of several data parameters stored within the NetCDF file are altered to fit the oce con-
text. For example, PRES becomes pressure, matching the name of this variable in other oce data
types. The original names are reported by summary,argo-method, and data may be extracted with
[[,argo-method using those names, so the renaming should not be too inconvenient to Argo ex-
perts who are new to oce.

Argo NetCDF files employ a "SNAKE_CASE" naming scheme (sometimes using lower case) that is
inconsistent with the "camelCase" scheme used in oce. Since argo objects are just a small part of
oce, a decision was made to rename argo items. For example, "CYCLE_NUMBER" in the NetCDF file
becomes "cycleNumber" in the oce object returned by read.argo. (Note that [[,argo-method
also accepts "cycle" for this item.) The conversion for objects in the data slot often also in-
volves expanding on argo abbreviations, e.g. "PSAL" becomes "salinity". The renaming work
is carried out with argoNames2oceNames() for handles both name expansion for several dozen
special cases, and with snakeToCamel() with the specialCase argument set to "QC". While
this results in variable names that should make sense in the general oce context (where, for ex-
ample, salinity is expected to be stored in a variable named "salinity"), it may be confusing
to argo experts who are just starting to use oce. Such people might find it helpful to use e.g.
sort(names(x[["metadata"]])) to get a list of all items in the metadata slot (or similar with
"data"), since working in reverse may be easier than simply guessing at what names oce has cho-
sen. (Note that prior to 2020 June 24, some metadata items were stored in "SNAKE_CASE".)

542 read.argo

2. Metadata.

Several of the NetCDF global attributes are also renamed before placement in the metadata slot of
the return value. These include conventions, featureType, history, institution, nParameters,
nProfiles, references, source, title, and userManualVersion. These names are derived from
those in the NetCDF file, and mainly follow the pattern explained in the “Variable renaming con-
vention” section.

For profile data (as indicated by the NetCDF global attribute named "featureType" being equal
to "trajectoryProfile"), the NetCDF item named "STATION_PARAMETERS" controls whether
variables in the source file will be stored in the metadata or data slot of the returned object.
If STATION_PARAMETERS is not present, as is the case for trajectory files (which are detected by
featureType being "trajectory"), some guesses are made as to what goes in data and metadata
slots.

3. Data variants.

Each data item can have variants, as described in Sections 2.3.4 of reference 3. For example, if
"PRES" is found in STATION_PARAMETERS, then PRES (pressure) data are sought in the file, along
with PRES_QC, PRES_ADJUSTED, PRES_ADJUSTED_QC, and PRES_ERROR. The same pattern works
for other profile data. The variables are stored with names created as explained in the “Variable
renaming convention” section below. Note that flags, which are stored variables ending in "_QC" in
the NetCDF file, are stored in the flags item within the metadata slot of the returned object; thus,
for example, PRES_QC is stored as pressure in flags.

4. How time is handled.

The NetCDF files for profile data store time in an item named juld, which holds the overall profile
time, in what the Argo documentation calls Julian days, with respect to a reference time that is
also stored in the file. Based on this information, a POSIXct value named time is stored in the
metadata slot of the returned value, and this may be found with e.g. a[["time"]], where a is that
returned value. Importantly, this value matches the time listed in profile index files. In addition,
some profile data files contain a field called MTIME, which holds the offset (in days) between the
time of individual measurements and the overall profile time. For such files, the measurement times
may be computed with a[["time"]]+86400*a[["mtime"]]. (This formula is used by as.ctd(),
if its first argument is an argo object created by supplying read.argo() with such a data file.)

5. Data sources.

Argo data are made available at several websites. A bit of detective work can be required to track
down the data.

Some servers provide data for floats that surfaced in a given ocean on a given day, the anonymous
FTP server usgodae.org/pub/outgoing/argo/geo/ being an example.

Other servers provide data on a per-float basis. A complicating factor is that these data tend to be
categorized by "dac" (data archiving centre), which makes it difficult to find a particular float. For
example, https://www.usgodae.org/ftp/outgoing/argo/ is the top level of a such a repos-
itory. If the ID of a float is known but not the "dac", then a first step is to download the text
file https://www.usgodae.org/ftp/outgoing/argo/ar_index_global_meta.txt and search
for the ID. The first few lines of that file are header, and after that the format is simple, with columns
separated by slash (/). The dac is in the first such column and the float ID in the second. A simple
search will reveal the dac. For example data(argo) is based on float 6900388, and the line con-
taining that token is bodc/6900388/6900388_meta.nc,846,BO,20120225005617, from which the
dac is seen to be the British Oceanographic Data Centre (bodc). Armed with that information, visit

read.argo 543

https://www.usgodae.org/ftp/outgoing/argo/dac/bodc/6900388 and see a directory called
profiles that contains a NetCDF file for each profile the float made. These can be read with
read.argo. It is also possible, and probably more common, to read a NetCDF file containing all the
profiles together and for that purpose the file https://www.usgodae.org/ftp/outgoing/argo/dac/bodc/6900388/6900388_prof.nc
should be downloaded and provided as the file argument to read.argo. This can be automated as
in Example 2, although readers are cautioned that URL structures tend to change over time.

Similar steps can be followed on other servers.

Value

read.argo returns an argo object.

Sample of Usage

Example 1: read from a local file
library(oce)
d <- read.argo("~/data/OAR/6900388_prof.nc")
summary(d)
plot(d)

Example 2: construct URL for download (brittle)
id <- "6900388"
url <- "https://www.usgodae.org/ftp/outgoing/argo"
if (!length(list.files(pattern="argo_index.txt")))

download.file(paste(url, "ar_index_global_meta.txt", sep="/"), "argo_index.txt")
index <- readLines("argo_index.txt")
line <- grep(id, index)
if (0 == length(line))

stop("id ", id, " not found")
if (1 < length(line))

stop("id ", id, " found multiple times")
dac <- strsplit(index[line], "/")[[1]][1]
profile <- paste(id, "_prof.nc", sep="")
float <- paste(url, "dac", dac, id, profile, sep="/")
download.file(float, profile)
argo <- read.argo(profile)
summary(argo)

Author(s)

Dan Kelley

References

1. https://argo.ucsd.edu

2. Argo User’s Manual Version 3.2, Dec 29th, 2015, available at https://archimer.ifremer.fr/doc/00187/29825/
online.

3. User’s Manual (ar-um-02-01) 13 July 2010, available at http://www.argodatamgt.org/content/download/4729/34634/file/argo-dm-user-manual-version-2.3.pdf,
which is the main document describing argo data.

544 read.argo.copernicus

See Also

The documentation for the argo class explains the structure of argo objects, and also outlines the
other functions dealing with them.

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoGrid(),
argoNames2oceNames(), as.argo(), handleFlags,argo-method, plot,argo-method, read.argo.copernicus(),
subset,argo-method, summary,argo-method

read.argo.copernicus Read an argo File in Copernicus Format

Description

This function was added to read a particular file downloaded from the Fleet Monitoring website
(Reference 1). The format was inferred through examination of the file and a brief study of a
document (Reference 2) that describes the format. Not all fields are read by this function; see
Reference 3 for a full list and note that the author would be happy to add new entries (but not to
spend hours entering then all).

Usage

read.argo.copernicus(
file,
encoding = NA,
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file A character string giving the name of the file to load.

encoding ignored.

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or 0 (the default) for silent operation.

processingLog ignored.

... ignored.

Author(s)

Dan Kelley

read.bremen 545

References

1. https://fleetmonitoring.euro-argo.eu/float/4902489

2. Copernicus Marine In Situ Tac Data Management Team. Copernicus Marine In Situ NetCDF
Format Manual (version V1.43). Pdf. Copernicus in situ TAC, 2021. https://doi.org/10.13155/59938
(link checked 2022-04-11).

3. Variable names are provided in files at https://doi.org/10.13155/53381 (link checked
2022-04-12)

See Also

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoGrid(),
argoNames2oceNames(), as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(),
subset,argo-method, summary,argo-method

read.bremen Read a bremen File

Description

Read a file in Bremen format.

Usage

read.bremen(file, encoding = "latin1")

Arguments

file a connection or a character string giving the name of the file to load.
encoding a character value that indicates the encoding to be used for this data file, if it is

textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

Details

Velocities are assumed to be in cm/s, and are converted to m/s to follow the oce convention. Shears
(which is what the variables named uz and vz are assumed to represent) are assumed to be in
(cm/s)/m, although they could be in 1/s or something else; the lack of documentation is a problem
here. Also, note that the assumed shears are not just first-difference estimates of velocity, given the
results of a sample dataset:

> head(data.frame(b[["data"]]))
pressure u v uz vz

1 0 0.092 -0.191 0.00000 0.00000
2 10 0.092 -0.191 0.02183 -0.35412
3 20 0.092 -0.191 0.03046 -0.09458
4 30 0.026 -0.246 -0.03948 0.02169
5 40 -0.003 -0.212 -0.02614 0.03111
6 50 -0.023 -0.169 -0.03791 0.01706

546 read.cm

Value

A bremen object.

Issues

This function may be renamed (or removed) without notice. It was created to read some data being
used in a particular research project, and will be rendered useless if Bremen changes this data
format.

Author(s)

Dan Kelley

See Also

Other things related to bremen data: [[,bremen-method, [[<-,bremen-method, bremen-class,
plot,bremen-method, summary,bremen-method

read.cm Read a cm File

Description

Read a current-meter data file, producing a cm object.

Usage

read.cm(
file,
from = 1,
to,
by = 1,
tz = getOption("oceTz"),
type = c("s4"),
longitude = NA,
latitude = NA,
debug = getOption("oceDebug"),
encoding = "latin1",
monitor = FALSE,
processingLog

)

read.cm 547

Arguments

file a connection or a character string giving the name of the file to load.

from index number of the first measurement to be read, or the time of that measure-
ment, as created with as.POSIXct() (hint: use tz="UTC").

to indication of the last measurement to read, in a format matching that of from.

by an indication of the stride length to use while walking through the file. If this
is an integer, then by-1 measurements are skipped between each pair of profiles
that is read. This may not make much sense, if the data are not equi-spaced in
time. If by is a string representing a time interval, in colon-separated format,
then this interval is divided by the sampling interval, to get the stride length.
BUG: if the data are not equi-spaced, then odd results will occur.

tz character string indicating time zone to be assumed in the data.

type character string indicating type of file (ignored at present).

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

monitor ignored.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

Details

There function has been tested on only a single file, and the data-scanning algorithm was based on
visual inspection of that file. Whether it will work generally is an open question. It should be noted
that the sample file had several odd characteristics, some of which are listed below.

• file contained two columns named "Cond", which was guessed to stand for conductivity. Since
only the first contained data, the second was ignored, but this may not be the case for all files.

• The unit for "Cond" was stated in the file to be "mS", which makes no sense, so the unit was
assumed to be mS/cm.

• The file contained a column named "T-Temp", which is not something the author has seen in
his career. It was assumed to stand for in-situ temperature.

• The file contained a column named "Depth", which is not something an instrument can mea-
sure. Presumably it was calculated from pressure (with what atmospheric offset, though?) and
so pressure was inferred from it using swPressure().

• The file contained several columns that lacked names. These were ignored.

• The file contained several columns that seem to be derived from the actual measured data,
such as "Speed", "Dir", "N-S Dist", etc. These are ignored.

548 read.cm

• The file contained several columns that were basically a mystery to the author, e.g. "Hx",
"Hy", "Vref", etc. These were ignored.

Based on such considerations, read.cm() reads only the columns that were reasonably well-understood
based on the sample file. Users who need more columns should contact the author. And a user who
could produce a document explaining the data format would be especially appreciated!

Value

An cm object.

The data slot will contain all the data in the file, with names determined from the tokens in line
3 in that file, passed through make.names(), except that Vnorth is renamed v (after conversion
from cm/s to m/s), Veast is renamed u (after conversion from cm/s to m/s), Cond is renamed
conductivity, T.Temp is renamed temperature and Sal is renamed salinity, and a new col-
umn named time (a POSIX time) is constructed from the information in the file header, and another
named pressure is constructed from the column named Depth. At least in the single file studied in
the creation of this function, there are some columns that are unnamed in line 3 of the header; these
yield data items with names X, X.1, etc.

Historical note

Prior to late July, 2016, the direction of current flow was stored in the return value, but it is no
longer stored, since it can be derived from the u and v values.

Changes

• On 2023-02-09 an item named north was added to the metadata slot. This is initialized to
"magnetic" by read.cm(), but this is really just a guess, and users ought to consider using
applyMagneticDeclination() to take magnetic declination into account.

Sample of Usage

library(oce)
cm <- read.oce("cm_interocean_0811786.s4a.tab")
summary(cm)
plot(cm)

Author(s)

Dan Kelley

See Also

Other things related to cm data: [[,cm-method, [[<-,cm-method, applyMagneticDeclination,cm-method,
as.cm(), cm, cm-class, plot,cm-method, rotateAboutZ(), subset,cm-method, summary,cm-method

read.coastline 549

read.coastline Read a coastline File

Description

Read a coastline file in R, Splus, mapgen, shapefile, or openstreetmap format. The S and R formats
are identical, and consist of two columns, lon and lat, with land-jump segments separated by lines
with two NAs. The MapGen format is of the form

-b -16.179081 28.553943
-16.244793 28.563330

BUG: the ’arc/info ungenerate’ format is not yet understood.

Usage

read.coastline(
file,
type = c("R", "S", "mapgen", "shapefile", "openstreetmap"),
encoding = "latin1",
monitor = FALSE,
debug = getOption("oceDebug"),
processingLog

)

Arguments

file name of file containing coastline data.

type type of file, one of "R", "S", "mapgen", "shapefile" or "openstreetmap".

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

monitor print a dot for every coastline segment read (ignored except for reading "shape-
file" type)

debug set to TRUE to print information about the header, etc.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

Value

a coastline object.

Author(s)

Dan Kelley

550 read.coastline.openstreetmap

read.coastline.openstreetmap

Read a coastline File in Openstreetmap Format

Description

Read coastline data stored in the openstreetmap format.

Usage

read.coastline.openstreetmap(
file,
lonlim = c(-180, 180),
latlim = c(-90, 90),
monitor = FALSE,
encoding = NA,
debug = getOption("oceDebug"),
processingLog

)

Arguments

file name of file containing coastline data (a file ending in .shp) or a zipfile that
contains such a file, with a corresponding name. The second scheme is useful
for files downloaded from the NaturalEarth website (see reference 2).

lonlim, latlim numerical vectors specifying the west and east edges (and south and north edges)
of a focus window. Coastline polygons that do not intersect the defined box are
skipped, which can be useful in narrowing high-resolution world-scale data to a
local application.

monitor Logical indicating whether to print an indication of progress through the file.

encoding ignored.

debug set to TRUE to print information about the header, etc.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

Value

a coastline object.

Author(s)

Dan Kelley

read.coastline.shapefile 551

See Also

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(),
plot,coastline-method, read.coastline.shapefile(), subset,coastline-method, summary,coastline-method

read.coastline.shapefile

Read a coastline File in Shapefile Format

Description

Read coastline data stored in the shapefile format (see reference 1).

Usage

read.coastline.shapefile(
file,
lonlim = c(-180, 180),
latlim = c(-90, 90),
encoding = NA,
monitor = FALSE,
debug = getOption("oceDebug"),
processingLog

)

Arguments

file name of file containing coastline data (a file ending in .shp) or a zipfile that
contains such a file, with a corresponding name. The second scheme is useful
for files downloaded from the NaturalEarth website (see reference 2).

lonlim, latlim numerical vectors specifying the west and east edges (and south and north edges)
of a focus window. Coastline polygons that do not intersect the defined box are
skipped, which can be useful in narrowing high-resolution world-scale data to a
local application.

encoding ignored.

monitor Logical indicating whether to print an indication of progress through the file.

debug set to TRUE to print information about the header, etc.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

Value

x a coastline object.

552 read.ctd

A hack for depth contours

The following demonstrates that this code is getting close to working with depth contours. This
should be handled more internally, and a new object for depth contours should be constructed, of
which coastlines could be a subset.

Author(s)

Dan Kelley

References

1. The “shapefile” format is described in ESRI Shapefile Technical Description, March 1998,
available at https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/shapefile.pdf
(last checked 2021-03-24).

2. The NaturalEarth website https://www.naturalearthdata.com/downloads/ provides coast-
line datasets in three resolutions, along with similar files lakes and rivers, for borders, etc. It
is highly recommended.

See Also

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(),
plot,coastline-method, read.coastline.openstreetmap(), subset,coastline-method, summary,coastline-method

read.ctd Read a ctd File in General Format

Description

Read a ctd File in General Format

Usage

read.ctd(
file,
type = NULL,
columns = NULL,
station = NULL,
missingValue,
deploymentType = "unknown",
monitor = FALSE,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog,
...

)

read.ctd 553

Arguments

file either a connection or a character value naming a file. For read.ctd.sbe() and
read.ctd.woce(), this may be a wildcard (e.g. "*.cnv" or "*.csv") in which
case the return value is a vector containing CTD objects created by reading the
files from list.files() with pattern set to the specified wildcard pattern.

type If NULL, then the first line is studied, in order to determine the file type, and
control is dispatched to a specialized function to handle that type. Otherwise,
type must be a string. If type="SBE19" then a Seabird file format is assumed,
and control is dispatched to read.ctd.sbe(). If type="WOCE" then a WOCE-
exchange file is assumed, and control is dispatched to read.ctd.woce(). If
type="ITP" then an ice-tethered profiler file is assumed, and control is dis-
patched to read.ctd.itp(). If type="ODF" then an ODF file (used by the
Canadian Department of Fisheries and Ocean) is assumed, and control is dis-
patched to read.ctd.odf(). Finally, if type="ODV" then an ODV file (used by
Ocean Data View software) is assumed, and control is dispatched to read.ctd.odv().

columns an optional list that can be used to convert unrecognized data names to resultant
variable names. This is used only by read.ctd.sbe() and read.ctd.odf().
For example, if a data file named salinity as "SAL", then using

d <- read.ctd(f, columns=list(
salinity=list(name="SAL",

unit=list(unit=expression(),
scale="PSS-78"))))

would assign the "SAL" column to the salinity entry in the data slot of the
CTD object returned by the read.* function.

station optional character string containing an identifying name or number for the sta-
tion. This can be useful if the routine cannot determine the name automatically,
or if another name is preferred.

missingValue optional missing-value flag; data matching this value will be set to NA upon read-
ing. If this is provided, then it overrules any missing-value flag found in the data.
For Seabird (.cnv) files, there is usually no need to set missingValue, because
it can be inferred from the header (typically as -9.990e-29). Set missingValue=NULL
to turn off missing-value detection, even in .cnv files that contain missing-value
codes in their headers. If missingValue is not specified, then an attempt is made
to infer such a value from the data, by testing whether salinity and/or tempera-
ture has a minimum that is under -8 in value; this should catch common values
in files, without false positives. A warning will be issued in this case, and a note
inserted in the processing log of the return value.

deploymentType character string indicating the type of deployment. Use "unknown" if this is
not known, "profile" for a profile (in which the data were acquired during a
downcast, while the device was lowered into the water column, perhaps also
including an upcast; "moored" if the device is installed on a fixed mooring,
"thermosalinograph" (or "tsg") if the device is mounted on a moving vessel,
to record near-surface properties, or "towyo" if the device is repeatedly lowered
and raised.

monitor boolean, set to TRUE to provide an indication of progress. This is useful if
filename is a wildcard.

554 read.ctd.aml

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed.

processingLog if provided, the action item to be stored in the log. This is typically only provided
for internal calls; the default that it provides is better for normal calls by a user.

... additional arguments, passed to called routines.

Value

This function returns a ctd object.

Author(s)

Dan Kelley

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), woceUnit2oceUnit(), write.ctd()

Other functions that read ctd data: read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.saiv(),
read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other()

read.ctd.aml Read a ctd File in AML Format

Description

read.ctd.aml() reads files that hold data acquired with an AML Oceanographic Base.X2 CTD
instrument. The software associated with this device can output data in multiple formats, of which
read.ctd.aml() can read only three, based on files provided to the author by users. If the format
parameter is not supplied, the function attempts to infer it from the first line in the file; see “Details”.

read.ctd.aml 555

Usage

read.ctd.aml(
file,
format,
encoding = "UTF-8-BOM",
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file a connection or a character string giving the name of the file to load.

format an integer indicating the format type. If not supplied, the first line is examined
to make a guess as to the format (see “Details”).

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

processingLog ignored.

... ignored.

Details

If format is not supplied, the first line of the file is examined. If that line contains [cast header]
(case insensitive), then format 1 is inferred. If it contains a comma (i.e. if no header is present) then
format 2 is inferred. (The AML documentation cautions against saving in this format.) And if it
contains [header] (case insensitive) then format 3 is inferred.

Support for types 1 and 2 were added in about the year 2017, whereas type 3 was added in 2024.
Documentation was once available for formats 1 and 2, but it was not an exact match to sample files
provided to the author of read.ctd.aml(). No documentation seemed to be available for format
3, so the code was written after manual inspection of a sample file. Given these things, users are
advised to be on the lookout for problems.

Value

read.ctd.aml() returns a ctd object.

Author(s)

Dan Kelley

556 read.ctd.itp

References

1. AML Oceanographic. "SeaCast 4 User Manual (Version 2.06)." AML Oceanographic, May
2016. This was once available at the <www.subsseateechnologies.com> website, but neither
it nor a new version could be located by the author’s search of the website in September 2024.

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that read ctd data: read.ctd(), read.ctd.itp(), read.ctd.odf(), read.ctd.saiv(),
read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other()

Examples

library(oce)
Show S,T and p for first 5 lines of a format=1 file
f1 <- system.file("extdata", "ctd_aml_type1.csv.gz", package = "oce")
d1 <- read.ctd.aml(f1)
data.frame(S = d1[["salinity"]], T = d1[["temperature"]], p = d1[["pressure"]])

Show S,T and p for first 5 lines of a format=3 file
f3 <- system.file("extdata", "ctd_aml_type3.csv.gz", package = "oce")
d3 <- read.ctd.aml(f3)
data.frame(S = d3[["salinity"]], T = d3[["temperature"]], p = d3[["pressure"]])

read.ctd.itp Read a ctd File in ITP Format

Description

Read a ctd File in ITP Format

Usage

read.ctd.itp(
file,
columns = NULL,
station = NULL,
missingValue,

read.ctd.itp 557

deploymentType = "unknown",
encoding = "latin1",
monitor = FALSE,
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file either a connection or a character value naming a file. For read.ctd.sbe() and
read.ctd.woce(), this may be a wildcard (e.g. "*.cnv" or "*.csv") in which
case the return value is a vector containing CTD objects created by reading the
files from list.files() with pattern set to the specified wildcard pattern.

columns an optional list that can be used to convert unrecognized data names to resultant
variable names. This is used only by read.ctd.sbe() and read.ctd.odf().
For example, if a data file named salinity as "SAL", then using

d <- read.ctd(f, columns=list(
salinity=list(name="SAL",

unit=list(unit=expression(),
scale="PSS-78"))))

would assign the "SAL" column to the salinity entry in the data slot of the
CTD object returned by the read.* function.

station optional character string containing an identifying name or number for the sta-
tion. This can be useful if the routine cannot determine the name automatically,
or if another name is preferred.

missingValue optional missing-value flag; data matching this value will be set to NA upon read-
ing. If this is provided, then it overrules any missing-value flag found in the data.
For Seabird (.cnv) files, there is usually no need to set missingValue, because
it can be inferred from the header (typically as -9.990e-29). Set missingValue=NULL
to turn off missing-value detection, even in .cnv files that contain missing-value
codes in their headers. If missingValue is not specified, then an attempt is made
to infer such a value from the data, by testing whether salinity and/or tempera-
ture has a minimum that is under -8 in value; this should catch common values
in files, without false positives. A warning will be issued in this case, and a note
inserted in the processing log of the return value.

deploymentType character string indicating the type of deployment. Use "unknown" if this is
not known, "profile" for a profile (in which the data were acquired during a
downcast, while the device was lowered into the water column, perhaps also
including an upcast; "moored" if the device is installed on a fixed mooring,
"thermosalinograph" (or "tsg") if the device is mounted on a moving vessel,
to record near-surface properties, or "towyo" if the device is repeatedly lowered
and raised.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

558 read.ctd.itp

monitor boolean, set to TRUE to provide an indication of progress. This is useful if
filename is a wildcard.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed.

processingLog if provided, the action item to be stored in the log. This is typically only provided
for internal calls; the default that it provides is better for normal calls by a user.

... additional arguments, passed to called routines.

Value

This function returns a ctd object.

Author(s)

Dan Kelley

read.ctd.itp() reads ice-tethered-profiler data that are stored in a format files used by WHOI
servers as of 2016-2017. Lacking documentation on the format, the author constructed this function
to work with some files that were on-hand. Whether the function will prove robust is an open
question.

Dan Kelley

References

Information about ice-tethered profile data is provided at https://www.whoi.edu/page.do?pid=23096,
which also provides a link for downloading data. Note that the present version only handles data in
profiler-mode, not fixed-depth mode.

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that read ctd data: read.ctd(), read.ctd.aml(), read.ctd.odf(), read.ctd.saiv(),
read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other()

read.ctd.odf 559

read.ctd.odf Read a ctd File in odf Format

Description

Read a ctd File in odf Format

Usage

read.ctd.odf(
file,
columns = NULL,
station = NULL,
missingValue,
deploymentType = "unknown",
monitor = FALSE,
exclude = NULL,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file either a connection or a character value naming a file. For read.ctd.sbe() and
read.ctd.woce(), this may be a wildcard (e.g. "*.cnv" or "*.csv") in which
case the return value is a vector containing CTD objects created by reading the
files from list.files() with pattern set to the specified wildcard pattern.

columns an optional list that can be used to convert unrecognized data names to resultant
variable names. This is used only by read.ctd.sbe() and read.ctd.odf().
For example, if a data file named salinity as "SAL", then using

d <- read.ctd(f, columns=list(
salinity=list(name="SAL",

unit=list(unit=expression(),
scale="PSS-78"))))

would assign the "SAL" column to the salinity entry in the data slot of the
CTD object returned by the read.* function.

station optional character string containing an identifying name or number for the sta-
tion. This can be useful if the routine cannot determine the name automatically,
or if another name is preferred.

missingValue optional missing-value flag; data matching this value will be set to NA upon read-
ing. If this is provided, then it overrules any missing-value flag found in the data.
For Seabird (.cnv) files, there is usually no need to set missingValue, because
it can be inferred from the header (typically as -9.990e-29). Set missingValue=NULL

560 read.ctd.odf

to turn off missing-value detection, even in .cnv files that contain missing-value
codes in their headers. If missingValue is not specified, then an attempt is made
to infer such a value from the data, by testing whether salinity and/or tempera-
ture has a minimum that is under -8 in value; this should catch common values
in files, without false positives. A warning will be issued in this case, and a note
inserted in the processing log of the return value.

deploymentType character string indicating the type of deployment. Use "unknown" if this is
not known, "profile" for a profile (in which the data were acquired during a
downcast, while the device was lowered into the water column, perhaps also
including an upcast; "moored" if the device is installed on a fixed mooring,
"thermosalinograph" (or "tsg") if the device is mounted on a moving vessel,
to record near-surface properties, or "towyo" if the device is repeatedly lowered
and raised.

monitor boolean, set to TRUE to provide an indication of progress. This is useful if
filename is a wildcard.

exclude either a character value holding a regular expression that is used with grep() to
remove lines from the header before processing, or NULL (the default), meaning
not to exclude any such lines. The purpose of this argument is to solve problems
with some files, which can have thousands of lines that indicate details that are
may be of little value in processing. For example, some files have thousands
of lines that would be excluded by using exclude="PROCESS='Nulled the .*
value" in the function call.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed.

processingLog if provided, the action item to be stored in the log. This is typically only provided
for internal calls; the default that it provides is better for normal calls by a user.

... additional arguments, passed to called routines.

Details

read.ctd.odf reads files stored in Ocean Data Format, used in some Canadian hydrographic
databases.

Value

This function returns a ctd object.

Caution

Lacking detailed documentation of the ODF file format, the read.odf() and read.ctd.odf()
functions were crafted based on inspection of data files, and so some guesses had to be made.

read.ctd.odf 561

The PARAMETER_HEADER chunks describing quality-control flags are a case in point. These contain
NAME components that refer to other PARAMETER_HEADER chunks that hold measured data. However,
those references are not always matched well with the data names, and even if they do match,
the cross-reference syntax used by the Bedford Institute of Oceanography differs from that used
by l’Institut Maurice-Lamontagne. To simplify coding, it was assumed that each quality-control
sequence applies to the data sequence immediately preceding it. (This assumption is made in other
analysis systems.)

It is also prudent to pay attention to the units decoding, which read.odf() handles by calling
unitFromString(). Be on the lookout for incorrect temperature scales, which are sometimes re-
ported with nonstandard strings in ODF files. Also, note that you may see warnings about conduc-
tivity ratios, which some ODF files incorrectly suggest have dimensions.

Author(s)

Dan Kelley

References

For sources that describe the ODF format, see the documentation for the odf class.

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
ODFNames2oceNames(), [[,odf-method, [[<-,odf-method, odf-class, plot,odf-method, read.odf(),
subset,odf-method, summary,odf-method

Other functions that read ctd data: read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.saiv(),
read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other()

562 read.ctd.odv

read.ctd.odv Read a "ctd" File in ODV Format

Description

Read a "ctd" File in ODV Format

Usage

read.ctd.odv(
file,
columns = NULL,
station = NULL,
missingValue,
deploymentType,
encoding = "latin1",
monitor = FALSE,
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file either a connection or a character value naming a file. For read.ctd.sbe() and
read.ctd.woce(), this may be a wildcard (e.g. "*.cnv" or "*.csv") in which
case the return value is a vector containing CTD objects created by reading the
files from list.files() with pattern set to the specified wildcard pattern.

columns an optional list that can be used to convert unrecognized data names to resultant
variable names. This is used only by read.ctd.sbe() and read.ctd.odf().
For example, if a data file named salinity as "SAL", then using

d <- read.ctd(f, columns=list(
salinity=list(name="SAL",

unit=list(unit=expression(),
scale="PSS-78"))))

would assign the "SAL" column to the salinity entry in the data slot of the
CTD object returned by the read.* function.

station optional character string containing an identifying name or number for the sta-
tion. This can be useful if the routine cannot determine the name automatically,
or if another name is preferred.

missingValue optional missing-value flag; data matching this value will be set to NA upon read-
ing. If this is provided, then it overrules any missing-value flag found in the data.
For Seabird (.cnv) files, there is usually no need to set missingValue, because
it can be inferred from the header (typically as -9.990e-29). Set missingValue=NULL
to turn off missing-value detection, even in .cnv files that contain missing-value

read.ctd.odv 563

codes in their headers. If missingValue is not specified, then an attempt is made
to infer such a value from the data, by testing whether salinity and/or tempera-
ture has a minimum that is under -8 in value; this should catch common values
in files, without false positives. A warning will be issued in this case, and a note
inserted in the processing log of the return value.

deploymentType character string indicating the type of deployment. Use "unknown" if this is
not known, "profile" for a profile (in which the data were acquired during a
downcast, while the device was lowered into the water column, perhaps also
including an upcast; "moored" if the device is installed on a fixed mooring,
"thermosalinograph" (or "tsg") if the device is mounted on a moving vessel,
to record near-surface properties, or "towyo" if the device is repeatedly lowered
and raised.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

monitor boolean, set to TRUE to provide an indication of progress. This is useful if
filename is a wildcard.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed.

processingLog if provided, the action item to be stored in the log. This is typically only provided
for internal calls; the default that it provides is better for normal calls by a user.

... additional arguments, passed to called routines.

Details

read.ctd.odv() attempts to read files stored in ODV format, used by some European data providers.
This works only crudely, as of 2020-05-17. In particular, the translation from ODV parameter names
to oce names is very limited. For example, only one of the dozens of possibilities for variants of
phosphate is handled at the moment, and that is because this was the variant supplied in a test file
sent to the author on 2020-05-16. It is unlikely that full support of ODV files will become available
in read.ctd.odv(), given the lack of a comprehensive source listing ODV variable names and
their meanings, and low user interest.

Value

This function returns a ctd object.

Author(s)

Dan Kelley

References

1. https://www.bodc.ac.uk/resources/delivery_formats/odv_format/ describes the ODV
format.

2. https://vocab.nerc.ac.uk/collection/P07/current/ may be worth consulting for vari-
able names.

564 read.ctd.saiv

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

read.ctd.saiv Read a ctd File in SAIV Format

Description

read.ctd.saiv() reads files that hold data acquired with a SAIV model SD204 CTD profiler
(reference 1). Since no documentation on the format was available to the author, this function was
written based on examination of a particular data file. This almost certainly will yield limitations
for other files, in particular for those with data names that differ from those in the sample file (see
“Details” for this and other limitations).

Usage

read.ctd.saiv(
file,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file a character string naming the file to be read.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

processingLog ignored.

... ignored.

read.ctd.saiv 565

Details

Some variable names are change to the oce convention, e.g. "Sal." becomes "salinity", "Temp"
becomes "temperature", etc. In the first version of the code, this renaming was done based on
examination of a single file. This list was expanded after a user kindly supplied a one-page doc-
ument that explains the variable names and units. As with other functions for reading oce data,
read.ctd.saiv() resolves duplicate variable names by appending 2 to the second instance, 3 to
the third, etc.

As with other ctd objects, the [[operator handles both the original name from the file, and the
converted oce name.

It is worth noting the following oddities that were present in the sample file upon which read.ctd.saiv()
was based.

1. The header line that names the data columns ends with a tab, indicating the presence of 12
columns (the last unnamed), but the data contain only 11 columns. Therefore, the last tab
character is ignored by read.ctd.saiv().

2. The test file lacked longitude and latitude information. This means that modern quantities
like Absolute Salinity and Conservative Temperature cannot be computed. Users who know
the location information ought to insert values into the object returned by read.ctd.saiv()
using oceSetMetadata().

3. Further to the previous point, it is not possible to compute pressure accurately from depth
(which is what the header suggests the file contains) unless the latitude is known. In read.ctd.saiv(),
latitude is assumed to be 45 degrees north, which is the default used by swPressure().

Value

read.ctd.saiv() returns a ctd object.

Author(s)

Dan Kelley, with help from the github member with the handle ’Rdescoteaux’, who kindly supplied
a sample file and a document listing SAIV variable names.

References

1. SAIV A/S company website https://saiv.no/sd204-ctd-profiler

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

https://saiv.no/sd204-ctd-profiler

566 read.ctd.sbe

Other functions that read ctd data: read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other()

read.ctd.sbe Read a ctd File in Seabird Format

Description

Read a ctd File in Seabird Format

Usage

read.ctd.sbe(
file,
columns = NULL,
station = NULL,
missingValue,
deploymentType = "unknown",
btl = FALSE,
monitor = FALSE,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file either a connection or a character value naming a file. For read.ctd.sbe() and
read.ctd.woce(), this may be a wildcard (e.g. "*.cnv" or "*.csv") in which
case the return value is a vector containing CTD objects created by reading the
files from list.files() with pattern set to the specified wildcard pattern.

columns an optional list that can be used to convert unrecognized data names to resultant
variable names. This is used only by read.ctd.sbe() and read.ctd.odf().
For example, if a data file named salinity as "SAL", then using

d <- read.ctd(f, columns=list(
salinity=list(name="SAL",

unit=list(unit=expression(),
scale="PSS-78"))))

would assign the "SAL" column to the salinity entry in the data slot of the
CTD object returned by the read.* function.

station optional character string containing an identifying name or number for the sta-
tion. This can be useful if the routine cannot determine the name automatically,
or if another name is preferred.

read.ctd.sbe 567

missingValue optional missing-value flag; data matching this value will be set to NA upon read-
ing. If this is provided, then it overrules any missing-value flag found in the data.
For Seabird (.cnv) files, there is usually no need to set missingValue, because
it can be inferred from the header (typically as -9.990e-29). Set missingValue=NULL
to turn off missing-value detection, even in .cnv files that contain missing-value
codes in their headers. If missingValue is not specified, then an attempt is made
to infer such a value from the data, by testing whether salinity and/or tempera-
ture has a minimum that is under -8 in value; this should catch common values
in files, without false positives. A warning will be issued in this case, and a note
inserted in the processing log of the return value.

deploymentType character string indicating the type of deployment. Use "unknown" if this is
not known, "profile" for a profile (in which the data were acquired during a
downcast, while the device was lowered into the water column, perhaps also
including an upcast; "moored" if the device is installed on a fixed mooring,
"thermosalinograph" (or "tsg") if the device is mounted on a moving vessel,
to record near-surface properties, or "towyo" if the device is repeatedly lowered
and raised.

btl a logical value, with TRUE indicating that this is a .BTL file and FALSE (the de-
fault) indicating a .CNV file. Note that if btl is TRUE, the data column names are
taken directly from the file (without e.g. translating to "Sal00" to "salinity".
Also, the "avg" and "sdev" columns are blended together, with all the latter
named as in the file, but with "_sdev" appended.

monitor boolean, set to TRUE to provide an indication of progress. This is useful if
filename is a wildcard.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed.

processingLog if provided, the action item to be stored in the log. This is typically only provided
for internal calls; the default that it provides is better for normal calls by a user.

... additional arguments, passed to called routines.

Details

This function reads files stored in Seabird .cnv format. Note that these files can contain multiple
sensors for a given field. For example, the file might contain a column named t090C for one
temperature sensor and t190C for a second. The first will be denoted temperature in the data
slot of the return value, and the second will be denoted temperature1. This means that the first
sensor will be used in any future processing that accesses temperature. This is for convenience
of processing, and it does not pose a limitation, because the data from the second sensor are also
available as e.g. x[["temperature1"]], where x is the name of the returned value. For the details
of the mapping from .cnv names to ctd names, see cnvName2oceName().

The names of the elements in the data slot of the returned value depend on the file type, as signalled
by the btl argument. For the default case of .cnv files, the original data names as stored in file are

568 read.ctd.sbe

stored within the metadata slot as dataNamesOriginal, and are displayed with summary alongside
the numerical summary; see the Appendix VI of reference 2 for the meanings of these names (in
the "Short Name" column of the table spanning pages 161 through 172). However, for the case of
.btl files, the column names are as described in the documentation entry for the btl argument.

Value

This function returns a ctd object.

A note on hand-entered headers

CNV files may have a section that contains human-entered information. This is detected by read.ctd.sbe()
as lines that begin with two asterisks. Decoding this information can be tricky, because humans have
many ways of writing things.

For example, consider the date item in the metadata slot of the returned value. read.ctd.sbe()
infers this value in one of two ways. First, if there is a header line staring with

* NMEA UTC (Time) =

then that value is decoded and used for date. This header line, preceded by a single asterisk, is
not human-entered, and so there is reason to hope for a uniform format that can be handled by
read.ctd.sbe(). However, if there is no NMEA header line, then read.ctd.sbe() will look for
a line starting with

** Date:

which was human-entered. This is the second choice, because humans write dates in a bewildering
variety of ways, and as.POSIXct(), which read.ctd.sbe uses to parse the date, cannot handle
them all. If there is a problem, read.ctd.sbe() issues a warning and stores NA in date.

A similar error-detection procedure is used for human-entered location data, which appear in lines
starting with either

** Longitude:

or

** Latitude:

which often take forms that read.ctd.sbe() cannot parse.

It is important to note that, even if no warnings are issued, there is a reasonably high chance that
human-entered data will be scanned incorrectly. (Did the operator remember to indicate the hemi-
sphere? Does 123.456 indicate decimal degrees, or 123 degrees plus 45.6 minutes? Is hemisphere
indicated by sign or by letter, and, if the latter, where does it appear?)

In deep-sea work, a ship might steam for 6 hours between CTD stations, so the ship-time cost of
each CTD file can be several thousand dollars. Surely it is not unreasonable for an analyst to take a
minute to glance at the CNV file, to ascertain whether read.ctd.sbe() inferred correct values.

read.ctd.sbe 569

oceSetMetadata() is helpful for correcting problems with individual files, but if many files are
systematically problematic, say for a whole cruise or perhaps even for a whole institution, then it
might sense to set up a wrapper function to correct deficiencies in the CNV files. As an example,
the following handles dates specified in a particular nonstandard way.

read.ctd.sbe.wrapper <- function(cnv)
{

lines <- readLines(cnv)
Change month-day-year to year-month-day, so as.POSIXct() can parse it.
lines <- gsub("^** Date: (.*)-(.*)-(.*)", "** Date: \\3-\\1-\\2", lines)
read.ctd.sbe(textConnection(lines))

}

A note on sampling times

Until November of 2018, there was a possibility for great confusion in the storage of the time entries
within the data slot, because read.ctd.sbe renamed each of the ten variants of time (see reference
2 for a list) as "time" in the data slot of the returned value. For CTD profiles, this was perhaps not
a great problem, but it could lead to significant confusion for moored data. Therefore, a change to
read.ctd.sbe was made, so that it would Seabird times, using the start_time entry in the CNV
file header (which is stored as startTime in the object metadata slot), along with specific time
columns as follows (and as documented, with uneven clarity, in the SBE Seasoft data processing
manual, revision 7.26.8, Appendix VI):

Item Meaning
timeS seconds elapsed since start_time
timeM minutes elapsed since start_time
timeH hours elapsed since start_time
timeJ Julian days since the start of the year of the first observation
timeN NMEA-based time, in seconds past Jan 1, 1970
timeQ NMEA-based time, in seconds past Jan 1, 2000
timeK NMEA-based time, in seconds past Jan 1, 2000

timeJV2 as timeJ
timeSCP as timeJ
timeY computer time, in seconds past Jan 1, 1970

NOTE: not all of these times have been tested properly, and so users are asked to report incorrect
times, so that read.ctd.sbe can be improved.

A note on scales

The user might encounter data files with a variety of scales for temperature and salinity. Oce keeps
track of these scales in the units it sets up for the stored variables. For example, if A is a CTD object,
then A[["temperatureUnit"]]$scale is a character string that will indicate the scale. Modern-
day data will have "ITS-90" for that scale, and old data may have "IPTS-68". The point of saving
the scale in this way is so that the various formulas that deal with water properties can account
for the scale, e.g. converting from numerical values saved on the "IPTS-68" scale to the newer
scale, using T90fromT68() before doing calculations that are expressed in terms of the "ITS-90"

570 read.ctd.ssda

scale. This is taken care of by retrieving temperatures with the accessor function, e.g. writing
A[["temperature"]] will either retrieve the stored values (if the scale is ITS-90) or converted
values (if the scale is IPTS-68). Even though this procedure should work, users who really care
about the details of their data are well-advised to do a couple of tests after examining the first
data line of their data file in an editor. Note that reading a file that contains IPTS-68 temperatures
produces a warning.

Author(s)

Dan Kelley and Clark Richards

References

1. The Sea-Bird SBE 19plus profiler is described at http://www.seabird.com/products/spec_sheets/19plusdata.htm.
Some more information is given in the Sea-Bird data-processing manual (next item).

2. A SBE data processing manual was once at http://www.seabird.com/document/sbe-data-processing-manual,
but as of summer 2018, this no longer seems to be provided by SeaBird. A web search will
turn up copies of the manual that have been put online by various research groups and data-
archiving agencies. As of 2018-07-05, the latest version was named SBEDataProcessing_7.26.4.pdf
and had release date 12/08/2017, and this was the reference version used in coding oce.

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that read ctd data: read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.saiv(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other()

Examples

f <- system.file("extdata", "ctd.cnv.gz", package = "oce")
d <- read.ctd(f)

read.ctd.ssda Read a ctd File in SSDA Format

Description

read.ctd.ssda() reads CTD files in Sea & Sun Technology’s Standard Data Acquisition (SSDA)
format. This function is somewhat preliminary, in the sense that header information is not scanned
fully, and some guesses have been made about the meanings of variables and units.

read.ctd.ssda 571

Usage

read.ctd.ssda(
file,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog

)

Arguments

file a connection or a character string giving the name of the file to load.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. If nonzero, some information is printed.

processingLog ignored.

Value

read.ctd.ssda() returns a ctd object.

Author(s)

Dan Kelley, with help from Liam MacNeil

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that read ctd data: read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.woce(), read.ctd.woce.other()

572 read.ctd.woce

read.ctd.woce Read a ctd File in WOCE-Exchange Format

Description

This reads WOCE exchange files that start with the string "CTD". There are two variants: one in
which the first 4 characters are "CTD," and the other in which the first 3 characters are again "CTD"
but no other non-whitespace characters occur on the line.

Usage

read.ctd.woce(
file,
columns = NULL,
station = NULL,
missingValue,
deploymentType = "unknown",
monitor = FALSE,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file either a connection or a character value naming a file. For read.ctd.sbe() and
read.ctd.woce(), this may be a wildcard (e.g. "*.cnv" or "*.csv") in which
case the return value is a vector containing CTD objects created by reading the
files from list.files() with pattern set to the specified wildcard pattern.

columns an optional list that can be used to convert unrecognized data names to resultant
variable names. This is used only by read.ctd.sbe() and read.ctd.odf().
For example, if a data file named salinity as "SAL", then using

d <- read.ctd(f, columns=list(
salinity=list(name="SAL",

unit=list(unit=expression(),
scale="PSS-78"))))

would assign the "SAL" column to the salinity entry in the data slot of the
CTD object returned by the read.* function.

station optional character string containing an identifying name or number for the sta-
tion. This can be useful if the routine cannot determine the name automatically,
or if another name is preferred.

missingValue optional missing-value flag; data matching this value will be set to NA upon read-
ing. If this is provided, then it overrules any missing-value flag found in the data.
For Seabird (.cnv) files, there is usually no need to set missingValue, because

read.ctd.woce 573

it can be inferred from the header (typically as -9.990e-29). Set missingValue=NULL
to turn off missing-value detection, even in .cnv files that contain missing-value
codes in their headers. If missingValue is not specified, then an attempt is made
to infer such a value from the data, by testing whether salinity and/or tempera-
ture has a minimum that is under -8 in value; this should catch common values
in files, without false positives. A warning will be issued in this case, and a note
inserted in the processing log of the return value.

deploymentType character string indicating the type of deployment. Use "unknown" if this is
not known, "profile" for a profile (in which the data were acquired during a
downcast, while the device was lowered into the water column, perhaps also
including an upcast; "moored" if the device is installed on a fixed mooring,
"thermosalinograph" (or "tsg") if the device is mounted on a moving vessel,
to record near-surface properties, or "towyo" if the device is repeatedly lowered
and raised.

monitor boolean, set to TRUE to provide an indication of progress. This is useful if
filename is a wildcard.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed.

processingLog if provided, the action item to be stored in the log. This is typically only provided
for internal calls; the default that it provides is better for normal calls by a user.

... additional arguments, passed to called routines.

Value

This function returns a ctd object.

Author(s)

Dan Kelley

References

The WOCE-exchange format was once described at http://woce.nodc.noaa.gov/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm
although that link is no longer working as of December 2020.

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),

574 read.ctd.woce.other

read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that read ctd data: read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce.other()

read.ctd.woce.other Read a ctd File in WOCE-Exchange EXPOCODE Format

Description

This reads WOCE exchange files that start with the string "EXPOCODE".

Usage

read.ctd.woce.other(
file,
columns = NULL,
station = NULL,
missingValue,
deploymentType = "unknown",
monitor = FALSE,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog,
...

)

Arguments

file either a connection or a character value naming a file. For read.ctd.sbe() and
read.ctd.woce(), this may be a wildcard (e.g. "*.cnv" or "*.csv") in which
case the return value is a vector containing CTD objects created by reading the
files from list.files() with pattern set to the specified wildcard pattern.

columns an optional list that can be used to convert unrecognized data names to resultant
variable names. This is used only by read.ctd.sbe() and read.ctd.odf().
For example, if a data file named salinity as "SAL", then using

d <- read.ctd(f, columns=list(
salinity=list(name="SAL",

unit=list(unit=expression(),
scale="PSS-78"))))

would assign the "SAL" column to the salinity entry in the data slot of the
CTD object returned by the read.* function.

station optional character string containing an identifying name or number for the sta-
tion. This can be useful if the routine cannot determine the name automatically,
or if another name is preferred.

read.ctd.woce.other 575

missingValue optional missing-value flag; data matching this value will be set to NA upon read-
ing. If this is provided, then it overrules any missing-value flag found in the data.
For Seabird (.cnv) files, there is usually no need to set missingValue, because
it can be inferred from the header (typically as -9.990e-29). Set missingValue=NULL
to turn off missing-value detection, even in .cnv files that contain missing-value
codes in their headers. If missingValue is not specified, then an attempt is made
to infer such a value from the data, by testing whether salinity and/or tempera-
ture has a minimum that is under -8 in value; this should catch common values
in files, without false positives. A warning will be issued in this case, and a note
inserted in the processing log of the return value.

deploymentType character string indicating the type of deployment. Use "unknown" if this is
not known, "profile" for a profile (in which the data were acquired during a
downcast, while the device was lowered into the water column, perhaps also
including an upcast; "moored" if the device is installed on a fixed mooring,
"thermosalinograph" (or "tsg") if the device is mounted on a moving vessel,
to record near-surface properties, or "towyo" if the device is repeatedly lowered
and raised.

monitor boolean, set to TRUE to provide an indication of progress. This is useful if
filename is a wildcard.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed.

processingLog if provided, the action item to be stored in the log. This is typically only provided
for internal calls; the default that it provides is better for normal calls by a user.

... additional arguments, passed to called routines.

Value

This function returns a ctd object.

Author(s)

Dan Kelley

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),

576 read.echosounder

setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Other functions that read ctd data: read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce()

read.echosounder Read an echosounder File

Description

Reads a biosonics echosounder file. This function was written for and tested with single-beam,
dual-beam, and split-beam Biosonics files of type V3, and may not work properly with other file
formats.

Usage

read.echosounder(
file,
channel = 1,
soundSpeed,
tz = getOption("oceTz"),
encoding = NA,
debug = getOption("oceDebug"),
processingLog

)

Arguments

file a connection or a character string giving the name of the file to load.

channel sequence number of channel to extract, for multi-channel files.

soundSpeed sound speed, in m/s. If not provided, this is calculated using swSoundSpeed(35,15,30,eos="unesco").
(In theory, it could be calculated using the temperature and salinity that are
stored in the data file, but these will just be nominal values, anyway.

tz character string indicating time zone to be assumed in the data.

encoding ignored.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

processingLog if provided, the action item to be stored in the log, typically only provided for
internal calls.

Value

An echosounder object.

read.g1sst 577

Bugs

Only the amplitude information (in counts) is determined. A future version of this function may
provide conversion to dB, etc. The handling of dual-beam and split-beam files is limited. In the
dual-beam cse, only the wide beam signal is processed (I think ... it could be the narrow beam,
actually, given the confusing endian tricks being played). In the split-beam case, only amplitude is
read, with the x-axis and y-axis angle data being ignored.

Author(s)

Dan Kelley, with help from Clark Richards

References

Various echosounder instruments provided by BioSonics are described at the company website,
https://www.biosonicsinc.com/. The document listed as reference 1 below was provided to the
author of this function in November 2011, which suggests that the data format was not changed
since July 2010.

1. Biosonics, 2010. DT4 Data File Format Specification. BioSonics Advanced Digital Hydroa-
coustics. July, 2010. SOFTWARE AND ENGINEERING LIBRARY REPORT BS&E-2004-
07-0009-2.0.

See Also

The documentation for echosounder explains the structure of ctd objects, and also outlines the other
functions dealing with them.

Other things related to echosounder data: [[,echosounder-method, [[<-,echosounder-method,
as.echosounder(), echosounder, echosounder-class, findBottom(), plot,echosounder-method,
subset,echosounder-method, summary,echosounder-method

read.g1sst Read a g1sst File

Description

Read a G1SST file in the NetCDF format provided by the ERDDAP server (see reference 1).

Usage

read.g1sst(file, encoding = NA)

Arguments

file character value containing the name of a NetCDF file containing G1SST data.

encoding ignored.

578 read.g1sst

Details

As noted in the documentation for the g1sst class, one must be aware of the incorporation of model
simulations in the g1sst product. For example, the code presented below might lead one to believe
that the mapped field represents observations, whereas in fact it can be verified by consulting refer-
ence 2 (clicking and unclicking the radio button to show just the data) that the field mostly derives
from simulation.

Value

A g1sst object.

Sample of Usage

Construct query, making it easier to understand and modify.
day <- "2016-01-02"
lon0 <- -66.5
lon1 <- -64.0
lat0 <- 44
lat1 <- 46
source <- paste("https://coastwatch.pfeg.noaa.gov/erddap/griddap/",

"jplG1SST.nc?",
"SST
"
"
"

if (!length(list.files(pattern="^a.nc$")))
download.file(source, "a.nc")

d <- read.g1sst("a.nc")
plot(d, "SST", col=oceColorsTemperature)
if (requireNamespace("ocedata", quietly=TRUE)) {

data(coastlineWorldFine, package="ocedata")
lines(coastlineWorldFine[["longitude"]],coastlineWorldFine[["latitude"]])

}

Author(s)

Dan Kelley

References

1. ERDDAP Portal https://coastwatch.pfeg.noaa.gov/erddap/

2. JPO OurOcean Portal https://ourocean.jpl.nasa.gov/SST/

See Also

Other things related to g1sst data: [[,g1sst-method, [[<-,g1sst-method, g1sst-class

read.gps 579

read.gps Read a gps File

Description

Reads GPX format files by simply finding all longitudes and latitudes; in other words, information
on separate tracks, or waypoints, etc., is lost.

Usage

read.gps(
file,
type = NULL,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog

)

Arguments

file name of file containing gps data.

type type of file, which will be inferred from examination of the data if not supplied.
In the present version, the only choice for type is "gpx".

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug set to TRUE to print information about the header, etc.

processingLog ignored.

Value

A gps object.

Author(s)

Dan Kelley

See Also

Other things related to gps data: [[,gps-method, [[<-,gps-method, as.gps(), gps-class, plot,gps-method,
summary,gps-method

580 read.index

read.index Read a NOAA Ocean Index File

Description

Read an ocean index file, in the format used by NOAA.

Usage

read.index(
file,
format,
missingValue,
tz = getOption("oceTz"),
encoding = "latin1",
debug = getOption("oceDebug")

)

Arguments

file a connection or a character string giving the name of the file to load. May be a
URL.

format optional character string indicating the format type. If not supplied, a guess will
be made, based on examination of the first few lines of the file. If supplied, the
possibilities are "noaa" and "ucar". See “Details”.

missingValue If supplied, this is a numerical value that indicates invalid data. In some datasets,
this is -99.9, but other values may be used. If missingValue is not supplied,
any data that have value equal to or less than -99 are considered invalid. Set
missingValue to TRUE to turn of the processing of missing values.

tz character string indicating time zone to be assumed in the data.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug a flag that turns on debugging, ignored in the present version of the function.

Details

Reads a text-format index file, in either of two formats. If format is missing, then the first line of
the file is examined. If that line contains 2 (whitespace-separated) tokens, then "noaa" format is
assumed. If it contains 13 tokens, then "ucar" format is assumed. Otherwise, an error is reported.

In the "noaa" format, the two tokens on the first line are taken to be the start year and the end year,
respectively. The second line must contain a single token, the missing value. All further lines must
contain 12 tokens, for the values in January, February, etc.

In the "ucar" format, all data lines must contain the 13 tokens, the first of which is the year, with
the following 12 being the values for January, February, etc.

read.landsat 581

Value

A data frame containing t, a POSIX time, and index, the numerical index. The times are set
to the 15th day of each month, which is a guess that may need to be changed if so indicated by
documentation (yet to be located).

Sample of Usage

library(oce)
par(mfrow=c(2, 1))
1. AO, Arctic oscillation
Note that data used to be at https://www.esrl.noaa.gov/psd/data/correlation/ao.data
ao <- read.index("https://psl.noaa.gov/data/correlation/ao.data")
aorecent <- subset(ao, t > as.POSIXct("2000-01-01"))
oce.plot.ts(aorecent$t, aorecent$index)
2. SOI, probably more up-to-date then data(soi, package="ocedata")
soi <- read.index("https://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.ascii")
soirecent <- subset(soi, t > as.POSIXct("2000-01-01"))
oce.plot.ts(soirecent$t, soirecent$index)

Author(s)

Dan Kelley

References

See https://psl.noaa.gov/data/climateindices/list/ for a list of indices.

read.landsat Read a landsat File Directory

Description

Read a landsat data file, producing an object of landsat. The actual reading is done with tiff::readTIFF()
in the tiff package, so that package must be installed for read.landsat to work.

Usage

read.landsat(
file,
band = "all",
emissivity = 0.984,
decimate,
encoding = "latin1",
debug = getOption("oceDebug")

)

https://CRAN.R-project.org/package=tiff

582 read.landsat

Arguments

file A connection or a character string giving the name of the file to load. This is a
directory name containing the data.

band The bands to be read, by default all of the bands. Use band=NULL to skip
the reading of bands, instead reading only the image metadata, which is often
enough to check if the image is of interest in a given study. See “Details” for the
names of the bands, some of which are pseudo-bands, computed from the actual
data.

emissivity Value of the emissivity of the surface, stored as emissivity in the metadata
slot of the resultant object. This is used in the calculation of surface temperature,
as explained in the discussion of accessor functions for landsat. The default
value is from Konda et al. (1994). These authors suggest an uncertainty of
0.04, but a wider range of values can be found in the literature. The value of
metadata$emissivity is easy to alter, either as a single value or as a matrix,
yielding flexibility of calculation.

decimate optional positive integer indicating the degree to which the data should be sub-
sampled after reading and before storage. Setting this to 10 can speed up read-
ing by a factor of 3 or more, but higher values have diminishing effect. In ex-
ploratory work, it is useful to set decimate=10, to plot the image to determine a
subregion of interest, and then to use landsatTrim() to trim the image.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

Details

Landsat data are provided in directories that contain TIFF files and header information, and read.landsat
relies on a strict convention for the names of the files in those directories. Those file names were
found by inspection of some data, on the assumption that similar patterns will hold for other datasets
for any given satellite. This is a brittle approach and it should be born in mind if read.landsat
fails for a given dataset.

For Landsat 8, there are 11 bands, with names "aerosol" (band 1), "blue" (band 2), "green"
(band 3), "red" (band 4), "nir" (band 5), "swir1" (band 6), "swir2" (band 7), "panchromatic"
(band 8), "cirrus" (band 9), "tirs1" (band 10), and "tirs2" (band 11). In addition to the above,
setting band="terralook" may be used as an abbreviation for band=c("red", "green", "nir").

For Landsat 7, there 8 bands, with names "blue" (band 1), "green" (band 2), "red" (band 3),
"nir" (band 4), "swir1" (band 5), "tir1" (band 6A), "tir2" (band 6B), "swir2" (band 7) and
"panchromatic" (band 8).

For Landsat 4 and 5, the bands similar to Landsat 7 but without "panchromatic" (band 8).

Value

A landsat object, with the conventional Oce slots metadata, data and processingLog. The
metadata is mainly intended for use by Oce functions, but for generality it also contains an en-
try named header that represents the full image header in a list (with names made lower-case). The

read.lisst 583

data slot holds matrices of the data in the requested bands, and users may add extra matrices if
desired, e.g. to store calculated quantities.

Storage requirements

Landsat data files (directories, really) are large, accounting for approximately 1 gigabyte each. The
storage of the Oce object is similar (see landsat). In R, many operations involving copying data,
so that dealing with full-scale landsat images can overwhelm computers with storage under 8GB.
For this reason, it is typical to read just the bands that are of interest. It is also helpful to use
landsatTrim() to trim the data to a geographical range, or to use decimate() to get a coarse view
of the domain, especially early in an analysis.

Author(s)

Dan Kelley

References

1. Konda, M. Imasato N., Nishi, K., and T. Toda, 1994. Measurement of the Sea Surface Emis-
sivity. Journal of Oceanography, 50, 17:30. doi:10.1007/BF02233853

See Also

See the documentation for the landsat class for more information on landsat objects, especially
band information. Use landsatTrim() to trim Landsat objects geographically and landsatAdd()
to add new “bands.” The accessor operator ([[) is used to access band information, full or deci-
mated, and to access certain derived quantities. A sample dataset named landsat() is provided by
the oce package.

Other things related to landsat data: [[,landsat-method, [[<-,landsat-method, landsat, landsat-class,
landsatAdd(), landsatTrim(), plot,landsat-method, summary,landsat-method

read.lisst Read a lisst File

Description

Read a LISST data file. The file should contain 42 columns, with no header. If there are fewer than
42 columns, an error results. If there are more, only the first 42 are used. Note that read.oce()
can recognize LISST files by their having a name ending in ".asc" and by having 42 elements on
the first line. Even so, it is preferred to use the present function, because it gives the opportunity to
specify the year and timezone, so that times can be calculated properly.

https://doi.org/10.1007/BF02233853
https://CRAN.R-project.org/package=oce

584 read.lobo

Usage

read.lisst(
file,
year = 0,
tz = "UTC",
longitude = NA,
latitude = NA,
encoding = "latin1"

)

Arguments

file a connection or a character string giving the name of the file to load.

year year in which the measurement of the series was made.

tz time zone.

longitude longitude of observation (stored in metadata)

latitude latitude of observation (stored in metadata)

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

Value

x A lisst object.

Author(s)

Dan Kelley

See Also

Other things related to lisst data: [[,lisst-method, [[<-,lisst-method, as.lisst(), lisst-class,
plot,lisst-method, summary,lisst-method

read.lobo Read a lobo File

Description

Read a data file created by a LOBO instrument.

Usage

read.lobo(file, cols = 7, encoding = "latin1", processingLog)

read.lobo 585

Arguments

file a connection or a character string giving the name of the file to load.

cols number of columns in dataset.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

Details

This version of read.lobo is really quite crude, having been developed mainly for a “predict the
Spring bloom” contest at Dalhousie University. In particular, the function assumes that the data
columns are exactly as specified in the Examples section; if you reorder the columns or add new
ones, this function is unlikely to work correctly. Furthermore, it should be noted that the file format
was inferred simply by downloading files; the supplier makes no claims that the format will be fixed
in time. It is also worth noting that there is no read.oce() equivalent to read.lobo, because the
file format has no recognizable header.

Value

A lobo object.

Sample of Usage

library(oce)
uri <- paste("http://lobo.satlantic.com/cgi-bin/nph-data.cgi?",

"min_date=20070220&max_date=20070305",
"&x=date&",

"y=current_across1,current_along1,nitrate,fluorescence,salinity,temperature&",
"data_format=text", sep="")

lobo <- read.lobo(uri)

Author(s)

Dan Kelley

See Also

Other things related to lobo data: [[,lobo-method, [[<-,lobo-method, as.lobo(), lobo, lobo-class,
plot,lobo-method, subset,lobo-method, summary,lobo-method

586 read.met

read.met Read a met File

Description

Reads some meteorological file formats used by the Environment Canada (see reference 1). Since
the agency does not publish the data formats, this function has to be adjusted every few years, when
a user finds that the format has changed. Caution: as of March 2022, this function fails on some
on Windows machines, for reasons that seem to be related to the handling of both file encoding and
system encoding. Adjusting the encoding parameter of this function might help. If not, try reading
the data with read.csv() and then using as.met() to create a met object.

Usage

read.met(
file,
type = NULL,
skip = NULL,
encoding = "latin1",
tz = getOption("oceTz"),
debug = getOption("oceDebug")

)

Arguments

file a character string naming a file that holds met data.

type if NULL, which is the default, then an attempt is made to infer the type from the
file contents. If this fails, it will be necessary for the user to provide a value
for the type argument. The permitted choices are: (a) "csv" or "csv1" for an
old CSV format no longer provided as of October 2019, (b) "csv2" for a CSV
format noticed on the Environment Canada website in October 2019 (but note
that the paired metadata file is ignored), (c) "csv3" for a CSV format noticed on
the Environment Canada website in January 2020, and (d) "xml2" for an XML
format that was noticed on the Environment Canada website in October 2019.

skip integer giving the number of header lines that precede the data. This is ignored
unless type is "csv" or "csv1", in which case a non-NULL value of skip is taken
as the number of lines preceding the columnar data. Specifying skip is usually
only needed if read.met() cannot find a line starting with "Date/Time" (or a
similar string).

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

tz timezone assumed for time data. This defaults to getOption("oceTz"), which
is very likely to be wrong. In a scientific context, where UTC is typically used
for oceanographic measurement, it makes sense to set tz="UTC". Note that
these data files do not contain timezone information, instead giving data in Local

read.met 587

Standard Time (LST). Since LST differs from city to city, users must make
corrections to the time, as shown in the “Examples”, which use data for Halifax
Nova Scotia, where LST is UTC-4.

debug a flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

Value

A met object.

Sample of Usage

Example 1: "csv1" Environment Canada format (found to be obsolete as of Oct 2019)
csv1 <- read.met(system.file("extdata", "test_met_vsn1.csv", package="oce"))
csv1 <- oceSetData(csv1, "time", csv1[["time"]]+4*3600,

note="add 4h to local time to get UTC time")

Example 2: "csv2" Environment Canada format (found to be obsolete as of Jan 2022)
csv2 <- read.met(system.file("extdata", "test_met_vsn2.csv", package="oce"))
csv2 <- oceSetData(csv2, "time", csv2[["time"]]+4*3600,

note="add 4h to local time to get UTC time")

Example 3: "csv3" Environment Canada format. Note timezone correction
csv3 <- read.met(system.file("extdata", "test_met_vsn3.csv", package="oce"))
csv3 <- oceSetData(csv3, "time", csv3[["time"]]+4*3600,

note="add 4h to local time to get UTC time")

Example 4: "xml2" format. (Uncertain timezone, so not corrected.)
if (requireNamespace("XML", quietly=TRUE))

xml2 <- read.met(system.file("extdata", "test_met_xml2.xml", package="oce"))

Example 5: download and plot
library(oce)
Recreate data(met) and plot u(t) and v(t)
metFile <- download.met(id=6358, year=2003, month=9, destdir=".")
met <- read.met(metFile)
met <- oceSetData(met, "time", met[["time"]]+4*3600,

note="add 4h to local time to get UTC time")
plot(met)

Author(s)

Dan Kelley

References

1. Environment Canada website for Historical Climate Data https://climate.weather.gc.ca/index_e.html

588 read.netcdf

See Also

Other things related to met data: [[,met-method, [[<-,met-method, as.met(), download.met(),
met, met-class, plot,met-method, subset,met-method, summary,met-method

read.netcdf Read a NetCDF File

Description

Read the contents of a NetCDF file, saving the information in a basic oce object. Since NetCDF
files can hold any manner of data, read.netcdf() might be used as a first step in the construction of
another object of a specialized class, perhaps ctd, topo, etc. As explained in “Details”, the renamer
argument can facilitate this work. More work is required to move flags from the data slot of the
result to the metadata slot, and this is illustrated in Example 3.

Usage

read.netcdf(
file,
...,
encoding = NA,
renamer = NULL,
debug = getOption("oceDebug")

)

Arguments

file character value specifying the name of a NetCDF file.

... ignored

encoding ignored.

renamer function used to rename variables that are read from the file, or NULL (which is
the default) to avoid such renaming. See “Details”.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

By default, the names of the data variables are not changed from those in the data file. This can
be confusing to users who are unfamiliar with the naming scheme used in a particular file, and so
read.netcdf() has a parameter named renamer with which the user can provide a translation key
to go from names in the NetCDF file to more standard oce names (like salinity). See “Examples”

read.netcdf 589

to see how this works, for a particular file that follows the NERC/BODC convention for naming
variables.

Unlike more specialized functions such as read.ctd.sbe(), read.netcdf() does not try to asso-
ciate data-quality flags with the corresponding data items. This is because, in the files examined by
the author, there is no clear pattern in the names. For example, the test file referred to in the “Exam-
ples” section (which is not supplied with this package) has three variables that relate to temperature,
namely "TEMPS901", "TEMPP901", and "TEMPPR01". Given common naming conventions, a quality
flag variable is normally constructed by prepending the letter "Q" to the name of another variable.
Although there are no such names in this dataset, it does have something called "QTEMP_01" that
one might guess to be a temperature-quality flag. Based on this (and similar) assumptions, Exam-
ple 3 shows how to move data-quality variables from the data slot of the returned object to the
metadata slot, which is where oce expects to find it, for further processing of data-quality flags.

In this same example file, there are some data fields that contain strings that evidently provide
calibration and other information on some of the sensors. Example 3 shows how to move these
things from the data slot to the metadata slot.

Readers might wonder why the renaming and moving of material from the data slot to the metadata
slot is not done by read.netcdf() itself. The answer is that these things apply only to files of
the type being dealt with in this example. The NetCDF format can hold a very wide variety of
information, and so the basic behaviour of read.netcdf() is just to read the data items (things
called var by functions in the ncdf4 package, which read.netcdf() uses to read the file) and
store them in the data slot. In most cases, it is simply up to the user to decide what to do with the
information.

Finally, it should be noted that read.netcdf() tries to get some common metadata elements from
global attributes in the NetCDF file. These include Longitude, Latitude, Ship and Cruise, all of
which are renamed in lower-case and stored in the metadata slot, in accordance with oce conven-
tion.

Value

An oce object with var elements from the NetCDF file stored in the data slot. See the “Examples”
for hints on renaming the elements, and moving some of them to the metadata slot.

Author(s)

Dan Kelley

References

1. Data variable vocabulary used by NERC/BODC. http://vocab.nerc.ac.uk/collection/
P01/current/

2. CIOOS Atlantic ERDDAP server entry for Bedford Institute measurements in the waters of
Maritime Canada. https://cioosatlantic.ca/erddap/files/bio_maritimes_region_
ecosystem_survey_ctd/ (Link tested 2024-09-21.)

Examples

Not run:
Download the file. (This may break if the server changes.)

http://vocab.nerc.ac.uk/collection/P01/current/
http://vocab.nerc.ac.uk/collection/P01/current/
https://cioosatlantic.ca/erddap/files/bio_maritimes_region_ecosystem_survey_ctd/
https://cioosatlantic.ca/erddap/files/bio_maritimes_region_ecosystem_survey_ctd/

590 read.netcdf

file <- tempfile(fileext = ".nc")
url <- paste0(

"https://cioosatlantic.ca/erddap/files/",
"bio_maritimes_region_ecosystem_survey_ctd/",
"Maritimes%20Region%20Ecosystem%20Survey%20Summer/",
"2023/CTD_CAR2023011_001_496780_DN.ODF.nc"

)
download.file(url, file)

Example 1: read without translating names
d <- read.netcdf(file)
summary(d)

Example 2: as Example 1, but translate (some) names
d <- read.netcdf(file, renamer = bodcNames2oceNames)
summary(d)

Example 3: as Example 2, but handle some flags that were
noticed in this particular file. See Details for more
notes on variable names. Note that the following code
only deals with the first instance of a variable, e.g.
temperature, and not temperature2 or temperature3.
(This is of little consequence, since all 3 of the temperatures
are identical.)
d <- read.netcdf(file, renamer = bodcNames2oceNames)
Looking within the NetCDF file indicates that the built-in
scheme for DFO files is appropriate here.
d <- initializeFlagScheme(d, name = "DFO")
Move some data elements to the `metadata@flags` list,
so they can be used for flag-handling operations. Some
guesses had to be made on the name mapping (see Details).
flags <- list(

QALTB_01 = "heightAboveBottom",
QCPHLPR01 = "cholorophyll-a",
QCNDC_01 = "conductivity",
QDOXY_01 = "oxygen",
QOXYV_01 = "oxygenVoltage",
QPOTM_01 = "theta",
QPRES_01 = "pressure",
QPSAL_01 = "salinity",
QPSAR_01 = "downwellingIrradiance",
QSIGP_01 = "sigmaTheta",
QTEMP_01 = "temperature"

)
for (i in seq_along(flags)) {

varName <- flags[[i]]
flagName <- names(flags)[i]
cat("fileName=", varName, ", flagName=", flagName, "\n", sep="")
d@metadata$flags[[varName]] <- d[[flagName]] # move
d@data[[flagName]] <- NULL # delete original

}
For this group of files, it appears that sensor metadata are
stored with particular names, e.g. "TemperatureSensor". The

read.oce 591

following moves these from the data slot to the metadata slot.
dataNames <- names(d@data)
for (sensorName in dataNames[grep("Sensor$", dataNames)]) {

d@metadata[[sensorName]] <- d@data[[sensorName]]
d@data[[sensorName]] <- NULL

}
summary(d)
Display information about the temperator sensor
cat("Temperature Sensor\n")
if (require("jsonlite")) {

str(jsonlite::fromJSON(d[["TemperatureSensor"]]))
}

Finally, remove the downloaded file, according to CRAN
policy regarding downloads in documentation examples.
file.remove(file)

End(Not run)

read.oce Read an Oceanographic Data File

Description

Read an oceanographic data file, auto-discovering the file type from the first line of the file. This
function tries to infer the file type from the first line, using oceMagic(). If it can be discovered,
then an instrument-specific file reading function is called, with the file and with any additional
arguments being supplied.

Usage

read.oce(file, ..., encoding = "latin1")

Arguments

file a connection or a character string giving the name of the file to load.

... arguments to be handed to whichever instrument-specific reading function is
selected, based on the header.

encoding a character string giving the file encoding. This defaults to "latin1", which
seems to work for files available to the authors, but be aware that a different
setting may be required for files that contain unusual accents or characters. (Try
"UTF-8" if the default produces errors.) Note that encoding is ignored in binary
files, and also in some text-based files, as well.

Value

An oce object of that is specialized to the data type, e.g. ctd, if the data file contains ctd data.

592 read.odf

Author(s)

Dan Kelley

See Also

The file type is determined by oceMagic(). If the file type can be determined, then one of the fol-
lowing is called: read.ctd(), read.coastline() read.lobo(), read.rsk(), read.sealevel(),
etc.

Examples

library(oce)
x <- read.oce(system.file("extdata", "ctd.cnv.gz", package = "oce"))
plot(x) # summary with TS and profiles
plotTS(x) # just the TS

read.odf Read an odf File

Description

ODF (Ocean Data Format) is a format developed at the Bedford Institute of Oceanography and also
used at other Canadian Department of Fisheries and Oceans (DFO) facilities (see references 1 and
2). It can hold various types of time-series data, which includes a variety of instrument types. Thus,
read.odf() is used by read.ctd.odf for CTD data, etc.

Usage

read.odf(
file,
columns = NULL,
header = "list",
exclude = NULL,
encoding = "latin1",
debug = getOption("oceDebug")

)

Arguments

file the file containing the data.

columns An optional list that can be used to convert unrecognized data names to resultant
variable names. For example, columns=list(salinity=list(name="salt", unit=list(unit=expression(), scale="PSS-78"))
states that a short-name of "salt" represents salinity, and that the unit is as in-
dicated. This is passed to cnvName2oceName() or ODFNames2oceNames(), as
appropriate, and takes precedence over the lookup table in that function.

read.odf 593

header An indication of whether, or how, to store the entire ODF file header in the
metadata slot of the returned object. There are three choices for the header
argument. (1) If it is NULL, then the ODF header is not stored in the metadata
slot (although some of its contents are). (2) If it is "character", the header
is stored within the metadata as a vector named header, comprising a charac-
ter string for each line of the header within the ODF file. (3) If it is "list",
then the metadata slot of the returned object will contain a list named header
that has lists as its entries. (The sub-lists are in the form of key-value pairs.)
The naming of list entries is patterned on that in the ODF header, except that
unduplicateNames() is used to transform repeated names by adding numeri-
cal suffices. Note: on June 6, 2019, the default value of header was changed
from NULL to "list"; in addition, the resultant list was made to contain every
single item in the ODF header, with unduplicateNames() being used to append
integers to distinguish between repeated names in the ODF format.

exclude either a character value holding a regular expression that is used with grep() to
remove lines from the header before processing, or NULL (the default), meaning
not to exclude any such lines. The purpose of this argument is to solve problems
with some files, which can have thousands of lines that indicate details that are
may be of little value in processing. For example, some files have thousands
of lines that would be excluded by using exclude="PROCESS='Nulled the .*
value" in the function call.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

Note that some elements of the metadata are particular to ODF objects, e.g. depthMin, depthMax
and sounding, which are inferred from ODF items named MIN_DEPTH, MAX_DEPTH and SOUNDING,
respectively. In addition, the more common metadata item waterDepth, which is used in ctd
objects to refer to the total water depth, is set to sounding if that is finite, or to maxDepth otherwise.

The function ODFNames2oceNames() is used to translate data names from the ODF file to standard
oce names.

Value

An oce object.

Metadata conventions

Some metadata items may be specific to certain instruments, and certain research groups. It can
be important for analysts to be aware of the conventions used in datasets that are under study. For

594 read.odf

example, as of June 2018, adp objects created at the Bedford Institute of Oceanography may have a
metadata item named depthOffBottom (called DEPTH_OFF_BOTTOM in ODF files), which is not typ-
ically present in ctd files. This item illustrates the renaming convention, from the CAMEL_CASE
used in ODF files to the snakeCase used in oce. Bearing this conversion in mind, users should not
find it difficult to understand the meaning of items that read.odf() stores within the metadata slot.
Users should bear in mind that the whole ODF header is saved as a list by calling the function with
header="list", after which e.g. str(rval[["header"]]) or View(rval[["header"]]) can be
used to isolate any information of interest (but bear in mind that suffices are used to disambiguate
sibling items of identical name in the ODF header).

Handling of temperature scales

read.odf() stores temperature data directly as read from the file, which might mean the IPTS-68
scale. These values should not be used to calculate other seawater quantities, because formulae
are generally based in ITS90 temperatures. To avoid problems, the accessor function converts
to the modern scale, e.g. x[["temperature"]] yields temperature in the ITS90 scale, whether
temperatures in the original file were reported on that scale or the older IPTS-68 scale.

Caution

Lacking detailed documentation of the ODF file format, the read.odf() and read.ctd.odf()
functions were crafted based on inspection of data files, and so some guesses had to be made.

The PARAMETER_HEADER chunks describing quality-control flags are a case in point. These contain
NAME components that refer to other PARAMETER_HEADER chunks that hold measured data. However,
those references are not always matched well with the data names, and even if they do match,
the cross-reference syntax used by the Bedford Institute of Oceanography differs from that used
by l’Institut Maurice-Lamontagne. To simplify coding, it was assumed that each quality-control
sequence applies to the data sequence immediately preceding it. (This assumption is made in other
analysis systems.)

It is also prudent to pay attention to the units decoding, which read.odf() handles by calling
unitFromString(). Be on the lookout for incorrect temperature scales, which are sometimes re-
ported with nonstandard strings in ODF files. Also, note that you may see warnings about conduc-
tivity ratios, which some ODF files incorrectly suggest have dimensions.

Author(s)

Dan Kelley, with help from Chantelle Layton

References

For sources that describe the ODF format, see the documentation for the odf class.

See Also

ODF2oce() will be an alternative to this, once (or perhaps if) a ODF package is released by the
Canadian Department of Fisheries and Oceans.

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
ODFNames2oceNames(), [[,odf-method, [[<-,odf-method, odf-class, plot,odf-method, read.ctd.odf(),
subset,odf-method, summary,odf-method

read.rsk 595

Examples

library(oce)
#
1. Read a CTD cast made on the Scotian Shelf. Note that the file's metadata
states that conductivity is in S/m, but it is really conductivity ratio,
so we must alter the unit before converting to a CTD object. Note that
read.odf() on this data file produces a warning suggesting that the user
repair the unit, using the method outlined here.
odf <- read.odf(system.file("extdata", "CTD_BCD2014666_008_1_DN.ODF.gz", package = "oce"))
ctd <- as.ctd(odf) # so we can e.g. extract potential temperature
ctd[["conductivityUnit"]] <- list(unit = expression(), scale = "")
#
2. Make a CTD, and plot (with span to show NS)
plot(ctd, span = 500)
#
3. Highlight bad data on TS diagram. (Note that the eos
is specified, because we will extract practical-salinity and
UNESCO-defined potential temperatures for the added points.)
plotTS(ctd, type = "o", eos = "unesco") # use a line to show loops
bad <- ctd[["QCFlag"]] != 0
points(ctd[["salinity"]][bad], ctd[["theta"]][bad], col = "red", pch = 20)

read.rsk Read a rsk File

Description

Read an RBR rsk or txt file, e.g. as produced by an RBR logger, producing an object of class rsk.

Usage

read.rsk(
file,
from = 1,
to,
by = 1,
type,
encoding = NA,
tz = getOption("oceTz", default = "UTC"),
tzOffsetLocation,
patm = FALSE,
allTables = TRUE,
processingLog,
debug = getOption("oceDebug")

)

596 read.rsk

Arguments

file a connection or a character string giving the name of the RSK file to load. Note
that file must be a character string, because connections are not used in that
case, which is instead handled with database calls.

from indication of the first datum to read. This can a positive integer to indicate
sequence number, the POSIX time of the first datum, or a character string that
can be converted to a POSIX time. (For POSIX times, be careful about the tz
argument.)

to an indication of the last datum to be read, in the same format as from. If to is
missing, data will be read to the end of the file.

by an indication of the stride length to use while walking through the file. If this
is an integer, then by-1 samples are skipped between each pair of samples that
is read. If this is a string representing a time interval, in colon-separated format
(HH:MM:SS or MM:SS), then this interval is divided by the sampling interval,
to get the stride length.

type optional file type, presently can be rsk or txt (for a text export of an RBR rsk
or hex file). If this argument is not provided, an attempt will be made to infer
the type from the file name and contents.

encoding ignored.
tz the timezone assumed for the time values stored in the data file. Unless the user

has set an alternative value in the ~/.Rprofile file, the default will be "UTC";
see the “Altering oce Defaults” vignette for more on the use of the ~/.Rprofile
file.

tzOffsetLocation

offset, in hours, between the CTD clock and the clock in the controlling com-
puter/tablet/phone (if one was used during the sampling). This offset is required
to relate location information from the controller to hydrographic information
from the CTD, using timestamps as an index (see "A note on location informa-
tion" in “Details”). If the user supplies a value for tzOffsetLocation, then
that is used. If not, an attempt is made to infer it from an item named UTCdelta
that might be present within a table named epochs in the file. If no value can
be inferred from either of these two methods, then tzOffsetLocation is set to
zero.

patm controls the handling of atmospheric pressure, an important issue for RBR in-
struments that record absolute pressure; see “Details”.

allTables logical value, TRUE by default, indicating whether to save all the non-empty
tables in the database (pruned of blob columns) in the metadata slot of the
returned object. This may be useful for detailed analysis.

processingLog if provided, the action item to be stored in the log. This is typically only provided
for internal calls; the default that it provides is better for normal calls by a user.

debug a flag that can be set to TRUE to turn on debugging.

Details

This can read files produced by several RBR instruments. At the moment, five styles are under-
stood: (1) text file produced as an export of an RBR hex or rsk file; (2) text file with columns

read.rsk 597

for temperature and pressure (with sampling times indicated in the header); (3) text file with four
columns, in which the date the time of day are given in the first two columns, followed by the tem-
perature, and pressure; (4) text file with five columns, in which depth in the water column is given
after the pressure; (5) an SQLite-based database format. The first four options are provided mainly
for historical reasons, since RBR instruments at the date of writing commonly use the SQLite for-
mat, though the first option is common for all instruments that produce a hex file that can be read
using Ruskin. Options 2-4 are mostly obsolete, and will be removed from future versions.

A note on location information. It is possible to couple RBR CTD devices with smart phones
or tablets (see RBR-global, 2020), with the location data from the latter being stored in the output
.rsk file. The format does not seem to be documented by RBR, but read.rsk() attempts to infer
location nevertheless. The procedure involves comparing the tstamp (time-stamp) field from the
hydrographic part of the dataset (which is in a database table named data) with the tstamp field in
the geographical part of the dataset (in a table named geodata). (The geodata entries are filtered
to those for which the origin field equals "auto". This seems to align with times shown for
"LOCATION" data in RBR-provided viewing software.) The connection between the two fields is
done with approx(), after adding tzOffsetLocation (with units converted appropriately) to the
time inferred from geodata$tstamp field, to account for the fact that phones and tablets may be
set to local time. If the procedure succeeds, then longitude and latitude are inserted into the
metadata slot of the return value, in the form of vectors with the same length as pressure in the
data slot.

A note on conductivity. RBR devices record conductivity in mS/cm, and it is this value that is
stored in the object returned by read.rsk. This can be converted to conductivity ratio (which is
what many other instruments report) by dividing by 42.914 (see Culkin and Smith, 1980) which
will be necessary in any seawater-related function that takes conductivity ratio as an argument (see
“Examples”).

A note on pressure. RBR devices tend to record absolute pressure (i.e. sea pressure plus atmo-
spheric pressure), unlike most oceanographic instruments that record sea pressure (or an estimate
thereof). The handling of pressure is controlled with the patm argument, for which there are three
possibilities. (1) If patm is FALSE (the default), then pressure read from the data file is stored in the
data slot of return value, and the metadata item pressureType is set to the string "absolute".
(2) If patm is TRUE, then an estimate of atmospheric pressure is subtracted from the raw data. For
data files in the SQLite format (i.e. *.rsk files), this estimate will be the value read from the file,
or the “standard atmosphere” value 10.1325 dbar, if the file lacks this information. (3) If patm is a
numerical value (or list of values, one for each sampling time), then ‘patm‘ is subtracted from the
raw data. In cases 2 and 3, an additional column named ‘pressureOriginal‘ is added to the ‘data‘
slot to store the value contained in the data file, and ‘pressureType‘ is set to a string starting with
‘"sea"‘. See as.ctd() for details of how this setup facilitates the conversion of rsk objects to ctd
objects.

Value

An rsk object.

Author(s)

Dan Kelley and Clark Richards

598 read.sealevel

References

Culkin, F., and Norman D. Smith, 1980. Determination of the concentration of potassium chloride
solution having the same electrical conductivity, at 15 C and infinite frequency, as standard seawater
of salinity 35.0000 ppt (Chlorinity 19.37394 ppt). IEEE Journal of Oceanic Engineering, 5, pp 22-
23.

RBR-global.com, 2020. "Ruskin User Guide." RBR, August 18, 2020. Revision RBR#0006105revH.

See Also

The documentation for rsk explains the structure of rsk objects, and also outlines other functions
dealing with them. Since RBR has a wide variety of instruments, rsk datasets can be quite general,
and it is common to coerce rsk objects to other forms for specialized work, e.g. as.ctd() can be
used to create CTD object, so that the generic plot obeys the CTD format.

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(),
plot,rsk-method, rsk, rsk-class, rskPatm(), rskToc(), subset,rsk-method, summary,rsk-method

read.sealevel Read a sealevel File

Description

Read a data file holding sea level data. BUG: the time vector assumes GMT, regardless of the
GMT.offset value.

Usage

read.sealevel(
file,
tz = getOption("oceTz"),
encoding = "latin1",
processingLog,
debug = getOption("oceDebug")

)

Arguments

file a connection or a character string giving the name of the file to load. See Details
for the types of files that are recognized.

tz time zone. The default value, oceTz, is set to UTC at setup. (If a time zone is
present in the file header, this will supercede the value given here.)

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

processingLog if provided, the action item to be stored in the log. (Typically only provided for
internal calls; the default that it provides is better for normal calls by a user.)

read.section 599

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

This function starts by scanning the first line of the file, from which it determines whether the
file is in one of two known formats: type 1, the format used at the Hawaii archive centre, and
type 2, the comma-separated-value format used by the Marine Environmental Data Service. The
file type is inferred by examination of its first line. If that contains the string Station_Name the
file is of type 2. If the file is in neither of these formats, the user might wish to scan it di-
rectly, and then to use as.sealevel() to create a sealevel object. The Hawaii archive site at
http://ilikai.soest.hawaii.edu/uhslc/datai.html at one time provided a graphical inter-
face for downloading sealevel data in Type 1, with format that was once described at http://ilikai.soest.hawaii.edu/rqds/hourly.fmt
(although that link was observed to no longer work, on December 4, 2016). Examination of data re-
trieved from what seems to be a replacement Hawaii server (https://uhslc.soest.hawaii.edu/data/?rq)
in September 2019 indicated that the format had been changed to what is called Type 3 by read.sealevel.
Web searches did not uncover documentation on this format, so the decoding scheme was developed
solely through examination of data files, which means that it might be not be correct. The MEDS
repository (http://www.isdm-gdsi.gc.ca/isdm-gdsi/index-eng.html) provides Type 2 data.

Value

A sealevel object.

Author(s)

Dan Kelley

See Also

Other things related to sealevel data: [[,sealevel-method, [[<-,sealevel-method, as.sealevel(),
plot,sealevel-method, sealevel, sealevel-class, sealevelTuktoyaktuk, subset,sealevel-method,
summary,sealevel-method

read.section Read a section File

Description

Read a file that contains a series of ctd profiles that make up an oceanographic section. Only
exchange BOT comma-separated value format is permitted at this time, but other formats may be
added later. It should also be noted that the parsing scheme was developed after inspection of the
A03 data set (see Examples). This may cause problems if the format is not universal. For example,
the header must name the salinity column "CTDSAL"; if not, salinity values will not be read from the
file.

600 read.section

Usage

read.section(
file,
directory,
sectionId = "",
flags,
ship = "",
scientist = "",
institute = "",
missingValue = -999,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog

)

Arguments

file A file containing a set of CTD observations. At present, only the exchange BOT
format is accepted (see “Details”).

directory A character string indicating the name of a directory that contains a set of CTD
files that hold individual stations in the section.

sectionId Optional string indicating the name for the section. If not provided, the section
ID is determined by examination of the file header.

flags Ignored, and deprecated (will be disallowed in a future version).

ship Name of the ship carrying out the sampling.

scientist Name of chief scientist aboard ship.

institute Name of chief scientist’s institute.

missingValue Numerical value used to indicate missing data.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

processingLog If provided, the action item to be stored in the log. This is typically only pro-
vided for internal calls; the default that it provides is better for normal calls by a
user.

Value

A section object.

read.topo 601

Disambiguating salinity

WOCE datasets commonly have a column named CTDSAL for salinity inferred from a CTD and
SALNTY (not a typo) for salinity derived from bottle data. If only one of these is present in the data
file, the data will be called salinity in the data slot of the return value. However, if both are
present, then CTDSAL is stored as salinity and SALNTY is stored as salinityBottle.

Author(s)

Dan Kelley

References

Several repository sites provide section data. A reasonably stable example is https://cchdo.ucsd.edu,
but a search on "WOCE bottle data" should turn up other sites, if this ceases to exist. Only the so-
called exchange BOT data format can be processed by read.section() at this time. Data names
are inferred from column headings using woceNames2oceNames().

See Also

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
section, section-class, sectionAddStation(), sectionGrid(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

read.topo Read a topo File

Description

Read a file that contains topographic data in the ETOPO dataset, as was once provided by the NOAA
website (see download.topo() for a good server for such files. (As of May, 2020, there does not
seem to be a way to download these files from the NOAA website.)

Usage

read.topo(file, encoding = "latin1", debug = getOption("oceDebug"))

Arguments

file Name of a file containing an ETOPO-format dataset. Three types are permitted;
see “Details”.

encoding ignored.
debug an integer specifying whether debugging information is to be printed during the

processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

602 read.woa

Details

The three permitted file types are as follows.

1. An ascii type in which line 1 holds a label (which is ignored), whitespace, and then the number
of columns in the matrix (i.e. the number of longitude values), line 2 is similar but for latitude,
line 3 is similar but for the westernmost longitude, line 4 is similar but for southernmost
latitude, line 5 is similar but for cell size, and lines after that hold the grid.

2. A NetCDF format that was once described by NOAA as "GMT NetCDF".

3. A NetCDF format that was once described by NOAA as "NetCDF".

Value

A topo object.

Sample of Usage

library(oce)
topoMaritimes <- read.topo("topoMaritimes.asc")
plot(topographyMaritimes)

Author(s)

Dan Kelley

See Also

Other things related to topo data: [[,topo-method, [[<-,topo-method, as.topo(), download.topo(),
plot,topo-method, subset,topo-method, summary,topo-method, topo-class, topoInterpolate(),
topoWorld

read.woa Read a World Ocean Atlas NetCDF File

Description

Read a World Ocean Atlas NetCDF File

Usage

read.woa(file, name, positive = FALSE, encoding = NA)

read.xbt 603

Arguments

file character string naming the file

name of variable to extract. If not provided, an error message is issued that lists the
names of data in the file.

positive logical value indicating whether longitude should be converted to be in the
range from 0 to 360, with name being shuffled accordingly. This is set to FALSE
by default, because the usual oce convention is for longitude to range between
-180 to +180.

encoding ignored.

Value

A list containing vectors longitude, latitude, depth, and an array with the specified name. If
positive is true, then longitude will be converted to range from 0 to 360, and the array will be
shuffled accordingly.

Sample of Usage

Mean SST at 5-degree spatial resolution
tmn <- read.woa("~/data/woa13/woa13_decav_t00_5dv2.nc", "t_mn")
imagep(tmn$longitude, tmn$latitude, tmn$t_mn[, , 1], zlab="SST")

read.xbt Read an xbt file

Description

Two file types are handled: (1) the "sippican" format, used for Sippican XBT files, handled with
read.xbt.edf(), and (2) the "noaa1" format, handled with read.xbt.noaa1(). The first of these
is recognized by read.oce(), but the second must be called directly with read.xbt.noaa1().

Usage

read.xbt(
file,
type = "sippican",
longitude = NA,
latitude = NA,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog

)

604 read.xbt

Arguments

file a connection or a character string giving the name of the file to load.

type character string indicating type of file, with valid choices being "sippican" and
"noaa1".

longitude, latitude
optional signed numbers indicating the longitude in degrees East and latitude
in degrees North. These values are used if type="sippican", but ignored if
type="noaa1", because those files contain location information.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

Value

An xbt object.

Author(s)

Dan Kelley

References

1. Sippican, Inc. "Bathythermograph Data Acquisition System: Installation, Operation and
Maintenance Manual (P/N 308195, Rev. A)," 2003. https://pages.uoregon.edu/drt/MGL0910_Science_Report/attachments/MK21_ISA_Manual_Rev_A.pdf.

See Also

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, as.xbt(), plot,xbt-method,
read.xbt.noaa1(), subset,xbt-method, summary,xbt-method, xbt, xbt-class, xbt.edf

Examples

library(oce)
xbt <- read.oce(system.file("extdata", "xbt.edf", package = "oce"))
summary(xbt)
plot(xbt)

read.xbt.edf 605

read.xbt.edf Read an xbt File in Sippican Format

Description

The function was written by inspection of a particular file, and might be wrong for other files; see
“Details” for a note on character translation.

Usage

read.xbt.edf(
file,
longitude = NA,
latitude = NA,
encoding = "latin1",
debug = getOption("oceDebug"),
processingLog

)

Arguments

file a connection or a character string giving the name of the file to load.

longitude optional signed number indicating the longitude in degrees East.

latitude optional signed number indicating the latitude in degrees North.

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

Details

The header is converted to ASCII format prior to storage in the metadata slot, so that e.g. a degree
sign in the original file will become a ? character in the header. This is to prevent problems
with submission of oce to the CRAN system, which produces NOTEs about UTF-8 strings in data
(on some build machines, evidently depending on the locale on those machines). This character
substitution is at odds with the oce philosophy of leaving data intact, so it will be reverted, if
CRAN policy changes or if the developers can find a way to otherwise silence the NOTE.

Value

An xbt object.

606 read.xbt.noaa1

Author(s)

Dan Kelley

Examples

library(oce)
xbt <- read.oce(system.file("extdata", "xbt.edf", package = "oce"))
summary(xbt)
plot(xbt)

read.xbt.noaa1 Read an xbt File in NOAA Format

Description

This file format, described at https://www.aoml.noaa.gov/phod/dhos/axbt.php, contains a
header line, followed by data lines. For example, a particular file at this site has first three lines
as follows.

181.589 20100709 140820 -85.336 25.290 N42RF GL10 14 2010-190-15:49:18
-0.0 27.52 -9.99
-1.5 27.52 -9.99

where the items on the header line are (1) a year-day (ignored here), (2) YYYYMMDD, (3) HH-
MMSS, (4) longitude, (5) latitude, (6) aircraft wing number, (7) project name, (8) AXBT channel
and (9) AXBT ID. The other lines hold vertical coordinate in metres, temperature and temperature
error; -9.99 is a missing-value code. (This formatting information is extracted from a file named
readme.axbt that is provided with the data.)

Usage

read.xbt.noaa1(
file,
debug = getOption("oceDebug"),
missingValue = -9.99,
encoding = "latin1",
processingLog

)

Arguments

file character value naming a file, or a file connection, containing the data.

debug a flag that turns on debugging. The value indicates the depth within the call
stack to which debugging applies.

missingValue numerical value that is to be interpreted as NA

rescale 607

encoding a character value that indicates the encoding to be used for this data file, if it is
textual. The default value for most functions is "latin1", which seems to be
suitable for files containing text written in English and French.

processingLog if provided, the action item to be stored in the log. This parameter is typically
only provided for internal calls; the default that it provides is better for normal
calls by a user.

Value

An xbt object.

Author(s)

Dan Kelley

See Also

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, as.xbt(), plot,xbt-method,
read.xbt(), subset,xbt-method, summary,xbt-method, xbt, xbt-class, xbt.edf

rescale Rescale Values to lie in a Given Range

Description

This is helpful in e.g. developing a color scale for an image plot. It is not necessary that rlow be
less than rhigh, and in fact reversing them is a good way to get a reversed color scale for a plot.

Usage

rescale(x, xlow, xhigh, rlow = 0, rhigh = 1, clip = TRUE)

Arguments

x a numeric vector.

xlow x value to correspond to rlow. If not given, it will be calculated as the minimum
value of x

xhigh x value to correspond to rhigh. If not given, it will be calculated as the maxi-
mum value of x

rlow value of the result corresponding to x equal to xlow.

rhigh value of the result corresponding to x equal to xhigh.

clip logical, set to TRUE to clip the result to the range spanned by rlow and rhigh.

Value

A new vector, which has minimum lim[1] and maximum lim[2].

608 resizableLabel

Author(s)

Dan Kelley

Examples

library(oce)
Fake tow-yow data
t <- seq(0, 600, 5)
x <- 0.5 * t
z <- 50 * (-1 + sin(2 * pi * t / 360))
T <- 5 + 10 * exp(z / 100)
palette <- oce.colorsViridis(100)
zlim <- range(T)
drawPalette(zlim = zlim, col = palette)
plot(x, z,

type = "p", pch = 20, cex = 3,
col = palette[rescale(T, xlow = zlim[1], xhigh = zlim[2], rlow = 1, rhigh = 100)]

)

resizableLabel Variable Names in Adjustable Sizes

Description

Provide axis names in adjustable sizes, e.g. using T instead of Temperature if the latter would be
unlikely to fit on an axis. The name will also include units as appropriate. This function is intended
mainly for use within the package, and users should not rely on its behaviour being unchangeable.

Usage

resizableLabel(
item,
axis = "x",
sep,
unit = NULL,
debug = getOption("oceDebug")

)

Arguments

item code for the label. If this matches or partially matches to a known value (see
“Details”), then that value and associated unit are returned. If not, item is re-
turned, unaltered. See “Details” for a list of known values, and a note on partial
matching.

axis a string indicating which axis to use; must be x or y.

resizableLabel 609

sep optional character string inserted between the unit and the parentheses or brack-
ets that enclose it. If not provided, getOption("oceUnitSep", " ") is called
to get a value for sep. By default, the units are enclosed in square brackets; to
change that to parentheses, use options(oceUnitBracket="("), but note that
this setting will last for the whole session.

unit optional unit to use. If not supplied, a sensible unit is used, depending on
item. And, even if supplied, unit is ignored for many item values for which it
make no sense, e.g. "oxygen ml/l", "Conductivity Ratio" and "Absolute
Salinity". Only the oce developers should consider supplying a value for
unit.

debug optional debugging flag. Setting to 0 turns off debugging, while setting to 1
causes some debugging information to be printed.

Details

Partial matches to the item value are handled by calling pmatch(). This can be convenient, with
item="tem" and item="temperature" having the same effect. However, it can also be confusing
for labels that are similar. For example, there are 5 variants of oxygen concentration. It is best to
unabbreviated values, especially in non-interactive work.

The list of known values is: "absolute salinity", "along-spine distance km", "along-track
distance km", "C", "conductivity mS/cm", "conductivity S/m", "conservative temperature",
"CT", "depth", "direction", "distance", "distance km", "eastward", "elevation", "fluorescence",
"frequency cph", "heading", "latitude", "longitude", "N", "N2", "nitrate", "nitrite",
"northward", "oxygen", "oxygen mL/L", "oxygen saturation", "oxygen umol/kg", "oxygen
umol/L", "p", "phosphate", "pitch", "roll", "S", "SA", "sigma0", "sigma1", "sigma2", "sigma3",
"sigma4", "sigmaTheta", "silicate", "sound speed", "spectral density m2/cph", "speed",
"spice", "spiciness0", "spiciness1", "spiciness2", "T", "theta", "tritium", "u", "v",
"w", and "z".

Value

A character string or expression, in either a long or a shorter format, for use in the indicated axis
at the present plot size. Whether the unit is enclosed in parentheses or square brackets is deter-
mined by the value of getOption("oceUnitBracket"), which may be "[", which is the default,
or "(". Whether spaces are used between the unit and these delimiters is controlled by sep or
getOption("oceUnitSep").

Author(s)

Dan Kelley

See Also

Other functions that create labels: labelWithUnit()

Examples

1. A matchable item name
resizableLabel("temp")

610 retime

2. Not a matchable item name
resizableLabel("tempJUNK")
3. A silly example, since ylab=expression(...) is shorter.
degC <- c(-2, 30)
degF <- 9 / 5 * degC + 32
plot(degC, degF,

xlab = resizableLabel("temp"),
ylab = resizableLabel("temp", unit = expression(degree * "F")),
xaxs = "i", type = "l"

)
grid()

retime Adjust The Time Within an oce Object

Description

This function compensates for drifting instrument clocks, according to t′ = t+a+b(t− t0), where
t′ is the true time and t is the time stored in the object. A single check on time mismatch can be
described by a simple time offset, with a non-zero value of a, a zero value of b, and an arbitrary
value of t0. Checking the mismatch before and after an experiment yields sufficient information to
specify a linear drift, via a, b, and t0. Note that t0 is just a convenience parameter, which avoids the
user having to know the "zero time" used in R and clarifies the values of the other two parameters.
It makes sense for t0 to have the same timezone as the time within x.

Usage

retime(x, a, b, t0, debug = getOption("oceDebug"))

Arguments

x an oce object.

a intercept (in seconds) in linear model of time drift (see “Details”).

b slope (unitless) in linear model of time drift (unitless) (see “Details”).

t0 reference time (in POSIXct() format) used in linear model of time drift (see
“Details”).

debug a flag that, if nonzero, turns on debugging.

Details

The returned object is computed by linear interpolation, using approx() with rule=2, to avoid NA
values at the start or end. The new time will be as given by the formula above. Note that if the drift
is large enough, the sampling rate will be changed. It is a good idea to start with an object that has
an extended time range, so that, after this is called, subset() can be used to trim to a desired time
range.

rotateAboutZ 611

Value

A new object, with time and other data adjusted.

Author(s)

Dan Kelley

Examples

library(oce)
data(adv)
adv2 <- retime(adv, 0, 1e-4, as.POSIXct("2008-07-01 00:00:00", tz = "UTC"))
plot(adv[["time"]], adv2[["time"]] - adv[["time"]], type = "l")

rotateAboutZ Rotate Velocity Components Within an oce Object

Description

Alter the horizontal components of velocities in adp, adv or cm objects, by applying a rotation about
the vertical axis.

Usage

rotateAboutZ(x, angle)

Arguments

x an adp, adv, or cm object.

angle The rotation angle about the z axis, in degrees counterclockwise.

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

612 rsk

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), subset,adv-method, summary,adv-method, toEnu(), toEnuAdv(),
velocityStatistics(), xyzToEnu(), xyzToEnuAdv()

Other things related to cm data: [[,cm-method, [[<-,cm-method, applyMagneticDeclination,cm-method,
as.cm(), cm, cm-class, plot,cm-method, read.cm(), subset,cm-method, summary,cm-method

Examples

library(oce)
par(mfcol = c(2, 3))
adp (acoustic Doppler profiler)
data(adp)
plot(adp, which = "uv")
mtext("adp", side = 3, line = 0, adj = 1, cex = 0.7)
adpRotated <- rotateAboutZ(adp, 30)
plot(adpRotated, which = "uv")
mtext("adp rotated 30 deg", side = 3, line = 0, adj = 1, cex = 0.7)
adv (acoustic Doppler velocimeter)
data(adv)
plot(adv, which = "uv")
mtext("adv", side = 3, line = 0, adj = 1, cex = 0.7)
advRotated <- rotateAboutZ(adv, 125)
plot(advRotated, which = "uv")
mtext("adv rotated 125 deg", side = 3, line = 0, adj = 1, cex = 0.7)
cm (current meter)
data(cm)
plot(cm, which = "uv")
mtext("cm", side = 3, line = 0, adj = 1, cex = 0.7)
cmRotated <- rotateAboutZ(cm, 30)
plot(cmRotated, which = "uv")
mtext("cm rotated 30 deg", side = 3, line = 0, adj = 1, cex = 0.7)

rsk Sample rsk Data

Description

A sample rsk object derived from a Concerto CTD manufactured by RBR Ltd.

Details

The data were obtained September 2015, off the west coast of Greenland, by Matt Rutherford
and Nicole Trenholm of the Ocean Research Project, in collaboration with RBR and with the
NASA Oceans Melting Greenland project. The rsk object was created with read.rsk() with
allTables=FALSE, after which some metadata were added and the samples were trimmed to just
the downcast portion.

rsk-class 613

References
https://rbr-global.com/

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, met, ocecolors, sealevel, sealevelTuktoyaktuk, section,
topoWorld, wind, xbt

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(),
plot,rsk-method, read.rsk(), rsk-class, rskPatm(), rskToc(), subset,rsk-method, summary,rsk-method

Examples

library(oce)
data(rsk)
The object doesn't "know" it is CTD until told so
plot(rsk)
plot(as.ctd(rsk))

rsk-class Class to Store Rsk Data

Description

This class stores Ruskin data, from RBR (see reference 1).

Details

A rsk object may be read with read.rsk() or created with as.rsk(), but the former method
is much preferred because it retains the entirety of the information in the file. Plots can be made
with plot,rsk-method(), while summary,rsk-method() produces statistical summaries and show
produces overviews. If atmospheric pressure has not been removed from the data, rskPatm() may
provide guidance as to its value, but this is no equal to record-keeping at sea.

Slots

data As with all oce objects, the data slot for rsk objects is a list containing the main data for the
object.

metadata As with all oce objects, the metadata slot for rsk objects is a list containing information
about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for rsk objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

614 rsk2ctd

Modifying slot contents

Although the [[<- operator may permit modification of the contents of rsk objects (see [[<-,rsk-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a rsk object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,rsk-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,rsk-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley and Clark Richards

References

1. RBR website (https://www.rbr-global.com/products)

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class,
sealevel-class, section-class, topo-class, windrose-class, xbt-class

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(),
plot,rsk-method, read.rsk(), rsk, rskPatm(), rskToc(), subset,rsk-method, summary,rsk-method

rsk2ctd Create a ctd Object from an rsk Object

Description

A new ctd object is assembled from the contents of the rsk object. The data and metadata are
mostly unchanged, with an important exception: the pressure item in the data slot may altered,
because rsk instruments measure total pressure, not sea pressure; see “Details”.

rsk2ctd 615

Usage

rsk2ctd(
x,
pressureAtmospheric = 0,
longitude = NULL,
latitude = NULL,
ship = NULL,
cruise = NULL,
station = NULL,
deploymentType = NULL,
debug = getOption("oceDebug")

)

Arguments

x an rsk object.

pressureAtmospheric

A numerical value (a constant or a vector), that is subtracted from the pressure
in object before storing it in the return value.

longitude numerical value of longitude, in degrees East.

latitude numerical value of latitude, in degrees North.

ship optional string containing the ship from which the observations were made.

cruise optional string containing a cruise identifier.

station optional string containing a station identifier.

deploymentType character string indicating the type of deployment (see as.ctd()).

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The pressureType element of the metadata of rsk objects defines the pressure type, and this
controls how pressure is set up in the returned object. If object@metadata$pressureType is
"absolute" (or NULL) then the resultant pressure will be adjusted to make it into "sea" pres-
sure. To do this, the value of object@metadata$pressureAtmospheric is inspected. If this is
present, then it is subtracted from pressure. If this is missing, then standard pressure (10.1325
dbar) will be subtracted. At this stage, the pressure should be near zero at the ocean surface, but
some additional adjustment might be necessary, and this may be indicated by setting the argument
pressureAtmospheric to a non-zero value to be subtracted from pressure.

616 rskPatm

rskPatm Estimate Atmospheric Pressure in an rsk Object

Description

Estimate atmospheric pressure in an rsk object. Pressures must be in decibars for this to work.
First, a subset of pressures is created, in which the range is sap-dp to sap+dp. Here, sap=10.1325
dbar is standard sealevel atmospheric pressure. Within this window, three measures of central
tendency are calculated: the median, the mean, and a weighted mean that has weight given by
exp(−2 ∗ ((p− sap)/dp)2).

Usage

rskPatm(x, dp = 0.5)

Arguments

x an rsk object.

dp Half-width of pressure window to be examined (in decibars).

Value

A list of four estimates: sap, the median, the mean, and the weighted mean.

Author(s)

Dan Kelley

See Also

The documentation for rsk explains the structure of rsk objects, and also outlines the other functions
dealing with them.

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(),
plot,rsk-method, read.rsk(), rsk, rsk-class, rskToc(), subset,rsk-method, summary,rsk-method

Examples

library(oce)
data(rsk)
print(rskPatm(rsk))

rskToc 617

rskToc Decode Table-of-Contents From an rsk File

Description

Decode table-of-contents file from a rsk file, of the sort used by some researchers at Dalhousie
University.

Usage

rskToc(dir, from, to, debug = getOption("oceDebug"))

Arguments

dir name of a directory containing a single table-of-contents file, with .TBL at the
end of its file name.

from optional POSIXct() time, indicating the beginning of a data interval of interest.
This must have timezone "UTC".

to optional POSIXct() time, indicating the end of a data interval of interest. This
must have timezone "UTC".

debug optional integer to control debugging, with positive values indicating to print
information about the processing.

Details

It is assumed that the .TBL file contains lines of the form "File \day179\SL08A179.023 started
at Fri Jun 27 22:00:00 2008" The first step is to parse these lines to get day and hour information,
i.e. 179 and 023 in the line above. Then, recognizing that it is common to change the names
of such files, the rest of the file-name information in the line is ignored, and instead a new file
name is constructed based on the data files that are found in the directory. (In other words, the
"\\day179\\SL08A" portion of the line is replaced.) Once the file list is complete, with all times
put into R format, then (optionally) the list is trimmed to the time interval indicated by from and to.
It is important that from and to be in the UTC time zone, because that time zone is used in decoding
the lines in the .TBL file.

Value

A list with two elements: filename, a vector of file names, and startTime, a vector of POSIXct()
times indicating the (real) times of the first datum in the corresponding files.

Sample of Usage

file <- "~/data/archive/sleiwex/2008/moorings/m05/adv/sontek_202h/raw"
table <- rskToc(file,

from=as.POSIXct("2008-07-01 00:00:00", tz="UTC"),
to=as.POSIXct("2008-07-01 12:00:00", tz="UTC"))

print(table)

618 runlm

Author(s)

Dan Kelley

See Also

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(),
plot,rsk-method, read.rsk(), rsk, rsk-class, rskPatm(), subset,rsk-method, summary,rsk-method

runlm Calculate Running Linear Models

Description

The linear model is calculated from the slope of a localized least-squares regression model y=y(x).
The localization is defined by the x difference from the point in question, with data at distance
exceeding L/2 being ignored. With a boxcar window, all data within the local domain are treated
equally, while with a hanning window, a raised-cosine weighting function is used; the latter pro-
duces smoother derivatives, which can be useful for noisy data. The function is based on internal
calculation, not on lm().

Usage

runlm(x, y, xout, window = c("hanning", "boxcar"), L, deriv)

Arguments

x a vector holding x values.

y a vector holding y values.

xout optional vector of x values at which the derivative is to be found. If not provided,
x is used.

window type of weighting function used to weight data within the window; see “Details”.

L width of running window, in x units. If not provided, a reasonable default will
be used.

deriv an optional indicator of the desired return value; see “Examples”.

Value

If deriv is not specified, a list containing vectors of output values y and y, derivative (dydx), along
with the scalar length scale L. If deriv=0, a vector of values is returned, and if deriv=1, a vector
of derivatives is returned.

Author(s)

Dan Kelley

satellite-class 619

Examples

library(oce)

Case 1: smooth a noisy signal
x <- 1:100
y <- 1 + x / 100 + sin(x / 5)
yn <- y + rnorm(100, sd = 0.1)
L <- 4
calc <- runlm(x, y, L = L)
plot(x, y, type = "l", lwd = 7, col = "gray")
points(x, yn, pch = 20, col = "blue")
lines(x, calc$y, lwd = 2, col = "red")

Case 2: square of buoyancy frequency
data(ctd)
par(mfrow = c(1, 1))
plot(ctd, which = "N2")
rho <- swRho(ctd)
z <- swZ(ctd)
zz <- seq(min(z), max(z), 0.1)
N2 <- -9.8 / mean(rho) * runlm(z, rho, zz, deriv = 1)
lines(N2, -zz, col = "red")
legend("bottomright",

lwd = 2, bg = "white",
col = c("black", "red"),
legend = c("swN2()", "using runlm()")

)

satellite-class Class to Store Satellite Data

Description

This class holds satellite data of various types, including amsr and g1sst.

Author(s)

Dan Kelley and Chantelle Layton

See Also

Other classes holding satellite data: amsr-class, g1sst-class, landsat-class

620 sealevel

sealevel Sample sealevel Data (Halifax Harbour)

Description

This sample sea-level dataset is the 2003 record from Halifax Harbour in Nova Scotia, Canada. For
reasons that are not mentioned on the data archive website, the record ends on the 8th of October.

Details

See predict.tidem() for an example that reveals the storm surge that resulted from Hurricane
Juan, in this year.

Author(s)

Dan Kelley

Source

The data were created as

sealevel <-
read.oce("490-01-JAN-2003_slev.csv") sealevel <- oce.edit(sealevel,
"longitude", -sealevel[["longitude"]], reason="Fix longitude hemisphere")

where the csv file was downloaded from reference 1. Note the correction of longitude sign, which
is required because the data file has no indication that this is the western hemisphere.

References

1. Fisheries and Oceans Canada http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/index-eng.html

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, met, ocecolors, rsk, sealevelTuktoyaktuk, section,
topoWorld, wind, xbt

Other things related to sealevel data: [[,sealevel-method, [[<-,sealevel-method, as.sealevel(),
plot,sealevel-method, read.sealevel(), sealevel-class, sealevelTuktoyaktuk, subset,sealevel-method,
summary,sealevel-method

sealevel-class 621

sealevel-class Class to Store Sealevel Data

Description

This class stores sealevel data, e.g. from a tide gauge.

Slots

data As with all oce objects, the data slot for sealevel objects is a list containing the main data
for the object. The key items stored in this slot are time and elevation.

metadata As with all oce objects, the metadata slot for sealevel objects is a list containing
information about the data or about the object itself. An example of the former might be the
location at which a sealevel measurement was made, stored in longitude and latitude,
and of the latter might be filename, the name of the data source.

processingLog As with all oce objects, the processingLog slot for sealevel objects is a list with
entries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of sealevel objects (see [[<-,sealevel-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a sealevel object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,sealevel-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,sealevel-method operator can also be used to retrieve items from within the data and
metadata slots. For example, o[["temperature"]] can be used to retrieve temperature from an
object containing that quantity. The rule is that a named quantity is sought first within the object’s
metadata slot, with the data slot being checked only if metadata does not contain the item. This [[
method can also be used to get certain derived quantities, if the object contains sufficient information
to calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

622 sealevelTuktoyaktuk

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class,
rsk-class, section-class, topo-class, windrose-class, xbt-class

Other things related to sealevel data: [[,sealevel-method, [[<-,sealevel-method, as.sealevel(),
plot,sealevel-method, read.sealevel(), sealevel, sealevelTuktoyaktuk, subset,sealevel-method,
summary,sealevel-method

sealevelTuktoyaktuk Sample sealevel Data (Tuktoyaktuk)

Description

This sea-level dataset is provided with in Appendix 7.2 of Foreman (1977) and also with the T_TIDE
package (Pawlowicz et al., 2002). It results from measurements made in 1975 at Tuktoyaktuk,
Northwest Territories, Canada.

Details

The data set contains 1584 points, some of which have NA for sea-level height.

Although Foreman’s Appendix 7.2 states that times are in Mountain standard time, the timezone is
set to UTC in the present case, so that the results will be similar to those he provides in his Appendix
7.3.

Historical note

Until Jan 6, 2018, the time in this dataset had been increased by 7 hours. However, this alteration
was removed on this date, to make for simpler comparison of amplitude and phase output with the
results obtained by Foreman (1977) and Pawlowicz et al. (2002).

Source

The data were based on the T_TIDE dataset, which in turn seems to be based on Appendix 7.2 of
Foreman (1977). Minor editing was on file format, and then the sealevelTuktoyaktuk object was
created using as.sealevel().

References

Foreman, M. G. G., 1977. Manual for tidal heights analysis and prediction. Pacific Marine Science
Report 77-10, Institute of Ocean Sciences, Patricia Bay, Sidney, BC, 58pp.

Pawlowicz, Rich, Bob Beardsley, and Steve Lentz, 2002. Classical tidal harmonic analysis includ-
ing error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937.

secondsToCtime 623

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, met, ocecolors, rsk, sealevel, section, topoWorld,
wind, xbt

Other things related to sealevel data: [[,sealevel-method, [[<-,sealevel-method, as.sealevel(),
plot,sealevel-method, read.sealevel(), sealevel, sealevel-class, subset,sealevel-method,
summary,sealevel-method

secondsToCtime Express Time Interval as Colon-Separated String

Description

Convert a time interval to a colon-separated string

Usage

secondsToCtime(sec)

Arguments

sec length of time interval in seconds.

Value

A string with a colon-separated time interval.

Author(s)

Dan Kelley

See Also

See ctimeToSeconds(), the inverse of this.

Other things related to time: ctimeToSeconds(), julianCenturyAnomaly(), julianDay(), numberAsHMS(),
numberAsPOSIXct(), unabbreviateYear()

Examples

library(oce)
cat(" 10 s = ", secondsToCtime(10), "\n", sep = "")
cat(" 61 s = ", secondsToCtime(61), "\n", sep = "")
cat("86400 s = ", secondsToCtime(86400), "\n", sep = "")

624 section

section Sample section Data

Description

This is line A03 (ExpoCode 90CT40_1, with nominal sampling date 1993-09-11). The chief scien-
tist was Tereschenkov of SOI, working aboard the Russian ship Multanovsky, undertaking a west-
ward transect from the Mediterranean outflow region across to North America, with a change of
heading in the last few dozen stations to run across the nominal Gulf Stream axis. The data flags
follow the "WHP Bottle"convention, set by initializeFlagScheme,section-method() to "WHP
bottle". This convention used to be described at the link https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm
but that was found to fail in December 2020.

Usage

data(section)

Speculation on a timing error

In May 2022, it was discovered that the times in this dataset are not fully sequential, at two spots.
This might be a reporting error. Station 41 has time listed as 1993-10-03T00:06:00 and that leads to
a time reversal. However, if that time were actually on the day before, then the time reversal would
vanish, and the inter-station timing of about 5 to 6 hours would be recovered. A similar pattern is
seen at station 45. Of course, this hypothesis of incorrect recording is difficult to test, for data taken
thirty years ago.

Source

This is based on the WOCE file named a03_hy1.csv, downloaded from https://cchdo.ucsd.edu/cruise/90CT40_1,
13 April 2015.

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk,
topoWorld, wind, xbt

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
read.section(), section-class, sectionAddStation(), sectionGrid(), sectionSmooth(),
sectionSort(), subset,section-method, summary,section-method

Examples

library(oce)
Gulf Stream
data(section)
GS <- subset(section, 113 <= stationId & stationId <= 129)
GSg <- sectionGrid(GS, p = seq(0, 5000, 100))

section-class 625

plot(GSg, span = 1500) # increase span to show more coastline

section-class Class to Store Hydrographic Section Data

Description

This class stores data from oceanographic section surveys.

Details

Sections can be read with read.section() or created with read.section() or created from CTD
objects by using as.section() or by adding a ctd station to an existing section with sectionAddStation().

Sections may be sorted with sectionSort(), subsetted with subset,section-method(), smoothed
with sectionSmooth(), and gridded with sectionGrid(). A "spine" may be added to a section
with addSpine(). Sections may be summarized with summary,section-method() and plotted
with plot,section-method().

The sample dataset section() contains data along WOCE line A03.

Slots

data As with all oce objects, the data slot for section objects is a list containing the main data
for the object.

metadata As with all oce objects, the metadata slot for section objects is a list containing in-
formation about the data or about the object itself. Examples that are of common interest
include stationId, longitude, latitude and time.

processingLog As with all oce objects, the processingLog slot for section objects is a list with
entries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of section objects (see [[<-,section-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a section object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,section-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

626 sectionAddStation

The [[,section-method operator can also be used to retrieve items from within the data and
metadata slots. For example, o[["temperature"]] can be used to retrieve temperature from an
object containing that quantity. The rule is that a named quantity is sought first within the object’s
metadata slot, with the data slot being checked only if metadata does not contain the item. This [[
method can also be used to get certain derived quantities, if the object contains sufficient information
to calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class,
rsk-class, sealevel-class, topo-class, windrose-class, xbt-class

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
read.section(), section, sectionAddStation(), sectionGrid(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

Examples

library(oce)
data(section)
plot(section[["station", 1]])
pairs(cbind(z = -section[["pressure"]], T = section[["temperature"]], S = section[["salinity"]]))
T profiles for first few stations in section, at common scale
par(mfrow = c(3, 3))
Tlim <- range(section[["temperature"]])
ylim <- rev(range(section[["pressure"]]))
for (stn in section[["station", 1:9]]) {

plotProfile(stn, xtype = "potential temperature", ylim = ylim, Tlim = Tlim)
}

sectionAddStation Add a ctd Profile to a section Object

Description

Add a CTD profile to an existing section.

sectionAddStation 627

Usage

sectionAddStation(section, station)

Arguments

section A section to which a station is to be added.

station A ctd object holding data for the station to be added.

Value

A section object.

Historical note

Until March 2015, this operation was carried out with the + operator, but at that time, the syntax
was flagged by the development version of R, so it was changed to the present form.

Author(s)

Dan Kelley

See Also

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
read.section(), section, section-class, sectionGrid(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

Examples

library(oce)
data(ctd)
ctd2 <- ctd
ctd2[["temperature"]] <- ctd2[["temperature"]] + 0.5
ctd2[["latitude"]] <- ctd2[["latitude"]] + 0.1
section <- as.section(c("ctd", "ctd2"))
ctd3 <- ctd
ctd3[["temperature"]] <- ctd[["temperature"]] + 1
ctd3[["latitude"]] <- ctd[["latitude"]] + 0.1
ctd3[["station"]] <- "Stn 3"
sectionAddStation(section, ctd3)

628 sectionGrid

sectionGrid Grid a Section in Pressure Space

Description

Grid a section, by interpolating to fixed pressure levels. The "approx", "boxcar" and "lm" meth-
ods are described in the documentation for ctdDecimate(), which is used to do this processing.

Usage

sectionGrid(
section,
p,
method = "approx",
trim = TRUE,
debug = getOption("oceDebug"),
...

)

Arguments

section A section object containing the section to be gridded.

p Optional indication of the pressure levels to which interpolation should be done.
If this is not supplied, the pressure levels will be calculated based on the typical
spacing in the ctd profiles stored within section. If p="levitus", then pres-
sures will be set to be those of the Levitus atlas, given by standardDepths().
If p is a single numerical value, it is taken as the number of subdivisions to use
in a call to seq() that has range from 0 to the maximum pressure in section.
Finally, if a vector numerical values is provided, perhaps as constructed with
seq() or standardDepths(5) (as in the examples), then it is used as is, after
trimming any values that exceed the maximum pressure in the station data stored
within section.

method The method to use to decimate data within the stations; see ctdDecimate(),
which is used for the decimation.

trim Logical value indicating whether to trim gridded pressures to the range of the
data in section.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

... Optional arguments to be supplied to ctdDecimate(), e.g. rule controls ex-
trapolation beyond the observed pressure range, in the case where method equals
"approx".

sectionSmooth 629

Details

The default "approx" method is best for bottle data, the "boxcar" is best for ctd data, and the "lm"
method is probably too slow to recommend for exploratory work, in which it is common to do trials
with a variety of "p" values.

The stations in the returned value have flags with names that match those of the corresponding
stations in the original section, but the values of these flags are all set to NA. This recognizes that
it makes no sense to grid flag values, but that there is merit in initializing a flag system, for possible
use in later processing steps.

Value

A section object that contains stations in which the pressure values match identically, and that has
all flags set to NA.

Author(s)

Dan Kelley

See Also

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
read.section(), section, section-class, sectionAddStation(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

Examples

Gulf Stream
library(oce)
data(section)
GS <- subset(section, 113 <= stationId & stationId <= 129)
GSg <- sectionGrid(GS, p = seq(0, 5000, 100))
plot(GSg, which = "temperature")
Show effects of various depth schemes

sectionSmooth Smooth a Section

Description

Smooth a section, in any of several ways, working either in the vertical direction or in both the
vertical and lateral directions.

630 sectionSmooth

Usage

sectionSmooth(
section,
method = "spline",
x,
xg,
yg,
xgl,
ygl,
xr,
yr,
df,
gamma = 0.5,
iterations = 2,
trim = 0,
pregrid = FALSE,
debug = getOption("oceDebug"),
...

)

Arguments

section A section object containing the section to be smoothed. For method="spline",
the pressure levels must match for each station in the section.

method A string or a function that specifies the method to use; see “Details”.

x Optional numerical vector, of the same length as the number of stations in
section, which will be used in gridding in the lateral direction. If not provided,
this defaults to geodDist(section).

xg, xgl ignored in the method="spline" case, but passed to interpBarnes() if method="barnes",
to kriging functions if method="kriging", or to method itself, if it is a function.
If xg is supplied, it defines the x component of the grid, which by default is the
terms of station distances, x, along the track of the section. (Note that the grid
xg is trimmed to the range of the data x, because otherwise it would be impossi-
ble to interpolate between stations to infer water depth, longitude, and latitude,
which are all stored within the stations in the returned section object.) Alterna-
tively, if xgl is supplied, the x grid is established using seq(), to span the data
with xgl elements. If neither of these is supplied, the output x grid will equal
the input x grid.

yg, ygl similar to xg and xgl, but for pressure. (Note that trimming to the input y is not
done, as it is for xg and x.) If yg is not given, it is determined from the deepest
station in the section. If ygl was not given, then a grid is constructed to span the
pressures of that deepest station with ygl elements. On the other hand, if ygl
was not given, then the y grid will constructed from the pressure levels in the
deepest station.

xr, yr influence ranges in x (along-section distance) and y (pressure), passed to interpBarnes()
if method="barnes" or to method, if the latter is a function. If missing, xr de-
faults to 1.5X the median inter-station distance and yr defaults to 0.2X the pres-

sectionSmooth 631

sure range. Since these defaults have changed over the evolution of sectionSmooth,
analysts ought to supply xr and yr in the function call, tailoring them to particu-
lar applications, and making the code more resistant to changes in sectionSmooth.

df Degree-of-freedom parameter, passed to smooth.spline() if method="spline",
and ignored otherwise. If df is not provided, it defaults to 1/5-th of the number
of stations containing non-NA data at the particular pressure level being pro-
cessed, as sectionSmooth works its way through the water column.

gamma, iterations, trim, pregrid
Values passed to interpBarnes(), if method="barnes", and ignored other-
wise. gamma is the factor by which xr and yr are reduced on each of succeeding
iterations. iterations is the number of iterations to do. trim controls whether
the gridded data are set to NA in regions with sparse data coverage. pregrid con-
trols whether data are to be pre-gridded with binMean2D() before being passed
to interpBarnes().

debug A flag that turns on debugging. Set to 1 to get a moderate amount of debugging
information, or to 2 to get more.

... Optional extra arguments, passed to either smooth.spline(), if method="spline",
and ignored otherwise.

Details

This function produces smoothed fields that might be useful in simplifying graphical elements cre-
ated with plot,section-method(). As with any smoothing method, a careful analyst will compare
the results against the raw data, e.g. using plot,section-method(). In addition the problem of
falsely widening narrow features such as fronts, there is also the potential to get unphysical results
with spars sampling near topographic features such as bottom slopes and ridges.

The method argument selects between three possible methods.

• For method="spline", i.e. the default, the section is smoothed laterally, using smooth.spline()
on individual pressure levels. (If the pressure levels do not match up, sectionGrid() should
be used first to create a section object that can be used here.) The df argument sets the
degree of freedom of the spline, with larger values indicating less smoothing.

• For method="barnes", smoothing is done across both horizontal and vertical coordinates,
using interpBarnes(). The output station locations are computed by linear interpolation of
input locations, using approx() on the original longitudes and longitudes of stations, with
the independent variable being the distance along the track, computed with geodDist(). The
values of xg, yg, xgl and ygl control the smoothing.

• For method="kriging", smoothing is done across both horizontal and vertical coordinates,
using autoKrige() from the automap package (along with support from the sp package to
format the data). Note that the format of the value returned by autoKrige() has changed over
the years, and method="kriging" can only handle two particular formats, one of which is the
result from version 1.1.9 of automap.

• If method is a function, then that function is applied to the (distance, pressure) data for
each variable at a grid defined by xg, xgl, yg and ygl. The function must be of the form
function(x,y,z,xg,xr,yg,yr), and must return a matrix of the gridded result, with first
index indicating the "grid" station number and second index indicating "grid" pressure. The x
value that is supplied to this function is set as the distance along the section, as computed with

https://CRAN.R-project.org/package=automap
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=automap

632 sectionSmooth

geodDist(), and repeated for each of the points at each station. The corresponding pressures
are provided in y, and the value to be gridded is in z, which may be temperature on one
call to the function, salinity on another call, etc. The other quantities have the meanings as
described below.

Value

A section object of that has been smoothed in some way. Every data field that is in even a single
station of the input object is inserted into every station in the returned value, and therefore the units
represent all the units in any of the stations, as do the flag names. However, the flags are all set to
NA values.

Sample of Usage

I have seen problems with kriging as the automap package has
evolved, so please be aware that the following may fail.
if (requireNamespace("automap", quietly=TRUE)

&& requireNamespace("sf", quietly=TRUE)) {
gsKriging <- sectionSmooth(gs, "kriging", xr=50, yr=200)
plot(gsKriging, which="temperature")
mtext("sectionSmooth(..., method=\"kriging\")", line=0.5)

}

Author(s)

Dan Kelley

See Also

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
read.section(), section, section-class, sectionAddStation(), sectionGrid(), sectionSort(),
subset,section-method, summary,section-method

Examples

Unsmoothed (Gulf Stream)
library(oce)
data(section)
gs <- subset(section, 115 <= stationId & stationId <= 125)
par(mfrow = c(2, 2))

plot(gs, which = "temperature")
mtext("Original data, without smoothing", line = 0.5)

Spline
gsg <- sectionGrid(gs, p = seq(0, 5000, 100))
gsSpline <- sectionSmooth(gsg, "spline")
plot(gsSpline, which = "temperature")
mtext("sectionSmooth(..., method=\"spline\")", line = 0.5)

sectionSort 633

Barnes
gsBarnes <- sectionSmooth(gs, "barnes", xr = 50, yr = 200)
plot(gsBarnes, which = "temperature")
mtext("sectionSmooth(..., method=\"barnes\")", line = 0.5)

sectionSort Sort a Section

Description

Sections created with as.section() have "stations" that are in the order of the CTD objects (or
filenames for such objects) provided. Sometimes, this is not the desired order, e.g. if file names
discovered with dir() are in an order that makes no sense. (For example, a practioner might name
stations "stn1", "stn2", etc., not realizing that this will yield an unhelpful ordering, by file name, if
there are more than 9 stations.) The purpose of sectionSort is to permit reordering the constituent
stations in sensible ways.

Usage

sectionSort(section, by, decreasing = FALSE)

Arguments

section A section object containing the section whose stations are to be sorted.

by An optional string indicating how to reorder. If not provided, "stationID" will
be assumed. Other choices are "distance", for distance from the first station,
"longitude", for longitude, "latitude" for latitude, and "time", for time.

decreasing A logical value indicating whether to sort in decreasing order. The default is
FALSE. (Thanks to Martin Renner for adding this parameter.)

Value

object A section object that has been smoothed, so its data fields will station-to-station variation
than is the case for the input section, x.

Author(s)

Dan Kelley

See Also

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
read.section(), section, section-class, sectionAddStation(), sectionGrid(), sectionSmooth(),
subset,section-method, summary,section-method

634 setFlags

Examples

library(oce)
data(section)
sectionByLongitude <- sectionSort(section, by = "longitude")
head(section)
head(sectionByLongitude)

setFlags Set Data-Quality Flags within a oce Object

Description

This function changes specified entries in the data-quality flags of a oce object, which are stored
within a list named flags that resides in the metadata slot. If the object already has a flag set up for
name, then only the specified entries are altered. If not, the flag entry is first created and its entries
set to default, after which the entries specified by i are changed to value.

The specification is made with i, the form of which is determined by the data item in question.
Generally, the rules are as follows:

1. If the data item is a vector, then i must be (a) an integer vector specifying indices to be set to
value, (b) a logical vector of length matching the data item, with TRUE meaning to set the flag
to value, or (c) a function that takes an oce object as its single argument, and returns a vector
in either of the forms just described.

2. If the data item is an array, then i must be (a) a data frame of integers whose rows specify
spots to change (where the number of columns matches the number of dimensions of the data
item), (b) a logical array that has dimension equal to that of the data item, or (c) a function
that takes an oce object as its single input and returns such a data frame or array.

See “Details” for the particular case of oce objects.

Usage

setFlags(object, name = NULL, i = NULL, value = NULL, debug = 0)

Arguments

object An oce object.

name Character string indicating the name of the variable to be flagged. If this variable
is not contained in the object’s data slot, an error is reported.

i Indication of where to insert the flags; see “Description” for general rules and
“Details” for rules for oce objects.

value The value to be inserted in the flag.

debug Integer set to 0 for quiet action or to 1 for some debugging.

setFlags,adp-method 635

Details

This generic function is overridden by specialized functions for some object classes.

Value

An object with flags set as indicated.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlagSchemeInternal(), initializeFlags(),
initializeFlags,adp-method, initializeFlags,oce-method, initializeFlagsInternal(),
setFlags,adp-method, setFlags,ctd-method, setFlags,oce-method

setFlags,adp-method Set Data-Quality Flags within a adp Object

Description

This function changes specified entries in the data-quality flags of a adp object, which are stored
within a list named flags that resides in the metadata slot. If the object already has a flag set up for
name, then only the specified entries are altered. If not, the flag entry is first created and its entries
set to default, after which the entries specified by i are changed to value.

The specification is made with i, the form of which is determined by the data item in question.
Generally, the rules are as follows:

1. If the data item is a vector, then i must be (a) an integer vector specifying indices to be set to
value, (b) a logical vector of length matching the data item, with TRUE meaning to set the flag
to value, or (c) a function that takes an oce object as its single argument, and returns a vector
in either of the forms just described.

2. If the data item is an array, then i must be (a) a data frame of integers whose rows specify
spots to change (where the number of columns matches the number of dimensions of the data
item), (b) a logical array that has dimension equal to that of the data item, or (c) a function
that takes an oce object as its single input and returns such a data frame or array.

See “Details” for the particular case of adp objects.

Usage

S4 method for signature 'adp'
setFlags(
object,
name = NULL,
i = NULL,
value = NULL,
debug = getOption("oceDebug")

)

636 setFlags,adp-method

Arguments

object An oce object.

name Character string indicating the name of the variable to be flagged. If this variable
is not contained in the object’s data slot, an error is reported.

i Indication of where to insert the flags; see “Description” for general rules and
“Details” for rules for adp objects.

value The value to be inserted in the flag.

debug Integer set to 0 for quiet action or to 1 for some debugging.

Details

The only flag that may be set is v, for the array holding velocity. See “Indexing rules”, noting that
adp data are stored in 3D arrays; Example 1 shows using a data frame for i, while Example 2 shows
using an array.

Value

An object with flags set as indicated.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlagSchemeInternal(), initializeFlags(),
initializeFlags,adp-method, initializeFlags,oce-method, initializeFlagsInternal(),
setFlags(), setFlags,ctd-method, setFlags,oce-method

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), subset,adp-method, subtractBottomVelocity(), summary,adp-method, toEnu(),
toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

library(oce)
data(adp)

Example 1: flag first 10 samples in a mid-depth bin of beam 1
i1 <- data.frame(1:20, 40, 1)
adpQC <- initializeFlags(adp, "v", 2)
adpQC <- setFlags(adpQC, "v", i1, 3)
adpClean1 <- handleFlags(adpQC, flags = list(3), actions = list("NA"))
par(mfrow = c(2, 1))

setFlags,ctd-method 637

Top: original, bottom: altered
plot(adp, which = "u1")
plot(adpClean1, which = "u1")

Example 2: percent-good and error-beam scheme
v <- adp[["v"]]
i2 <- array(FALSE, dim = dim(v))
g <- adp[["g", "numeric"]]
Thresholds on percent "goodness" and error "velocity"
G <- 25
V4 <- 0.45
for (k in 1:3) {

i2[, , k] <- ((g[, , k] + g[, , 4]) < G) | (v[, , 4] > V4)
}
adpQC2 <- initializeFlags(adp, "v", 2)
adpQC2 <- setFlags(adpQC2, "v", i2, 3)
adpClean2 <- handleFlags(adpQC2, flags = list(3), actions = list("NA"))
Top: original, bottom: altered
plot(adp, which = "u1")
plot(adpClean2, which = "u1") # differs at 8h and 20h

setFlags,ctd-method Set Data-Quality Flags within a ctd Object

Description

This function changes specified entries in the data-quality flags of a ctd object, which are stored
within a list named flags that resides in the metadata slot. If the object already has a flag set up
for name, then only the specified entries are altered. If not, the flag entry is first created and its
entries set to default, after which the entries specified by i are changed to value.

The specification is made with i, the form of which is determined by the data item in question.
Generally, the rules are as follows:

1. If the data item is a vector, then i must be (a) an integer vector specifying indices to be set to
value, (b) a logical vector of length matching the data item, with TRUE meaning to set the flag
to value, or (c) a function that takes an oce object as its single argument, and returns a vector
in either of the forms just described.

2. If the data item is an array, then i must be (a) a data frame of integers whose rows specify
spots to change (where the number of columns matches the number of dimensions of the data
item), (b) a logical array that has dimension equal to that of the data item, or (c) a function
that takes an oce object as its single input and returns such a data frame or array.

See “Details” for the particular case of ctd objects.

638 setFlags,ctd-method

Usage

S4 method for signature 'ctd'
setFlags(
object,
name = NULL,
i = NULL,
value = NULL,
debug = getOption("oceDebug")

)

Arguments

object An oce object.

name Character string indicating the name of the variable to be flagged. If this variable
is not contained in the object’s data slot, an error is reported.

i Indication of where to insert the flags; see “Description” for general rules and
“Details” for rules for ctd objects.

value The value to be inserted in the flag.

debug Integer set to 0 for quiet action or to 1 for some debugging.

Details

Since all the entries in the data slot of ctd objects are vectors, i must be a vector (either logical as
in Example 1 or integer as in Example 2), or a function taking a ctd object and returning such a
vector (see “Indexing rules”).

Value

An object with flags set as indicated.

Sample of Usage

Example 2: Interactive flag assignment based on TS plot, using
WHP scheme to define 'acceptable' and 'bad' codes
options(eos="gsw")
data(ctd)
qc <- ctd
qc <- initializeFlagScheme(qc, "WHP CTD")
qc <- initializeFlags(qc, "salinity", 2)
Sspan <- diff(range(qc[["SA"]]))
Tspan <- diff(range(qc[["CT"]]))
n <- length(qc[["SA"]])
par(mfrow=c(1, 1))
plotTS(qc, type="o")
message("Click on bad points; quit by clicking to right of plot")
for (i in seq_len(n)) {

xy <- locator(1)
if (xy$x > par("usr")[2])

setFlags,ctd-method 639

break
i <- which.min(abs(qc[["SA"]] - xy$x)/Sspan + abs(qc[["CT"]] - xy$y)/Tspan)
qc <- setFlags(qc, "salinity", i=i, value=4)
qc <- handleFlags(qc, flags=list(salinity=4))
plotTS(qc, type="o")

}

Author(s)

Dan Kelley

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlagSchemeInternal(), initializeFlags(),
initializeFlags,adp-method, initializeFlags,oce-method, initializeFlagsInternal(),
setFlags(), setFlags,adp-method, setFlags,oce-method

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), subset,ctd-method, summary,ctd-method, woceNames2oceNames(),
woceUnit2oceUnit(), write.ctd()

Examples

library(oce)
Example 1: Range-check salinity
data(ctdRaw)
Salinity and temperature range checks
qc <- ctdRaw
Initialize flags to 2, meaning good data in the default
scheme for handleFlags(ctd).
qc <- initializeFlags(qc, "salinity", 2)
qc <- initializeFlags(qc, "temperature", 2)
Flag bad salinities as 4
oddS <- with(qc[["data"]], salinity < 25 | 40 < salinity)
qc <- setFlags(qc, name = "salinity", i = oddS, value = 4)
Flag bad temperatures as 4
oddT <- with(qc[["data"]], temperature < -2 | 40 < temperature)
qc <- setFlags(qc, name = "temperature", i = oddT, value = 4)
Compare results in TS space
par(mfrow = c(2, 1))
plotTS(ctdRaw)
plotTS(handleFlags(qc, flags = c(1, 3:9)))

640 setFlags,oce-method

setFlags,oce-method Set Data-Quality Flags within a oce Object

Description

This function changes specified entries in the data-quality flags of a oce object, which are stored
within a list named flags that resides in the metadata slot. If the object already has a flag set up for
name, then only the specified entries are altered. If not, the flag entry is first created and its entries
set to default, after which the entries specified by i are changed to value.

The specification is made with i, the form of which is determined by the data item in question.
Generally, the rules are as follows:

1. If the data item is a vector, then i must be (a) an integer vector specifying indices to be set to
value, (b) a logical vector of length matching the data item, with TRUE meaning to set the flag
to value, or (c) a function that takes an oce object as its single argument, and returns a vector
in either of the forms just described.

2. If the data item is an array, then i must be (a) a data frame of integers whose rows specify
spots to change (where the number of columns matches the number of dimensions of the data
item), (b) a logical array that has dimension equal to that of the data item, or (c) a function
that takes an oce object as its single input and returns such a data frame or array.

See “Details” for the particular case of oce objects.

Usage

S4 method for signature 'oce'
setFlags(
object,
name = NULL,
i = NULL,
value = NULL,
debug = getOption("oceDebug")

)

Arguments

object An oce object.

name Character string indicating the name of the variable to be flagged. If this variable
is not contained in the object’s data slot, an error is reported.

i Indication of where to insert the flags; see “Description” for general rules and
“Details” for rules for oce objects.

value The value to be inserted in the flag.

debug Integer set to 0 for quiet action or to 1 for some debugging.

Details

This generic function is overridden by specialized functions for some object classes.

shiftLongitude 641

Value

An object with flags set as indicated.

See Also

Other functions relating to data-quality flags: defaultFlags(), handleFlags(), handleFlags,adp-method,
handleFlags,argo-method, handleFlags,ctd-method, handleFlags,oce-method, handleFlags,section-method,
initializeFlagScheme(), initializeFlagScheme,ctd-method, initializeFlagScheme,oce-method,
initializeFlagScheme,section-method, initializeFlagSchemeInternal(), initializeFlags(),
initializeFlags,adp-method, initializeFlags,oce-method, initializeFlagsInternal(),
setFlags(), setFlags,adp-method, setFlags,ctd-method

shiftLongitude Shift Longitude to Range -180 to 180

Description

This is a utility function used by mapGrid(). It works simply by subtracting 180 from each longi-
tude, if any longitude in the vector exceeds 180.

Usage

shiftLongitude(longitudes)

Arguments

longitudes numerical vector of longitudes.

Value

vector of longitudes, shifted to the desired range.

Author(s)

Dan Kelley

See Also

matrixShiftLongitude() and standardizeLongitude().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapPolygon(), mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), usrLonLat(),
utm2lonlat()

642 showMetadataItem

showMetadataItem Show an Item in the metadata Slot of an oce Object

Description

This is a helper function for various summary functions.

Usage

showMetadataItem(
object,
name,
label = "",
postlabel = "",
isdate = FALSE,
quote = FALSE

)

Arguments

object an oce object.

name name of item

label label to print before item

postlabel label to print after item

isdate boolean indicating whether the item is a time

quote boolean indicating whether to enclose the item in quotes

Author(s)

Dan Kelley

Examples

library(oce)
data(ctd)
showMetadataItem(ctd, "ship", "ship")

siderealTime 643

siderealTime Convert From POSIXt Time to Sidereal Time

Description

Convert a POSIXt time to a sidereal time, using the method in Chapter 7 of reference 1. The small
correction that he discusses after his equation 7.1 is not applied here.

Usage

siderealTime(t)

Arguments

t a time, in POSIXt format, e.g. as created by as.POSIXct(), as.POSIXlt(), or
numberAsPOSIXct(). If this is provided, the other arguments are ignored.

Value

A sidereal time, in hours in the range from 0 to 24.

Author(s)

Dan Kelley

References

• Meeus, Jean. Astronomical Formulas for Calculators. Second Edition. Richmond, Virginia,
USA: Willmann-Bell, 1982.

See Also

Other things related to astronomy: angle2hms(), eclipticalToEquatorial(), equatorialToLocalHorizontal(),
julianCenturyAnomaly(), julianDay(), moonAngle(), sunAngle(), sunDeclinationRightAscension()

Examples

t <- ISOdatetime(1978, 11, 13, 0, 0, 0, tz = "UTC")
print(siderealTime(t))

644 snakeToCamel

snakeToCamel Convert From Snake-Case to Camel-Case Notation

Description

snakeToCamel converts "snake-case" characters such as "NOVA_SCOTIA" to "camel-case" values,
such as "NovaScotia". It was written for use by read.argo(), but it also may prove helpful in
other contexts.

Usage

snakeToCamel(s, specialCases = NULL)

Arguments

s A vector of character values.
specialCases A vector of character values that tell which special-cases to apply, or NULL (the

default) to turn off special cases. The only permitted special case at the moment
is "QC" (see “Details”) but the idea of this argument is that other cases can be
added later, if needed.

Details

The basic procedure is to chop the string up into substrings separated by the underline character,
then to upper-case the first letter of all substrings except the first, and then to paste the substrings
together.

However, there are exceptions. First, any upper-case string that contains no underlines is converted
to lower case, but any mixed-case string with no underlines is returned as-is (see the second exam-
ple). Second, if the specialCases argument contains "QC", then the QC is passed through directly
(since it is an acronym) and if the first letter of remaining text is upper-cased (contrast see the four
examples).

Value

A vector of character values

Author(s)

Dan Kelley

Examples

library(oce)
snakeToCamel("PARAMETER_DATA_MODE") # "parameterDataMode"
snakeToCamel("PARAMETER") # "parameter"
snakeToCamel("HISTORY_QCTEST") # "historyQctest"
snakeToCamel("HISTORY_QCTEST", "QC") # "historyQCTest"
snakeToCamel("PROFILE_DOXY_QC") # "profileDoxyQc"
snakeToCamel("PROFILE_DOXY_QC", "QC") # "profileDoxyQC"

standardDepths 645

standardDepths Standard Oceanographic Depths

Description

This returns a vector of numbers that build upon the shorter lists provided in Chapter 10 of reference
1 and the more modern World Ocean Atlases (e.g. reference 2). With the default call, i.e. with n=0,
the result is c(0, 10, 20, 30, 40, 50, 75, 100, 125, 150, 200, 250,seq(300, 1500, by=100),
1750, seq(2000, 10000, by=500)). For higher values of n, progressively more and more values
are added between each pair in this sequence. See the documentation for sectionGrid() for how
standardDepths can be used in gridding data for section plots.

Usage

standardDepths(n = 0)

Arguments

n Integer specifying the number of subdivisions to insert between each of the
stated levels. For exmple, setting n=1 puts a 5m level between the 0 and 10m
levels, and n=2 puts 3.33 and 6.66 between 0 and 10m.

Value

A vector of depths that are more closely spaced for small values, i.e. a finer grid near the ocean
surface.

Author(s)

Dan Kelley

References

1. Sverdrup, H U, Martin W Johnson, and Richard H Fleming. The Oceans, Their Physics,
Chemistry, and General Biology. New York: Prentice-Hall, 1942. https://publishing.cdlib.org/ucpressebooks/view?docId=kt167nb66r

2.Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M.
Zweng, D. R. Johnson, and S. Levitus. “World Ocean Atlas 2009 Temperature.” US Government
printing Office, 2010.

Examples

depth <- standardDepths()
depth1 <- standardDepths(1)
plot(depth, depth)
points(depth1, depth1, col = 2, pch = 20, cex = 1 / 2)

646 subset,adp-method

standardizeLongitude Put Longitude in the Range From -180 to 180

Description

Put Longitude in the Range From -180 to 180

Usage

standardizeLongitude(longitude)

Arguments

longitude in degrees East, possibly exceeding 180

Value

longitude in signed degrees East

See Also

matrixShiftLongitude() and shiftLongitude() are more powerful relatives to standardizeLongitude.

subset,adp-method Subset an adp Object

Description

Subset an adp (acoustic Doppler profile) object, in a manner that is function is somewhat analogous
to subset.data.frame().

Usage

S4 method for signature 'adp'
subset(x, subset, ...)

Arguments

x an adp object.

subset A condition to be applied to the data portion of x. See “Details”.

... Ignored.

Details

For any data type, subsetting can be by time, ensembleNumber, or distance. These may not be
combined, but it is easy to use a string of calls to carry out combined operations, e.g. subset(subset(adp,distance<d0),
time<t0)

subset,adv-method 647

Value

An adp object.

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other functions that subset oce objects: subset,adv-method, subset,amsr-method, subset,argo-method,
subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(adp)
1. Look at first part of time series, organized by time
earlyTime <- subset(adp, time < mean(range(adp[["time"]])))
plot(earlyTime)

2. Look at first ten ensembles (AKA profiles)
en <- adp[["ensembleNumber"]]
firstTen <- subset(adp, ensembleNumber < en[11])
plot(firstTen)

subset,adv-method Subset an adv Object

Description

Subset an adv (acoustic Doppler profile) object. This function is somewhat analogous to subset.data.frame(),
except that subsets can only be specified in terms of time.

Usage

S4 method for signature 'adv'
subset(x, subset, ...)

648 subset,amsr-method

Arguments

x an adv object.

subset a condition to be applied to the data portion of x. See “Details”.

... ignored.

Value

A new adv object.

Author(s)

Dan Kelley

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), summary,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

Other functions that subset oce objects: subset,adp-method, subset,amsr-method, subset,argo-method,
subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(adv)
plot(adv)
plot(subset(adv, time < mean(range(adv[["time"]]))))

subset,amsr-method Subset an amsr Object

Description

Return a subset of a amsr object.

Usage

S4 method for signature 'amsr'
subset(x, subset, ...)

subset,argo-method 649

Arguments

x an amsr object.

subset an expression indicating how to subset x.

... ignored.

Details

This function is used to subset data within an amsr object by longitude or by latitude. These two
methods cannot be combined in a single call, so two calls are required, as shown in the Example.

Value

An amsr object.

Author(s)

Dan Kelley

See Also

Other things related to amsr data: [[,amsr-method, [[<-,amsr-method, amsr, amsr-class, composite,amsr-method,
download.amsr(), plot,amsr-method, read.amsr(), summary,amsr-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,argo-method,
subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(amsr) # see ?amsr for how to read and composite such objects
sub <- subset(amsr, -75 < longitude & longitude < -45)
sub <- subset(sub, 40 < latitude & latitude < 50)
plot(sub)
data(coastlineWorld)
lines(coastlineWorld[["longitude"]], coastlineWorld[["latitude"]])

subset,argo-method Subset an argo Object

Description

Subset an argo object, either by selecting just the "adjusted" data or by subsetting by pressure or
other variables.

650 subset,argo-method

Usage

S4 method for signature 'argo'
subset(x, subset, ...)

Arguments

x an argo object.

subset An expression indicating how to subset x.

... optional arguments, of which only the first is examined. The only possibility is
within, a polygon enclosing data to be retained. This must be either a list or
data frame, containing items named either x and y or longitude and latitude;
see Example 4. If within is given, then subset is ignored.

Details

If subset is the string "adjusted", then subset replaces the station variables with their adjusted
counterparts. In the argo notation, e.g. PSAL is replaced with PSAL_ADJUSTED; in the present nota-
tion, this means that salinity in the data slot is replaced with salinityAdjusted, and the latter
is deleted. Similar replacements are also done with the flags stored in the metadata slot.

If subset is an expression, then the action is somewhat similar to other subset functions, but with
the restriction that only one independent variable may be used in in any call to the function, so that
repeated calls will be necessary to subset based on more than one independent variable. Subsetting
may be done by anything stored in the data, e.g. time, latitude, longitude, profile, dataMode,
or pressure or by profile (a made-up variable), id (from the metadata slot) or ID (a synonym
for id). Note that subsetting by pressure preserves matrix shape, by setting discarded values to
NA, as opposed to dropping data (as is the case with time, for example).

Value

An argo object.

Sample of Usage

Example 2: restrict attention to delayed-mode profiles.
par(mfrow=c(1, 1))
plot(subset(argo, dataMode == "D"))

Example 3: contrast adjusted and unadjusted data
par(mfrow=c(1, 2))
plotTS(argo)
plotTS(subset(argo, "adjusted"))

Example 2. Subset by a polygon determined with locator()
par(mfrow=c(1, 2))
plot(argo, which="map")
Can get a boundary with e.g. locator(4)
boundary <- list(x=c(-65, -40, -40, -65), y=c(65, 65, 45, 45))
argoSubset <- subset(argo, within=boundary)

subset,cm-method 651

plot(argoSubset, which="map")

Author(s)

Dan Kelley

See Also

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoGrid(),
argoNames2oceNames(), as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(),
read.argo.copernicus(), summary,argo-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(argo)

Example 1: subset by time, longitude, and pressure
par(mfrow = c(2, 2))
plot(argo)
plot(subset(argo, time > mean(time)))
plot(subset(argo, longitude > mean(longitude)))
plot(subset(argoGrid(argo), pressure > 500 & pressure < 1000), which = 5)

subset,cm-method Subset a cm Object

Description

This function is somewhat analogous to subset.data.frame().

Usage

S4 method for signature 'cm'
subset(x, subset, ...)

Arguments

x a cm object.

subset a condition to be applied to the data portion of x. See “Details”.

... ignored.

652 subset,coastline-method

Value

A new cm object.

Author(s)

Dan Kelley

See Also

Other things related to cm data: [[,cm-method, [[<-,cm-method, applyMagneticDeclination,cm-method,
as.cm(), cm, cm-class, plot,cm-method, read.cm(), rotateAboutZ(), summary,cm-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(cm)
plot(cm)
plot(subset(cm, time < mean(range(cm[["time"]]))))

subset,coastline-method

Subset a coastline Object

Description

Subsets a coastline object according to limiting values for longitude and latitude.

Usage

S4 method for signature 'coastline'
subset(x, subset, ...)

Arguments

x a coastline object.

subset An expression indicating how to subset x. See “Details”.

... optional additional arguments, the only one of which is considered is one named
debug, an integer that controls the level of debugging. If this is not supplied,
debug is assumed to be 0, meaning no debugging. If it is 1, the steps of deter-
mining the bounding box are shown. If it is 2 or larger, then additional process-
ing steps are shown, including the extraction of every polygon involved in the
final result.

subset,ctd-method 653

Details

As illustrated in the “Examples”, subset must be an expression that indicates limits on latitude
and longitude. The individual elements are provided in R notation, not mathematical notation
(i.e. 30<latitude<60 would not work). Ampersands must be used to combine the limits. The
simplest way to understand this is to copy the example directly, and then modify the stated limits.
Note that > comparison is not permitted, and that < is converted to <= in the calculation. Similarly,
&& is converted to &. Spaces in the expression are ignored. For convenience, longitude and and
latitude may be abbreviated as lon and lat, as in the “Examples”.

Value

A coastline object.

Author(s)

Dan Kelley

See Also

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(),
plot,coastline-method, read.coastline.openstreetmap(), read.coastline.shapefile(),
summary,coastline-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(coastlineWorld)
Subset to a box centred on Nova Scotia, Canada
if (requireNamespace("sf")) {

cl <- subset(coastlineWorld, -80 < lon & lon <- 50 & 30 < lat & lat < 60)
The plot demonstrates that the trimming is as requested.
plot(cl, clon = -65, clat = 45, span = 6000)
rect(-80, 30, -50, 60, bg = "transparent", border = "red")

}

subset,ctd-method Subset a ctd Object

Description

Return a subset of a ctd object.

654 subset,ctd-method

Usage

S4 method for signature 'ctd'
subset(x, subset, ...)

Arguments

x a ctd object.

subset An expression indicating how to subset x.

... optional arguments, of which only the first is examined. The only possibility is
that this argument be named indices. See “Details”.

Details

This function is used to subset data within a ctd object. There are two ways of working. If subset is
supplied, then it is a logical expression that is evaluated within the environment of the data slot of
the object (see Example 1). Alternatively, if the ... list contains an expression defining indices,
then that expression is used to subset each item within the data slot (see Example 2).

Value

A ctd object.

Author(s)

Dan Kelley

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, summary,ctd-method, woceNames2oceNames(),
woceUnit2oceUnit(), write.ctd()

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(ctd)
plot(ctd)
Example 1
plot(subset(ctd, pressure < 10))

subset,echosounder-method 655

Example 2
plot(subset(ctd, indices = 1:10))

subset,echosounder-method

Subset an echosounder Object

Description

This function is somewhat analogous to subset.data.frame(). Subsetting can be by time or
depth, but these may not be combined; use a sequence of calls to subset by both.

Usage

S4 method for signature 'echosounder'
subset(x, subset, ...)

Arguments

x an echosounder object.

subset a condition to be applied to the data portion of x. See “Details”.

... ignored.

Value

An echosounder object.

Author(s)

Dan Kelley

See Also

Other things related to echosounder data: [[,echosounder-method, [[<-,echosounder-method,
as.echosounder(), echosounder, echosounder-class, findBottom(), plot,echosounder-method,
read.echosounder(), summary,echosounder-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,lobo-method,
subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method, subset,sealevel-method,
subset,section-method, subset,topo-method, subset,xbt-method

656 subset,lobo-method

Examples

library(oce)
data(echosounder)
plot(echosounder)
plot(subset(echosounder, depth < 10))
plot(subset(echosounder, time < mean(range(echosounder[["time"]]))))

subset,lobo-method Subset a lobo Object

Description

Subset an lobo object, in a way that is somewhat analogous to subset.data.frame().

Usage

S4 method for signature 'lobo'
subset(x, subset, ...)

Arguments

x a lobo object.

subset a condition to be applied to the data portion of x. See “Details”.

... ignored.

Value

A lobo object.

Author(s)

Dan Kelley

See Also

Other things related to lobo data: [[,lobo-method, [[<-,lobo-method, as.lobo(), lobo, lobo-class,
plot,lobo-method, read.lobo(), summary,lobo-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method, subset,sealevel-method,
subset,section-method, subset,topo-method, subset,xbt-method

subset,met-method 657

subset,met-method Subset a met Object

Description

This function is somewhat analogous to subset.data.frame().

Usage

S4 method for signature 'met'
subset(x, subset, ...)

Arguments

x a met object.

subset An expression indicating how to subset x.

... ignored.

Value

A met object.

Author(s)

Dan Kelley

See Also

Other things related to met data: [[,met-method, [[<-,met-method, as.met(), download.met(),
met, met-class, plot,met-method, read.met(), summary,met-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,oce-method, subset,odf-method, subset,rsk-method, subset,sealevel-method,
subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(met)
Few days surrounding Hurricane Juan
plot(subset(met, time > as.POSIXct("2003-09-27", tz = "UTC")))

658 subset,oce-method

subset,oce-method Subset an oce Object

Description

This is a basic class for general oce objects. It has specialised versions for most sub-classes, e.g.
subset,ctd-method() for ctd objects.

Usage

S4 method for signature 'oce'
subset(x, subset, ...)

Arguments

x an oce object.

subset a logical expression indicating how to take the subset; the form depends on the
sub-class.

... optional arguments, used in some specialized methods, e.g. subset,section-method().

Value

An oce object.

See Also

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,odf-method, subset,rsk-method, subset,sealevel-method,
subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(ctd)
Select just the top 10 metres (pressure less than 10 dbar)
top10 <- subset(ctd, pressure < 10)
par(mfrow = c(1, 2))
plotProfile(ctd)
plotProfile(top10)

subset,odf-method 659

subset,odf-method Subset an odf Object

Description

This function is somewhat analogous to subset.data.frame().

Usage

S4 method for signature 'odf'
subset(x, subset, ...)

Arguments

x an odf object.

subset a condition to be applied to the data portion of x. See “Details”.

... ignored.

Details

It seems likely that users will first convert the odf object into another class (e.g. ctd) and use the
subset method of that class; note that some of those methods interpret the . . . argument.

Value

An odf object.

Author(s)

Dan Kelley

See Also

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
ODFNames2oceNames(), [[,odf-method, [[<-,odf-method, odf-class, plot,odf-method, read.ctd.odf(),
read.odf(), summary,odf-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,rsk-method, subset,sealevel-method,
subset,section-method, subset,topo-method, subset,xbt-method

660 subset,rsk-method

subset,rsk-method Subset a rsk Object

Description

Subset a rsk object. This function is somewhat analogous to subset.data.frame(), but subsetting
is only permitted by time.

Usage

S4 method for signature 'rsk'
subset(x, subset, ...)

Arguments

x an rsk object.

subset a condition to be applied to the data portion of x. See “Details”.

... ignored.

Value

An rsk object.

Author(s)

Dan Kelley

See Also

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(),
plot,rsk-method, read.rsk(), rsk, rsk-class, rskPatm(), rskToc(), summary,rsk-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,sealevel-method,
subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(rsk)
plot(rsk)
plot(subset(rsk, time < mean(range(rsk[["time"]]))))

subset,sealevel-method 661

subset,sealevel-method

Subset a sealevel Object

Description

This function is somewhat analogous to subset.data.frame(), but subsetting is only permitted
by time.

Usage

S4 method for signature 'sealevel'
subset(x, subset, ...)

Arguments

x a sealevel object.

subset a condition to be applied to the data portion of x.

... ignored.

Value

A new sealevel object.

Author(s)

Dan Kelley

See Also

Other things related to sealevel data: [[,sealevel-method, [[<-,sealevel-method, as.sealevel(),
plot,sealevel-method, read.sealevel(), sealevel, sealevel-class, sealevelTuktoyaktuk,
summary,sealevel-method

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,section-method, subset,topo-method, subset,xbt-method

Examples

library(oce)
data(sealevel)
plot(sealevel)
plot(subset(sealevel, time < mean(range(sealevel[["time"]]))))

662 subset,section-method

subset,section-method Subset a section Object

Description

Return a subset of a section object.

Usage

S4 method for signature 'section'
subset(x, subset, ...)

Arguments

x a section object.

subset an optional indication of either the stations to be kept, or the data to be kept
within the stations. See “Details”.

... optional arguments, of which only the first is examined. The possibilities for this
argument are indices, which must be a vector of station indices (see Example
6), or within, which must be a list or data frame, containing items named either
x and y or longitude and latitude (see Example 7). If within is given, then
subset is ignored.

Details

This function is used to subset data within the stations of a section, or to choose a subset of the
stations themselves. The first case is handled with the subset argument, while the second is handled
if ... contains a vector named indices. Either subset or indices must be provided, but not both.

In the "subset" method, subset indicates either stations to be kept, or data to be kept within the
stations.

The first step in processing is to check for the presence of certain key words in the subset expres-
sion. If distance is present, then stations are selected according to a condition on the distance
(in km) from the first station to the given station (Example 1). If either longitude or latitude
is given, then stations are selected according to the stated condition (Example 2). If stationId is
present, then selection is in terms of the station ID (not the sequence number) is used (Example 3).
In all of these cases, stations are either selected in their entirety or dropped in their entirety.

If none of these keywords is present, then the subset expression is evaluated in the context of
the data slot of each of the CTD stations stored within x. (Note that this slot does not normally
contain any of the keywords that are listed in the previous paragraph; it does, then odd results may
occur.) Each station is examined in turn, with subset being evaluated individually in each. The
evaluation produces a logical vector. If that vector has length 1 (Examples 4 and 5) then the station
is retained or discarded, accordingly. If the vector is longer, then the logical vector is used as a sieve
to subsample that individual CTD profile.

In the "indices" method, stations are selected using indices, which may be a vector of integers
that indicate sequence number, or a logical vector, again indicating which stations to keep.

subset,section-method 663

Value

A section object.

Sample of Usage

Example 7. Subset by a polygon determined with locator()
par(mfrow=c(2, 1))
plot(section, which="map")
bdy <- locator(4) # choose a polygon near N. America
GS <- subset(section, within=bdy)
plot(GS, which="map")

Author(s)

Dan Kelley

See Also

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,topo-method, subset,xbt-method

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
read.section(), section, section-class, sectionAddStation(), sectionGrid(), sectionSmooth(),
sectionSort(), summary,section-method

Examples

library(oce)
data(section)

Example 1. Stations within 500 km of the first station
starting <- subset(section, distance < 500)

Example 2. Stations east of 50W
east <- subset(section, longitude > (-50))

Example 3. Gulf Stream
GS <- subset(section, 113 <= stationId & stationId <= 129)

Example 4. Only stations with more than 5 pressure levels
long <- subset(section, length(pressure) > 5)

Example 5. Only stations that have some data in top 50 dbar
surfacing <- subset(section, min(pressure) < 50)

Example 6. Similar to #4, but done in more detailed way
long <- subset(section,

indices = unlist(lapply(

664 subset,topo-method

section[["station"]],
function(s) 5 < length(s[["pressure"]])

))
)

subset,topo-method Subset a topo Object

Description

This function is somewhat analogous to subset.data.frame(). Subsetting can be by time or
distance, but these may not be combined; use a sequence of calls to subset by both.

Usage

S4 method for signature 'topo'
subset(x, subset, ...)

Arguments

x a topo object.

subset A condition to be applied to the data portion of x. See “Details”.

... Ignored.

Value

A new topo object.

Author(s)

Dan Kelley

See Also

Other things related to topo data: [[,topo-method, [[<-,topo-method, as.topo(), download.topo(),
plot,topo-method, read.topo(), summary,topo-method, topo-class, topoInterpolate(),
topoWorld

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,xbt-method

subset,xbt-method 665

Examples

northern hemisphere
library(oce)
data(topoWorld)
plot(subset(topoWorld, latitude > 0))

subset,xbt-method Subset an xbt Object

Description

This function is somewhat analogous to subset.data.frame().

Usage

S4 method for signature 'xbt'
subset(x, subset, ...)

Arguments

x an xbt object.
subset a condition to be applied to the data portion of x. See “Details”.
... ignored.

Value

A new xbt object.

Author(s)

Dan Kelley

See Also

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, as.xbt(), plot,xbt-method,
read.xbt(), read.xbt.noaa1(), summary,xbt-method, xbt, xbt-class, xbt.edf

Other functions that subset oce objects: subset,adp-method, subset,adv-method, subset,amsr-method,
subset,argo-method, subset,cm-method, subset,coastline-method, subset,ctd-method, subset,echosounder-method,
subset,lobo-method, subset,met-method, subset,oce-method, subset,odf-method, subset,rsk-method,
subset,sealevel-method, subset,section-method, subset,topo-method

Examples

library(oce)
data(xbt)
plot(xbt)
plot(subset(xbt, depth < mean(range(xbt[["depth"]]))))

666 subtractBottomVelocity

subtractBottomVelocity

Subtract Bottom Velocity From an adp Object

Description

Subtracts bottom tracking velocities from an "adp" object. Works for all coordinate systems (beam,
xyz, and enu).

Usage

subtractBottomVelocity(x, despike = FALSE, debug = getOption("oceDebug"))

Arguments

x an adp object that contains bottom-tracking velocities.

despike either a logical value or a univariate function. This controls whether the bot-
tom velocity (bv) values should be altered before they are subtracted from the
beam velocities. If it is TRUE then the bv values are despiked first by calling
despike(). If it is a function, then that function is used instead of despike(),
e.g. function(x) despike(x, reference="smooth") would change the ref-
erence function for despiking from its default of "median".

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Author(s)

Dan Kelley and Clark Richards

See Also

See read.adp() for notes on functions relating to "adp" objects, and adp for notes on the ADP
object class.

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, summary,adp-method, toEnu(),
toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

summary,adp-method 667

summary,adp-method Summarize an adp Object

Description

Summarize data in an adp object.

Usage

S4 method for signature 'adp'
summary(object, ...)

Arguments

object an object of class "adp", usually, a result of a call to read.oce(), read.adp.rdi(),
or read.adp.nortek().

... further arguments passed to or from other methods.

Details

Pertinent summary information is presented.

Value

A matrix containing statistics of the elements of the data slot.

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), toEnu(),
toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

668 summary,amsr-method

summary,adv-method Summarize an adv Object

Description

Summarize data in an adv object.

Usage

S4 method for signature 'adv'
summary(object, ...)

Arguments

object an object of class "adv", usually, a result of a call to read.adv().

... further arguments passed to or from other methods.

Author(s)

Dan Kelley

See Also

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, toEnu(), toEnuAdv(), velocityStatistics(),
xyzToEnu(), xyzToEnuAdv()

Examples

library(oce)
data(adv)
summary(adv)

summary,amsr-method Summarize an amsr Object

Description

Print a summary of key components of the object.

Usage

S4 method for signature 'amsr'
summary(object, ...)

summary,argo-method 669

Arguments

object an amsr object.

... ignored.

Author(s)

Dan Kelley

See Also

Other things related to amsr data: [[,amsr-method, [[<-,amsr-method, amsr, amsr-class, composite,amsr-method,
download.amsr(), plot,amsr-method, read.amsr(), subset,amsr-method

summary,argo-method Summarize an argo Object

Description

Summarizes some of the data in an argo object.

Usage

S4 method for signature 'argo'
summary(object, ...)

Arguments

object an object of class "argo", usually, a result of a call to read.argo().

... Further arguments passed to or from other methods.

Details

Pertinent summary information is presented.

Value

A matrix containing statistics of the elements of the data slot.

Author(s)

Dan Kelley

See Also

Other things related to argo data: [[,argo-method, [[<-,argo-method, argo, argo-class, argoGrid(),
argoNames2oceNames(), as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(),
read.argo.copernicus(), subset,argo-method

670 summary,cm-method

Examples

library(oce)
data(argo)
summary(argo)

summary,bremen-method Summarize a bremen Object

Description

Pertinent summary information is presented, including the station name, sampling location, data
ranges, etc.

Usage

S4 method for signature 'bremen'
summary(object, ...)

Arguments

object a bremen object.

... Further arguments passed to or from other methods.

Author(s)

Dan Kelley

See Also

Other things related to bremen data: [[,bremen-method, [[<-,bremen-method, bremen-class,
plot,bremen-method, read.bremen()

summary,cm-method Summarize a cm Object

Description

Summarizes some of the data in a cm object, presenting such information as the station name,
sampling location, data ranges, etc.

Usage

S4 method for signature 'cm'
summary(object, ...)

summary,coastline-method 671

Arguments

object A cm object.

... Further arguments passed to or from other methods.

Author(s)

Dan Kelley

See Also

The documentation for the cm class explains the structure of cm objects, and also outlines the other
functions dealing with them.

Other things related to cm data: [[,cm-method, [[<-,cm-method, applyMagneticDeclination,cm-method,
as.cm(), cm, cm-class, plot,cm-method, read.cm(), rotateAboutZ(), subset,cm-method

Examples

library(oce)
data(cm)
summary(cm)

summary,coastline-method

Summarize a coastline Object

Description

Summarizes coastline length, bounding box, etc.

Usage

S4 method for signature 'coastline'
summary(object, ...)

Arguments

object a coastline object.

... further arguments passed to or from other methods.

Author(s)

Dan Kelley

672 summary,ctd-method

See Also

Other things related to coastline data: [[,coastline-method, [[<-,coastline-method, as.coastline(),
coastline-class, coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(),
plot,coastline-method, read.coastline.openstreetmap(), read.coastline.shapefile(),
subset,coastline-method

summary,ctd-method Summarize a ctd Object

Description

Summarizes some of the data in a ctd object, presenting such information as the station name,
sampling location, data ranges, etc. If the object was read from a .cnv file or a .rsk file, then
the OriginalName column for the data summary will contain the original names of data within the
source file.

Usage

S4 method for signature 'ctd'
summary(object, ...)

Arguments

object a ctd object.
... Further arguments passed to or from other methods.

Author(s)

Dan Kelley

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, woceNames2oceNames(),
woceUnit2oceUnit(), write.ctd()

Examples

library(oce)
data(ctd)
summary(ctd)

summary,echosounder-method 673

summary,echosounder-method

Summarize an echosounder Object

Description

Summarizes some of the data in an echosounder object.

Usage

S4 method for signature 'echosounder'
summary(object, ...)

Arguments

object an object of class "echosounder", usually, a result of a call to read.echosounder(),
read.oce(), or as.echosounder().

... further arguments passed to or from other methods.

Author(s)

Dan Kelley

See Also

Other things related to echosounder data: [[,echosounder-method, [[<-,echosounder-method,
as.echosounder(), echosounder, echosounder-class, findBottom(), plot,echosounder-method,
read.echosounder(), subset,echosounder-method

summary,gps-method Summarize a gps Object

Description

Summarize a gps object.

Usage

S4 method for signature 'gps'
summary(object, ...)

Arguments

object an object of class "gps"

... further arguments passed to or from other methods.

674 summary,ladp-method

Author(s)

Dan Kelley

See Also

Other things related to gps data: [[,gps-method, [[<-,gps-method, as.gps(), gps-class, plot,gps-method,
read.gps()

summary,ladp-method Summarize an ladp Object

Description

Pertinent summary information is presented, including the station name, sampling location, data
ranges, etc.

Usage

S4 method for signature 'ladp'
summary(object, ...)

Arguments

object an ladp object.

... Further arguments passed to or from other methods.

Value

A matrix containing statistics of the elements of the data slot.

Author(s)

Dan Kelley

See Also

Other things related to ladp data: [[,ladp-method, [[<-,ladp-method, as.ladp(), ladp-class,
plot,ladp-method

summary,landsat-method 675

summary,landsat-method

Summarize a landsat Object

Description

Provides a summary of a some information about a landsat object.

Usage

S4 method for signature 'landsat'
summary(object, ...)

Arguments

object A landsat object.

... Ignored.

Author(s)

Dan Kelley

See Also

Other things related to landsat data: [[,landsat-method, [[<-,landsat-method, landsat, landsat-class,
landsatAdd(), landsatTrim(), plot,landsat-method, read.landsat()

summary,lisst-method Summarize a lisst Object

Description

Summarizes some of the data in a lisst object, presenting such information as the station name,
sampling location, data ranges, etc.

Usage

S4 method for signature 'lisst'
summary(object, ...)

Arguments

object a lisst object.

... Ignored.

676 summary,lobo-method

Author(s)

Dan Kelley

See Also

Other things related to lisst data: [[,lisst-method, [[<-,lisst-method, as.lisst(), lisst-class,
plot,lisst-method, read.lisst()

Examples

library(oce)
data(lisst)
summary(lisst)

summary,lobo-method Summarize a lobo Object

Description

Pertinent summary information is presented, including the sampling interval, data ranges, etc.

Usage

S4 method for signature 'lobo'
summary(object, ...)

Arguments

object a lobo object.

... further arguments passed to or from other methods.

Value

A matrix containing statistics of the elements of the data slot.

Author(s)

Dan Kelley

See Also

The documentation for lobo explains the structure of LOBO objects, and also outlines the other
functions dealing with them.

Other things related to lobo data: [[,lobo-method, [[<-,lobo-method, as.lobo(), lobo, lobo-class,
plot,lobo-method, read.lobo(), subset,lobo-method

summary,met-method 677

Examples

library(oce)
data(lobo)
summary(lobo)

summary,met-method Summarize a met Object

Description

Pertinent summary information is presented, including the sampling location, data ranges, etc.

Usage

S4 method for signature 'met'
summary(object, ...)

Arguments

object a met object.

... further arguments passed to or from other methods.

Author(s)

Dan Kelley

See Also

Other things related to met data: [[,met-method, [[<-,met-method, as.met(), download.met(),
met, met-class, plot,met-method, read.met(), subset,met-method

summary,oce-method Summarize an oce Object

Description

Provide a textual summary of some pertinent aspects of the object, including selected components of
its metadata slot, statistical and dimensional information on the entries in the data slot, and a listing
of the contents of its processingLog slot. The details depend on the class of the object, especially
for the metadata slot, so it can help to consult the specialized documentation, e.g. summary,ctd-
method for CTD objects (i.e. objects inheriting from the ctd class.) It is important to note that this
is not a good way to learn the details of the object contents. Instead, for an object named object,
say, one might use str(object) to learn about all the contents, or str(object[["metadata"]])
to learn about the metadata, etc.

678 summary,odf-method

Usage

S4 method for signature 'oce'
summary(object, ...)

Arguments

object The object to be summarized.

... Extra arguments (ignored)

Examples

o <- new("oce")
summary(o)

summary,odf-method Summarize an odf Object

Description

Pertinent summary information is presented, including the station name, sampling location, data
ranges, etc.

Usage

S4 method for signature 'odf'
summary(object, ...)

Arguments

object an odf object.

... further arguments passed to or from other methods.

Value

A matrix containing statistics of the elements of the data slot.

Author(s)

Dan Kelley

See Also

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
ODFNames2oceNames(), [[,odf-method, [[<-,odf-method, odf-class, plot,odf-method, read.ctd.odf(),
read.odf(), subset,odf-method

summary,rsk-method 679

summary,rsk-method Summarize a rsk Object

Description

Summarizes some of the data in a rsk object, presenting such information as the station name,
sampling location, data ranges, etc.

Usage

S4 method for signature 'rsk'
summary(object, ...)

Arguments

object An rsk object.

... Further arguments passed to or from other methods.

Author(s)

Dan Kelley

See Also

The documentation for rsk explains the structure of CTD objects, and also outlines the other func-
tions dealing with them.

Other things related to rsk data: [[,rsk-method, [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(),
plot,rsk-method, read.rsk(), rsk, rsk-class, rskPatm(), rskToc(), subset,rsk-method

Examples

library(oce)
data(rsk)
summary(rsk)

summary,satellite-method

Summarize a satellite Object

Description

Summarize a satellite Object

680 summary,sealevel-method

Usage

S4 method for signature 'satellite'
summary(object, ...)

Arguments

object a satellite object.

... Ignored.

Author(s)

Dan Kelley

summary,sealevel-method

Summarize a sealevel Object

Description

Summarizes some of the data in a sealevel object.

Usage

S4 method for signature 'sealevel'
summary(object, ...)

Arguments

object A sealevel object.

... further arguments passed to or from other methods.

Value

A matrix containing statistics of the elements of the data slot.

Author(s)

Dan Kelley

See Also

Other things related to sealevel data: [[,sealevel-method, [[<-,sealevel-method, as.sealevel(),
plot,sealevel-method, read.sealevel(), sealevel, sealevel-class, sealevelTuktoyaktuk,
subset,sealevel-method

summary,section-method 681

Examples

library(oce)
data(sealevel)
summary(sealevel)

summary,section-method

Summarize a section Object

Description

Pertinent summary information is presented, including station locations, distance along trac, etc.

Usage

S4 method for signature 'section'
summary(object, ...)

Arguments

object An object of class "section", usually, a result of a call to read.section(),
read.oce(), or as.section().

... Further arguments passed to or from other methods.

Value

NULL

Author(s)

Dan Kelley

See Also

Other things related to section data: [[,section-method, [[<-,section-method, as.section(),
handleFlags,section-method, initializeFlagScheme,section-method, plot,section-method,
read.section(), section, section-class, sectionAddStation(), sectionGrid(), sectionSmooth(),
sectionSort(), subset,section-method

Examples

library(oce)
data(section)
summary(section)

682 summary,tidem-method

summary,tidem-method Summarize a tidem Object

Description

By default, all fitted constituents are plotted, but it is quite useful to set e.g. p=0.05 To see just those
constituents that are significant at the 5 percent level. Note that the p values are estimated as the
average of the p values for the sine and cosine components at a given frequency.

Usage

S4 method for signature 'tidem'
summary(object, p = 1, constituent, ...)

Arguments

object an object of class tidem, as created by as.tidem() or tidem().

p optional value of the maximum p value for the display of an individual coeffi-
cient. If not given, all coefficients are shown.

constituent optional character vector holding the names of constituents on which to focus.

... further arguments passed to or from other methods.

Value

NULL

Sample of Usage

library(oce)
data(sealevel)
tide <- tidem(sealevel)
summary(tide)

Author(s)

Dan Kelley

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
predict.tidem(), tidalCurrent, tidedata, tidem, tidem-class, tidemAstron(), tidemVuf(),
webtide()

summary,topo-method 683

summary,topo-method Summarize a topo Object

Description

Pertinent summary information is presented, including the longitude and latitude range, and the
range of elevation.

Usage

S4 method for signature 'topo'
summary(object, ...)

Arguments

object A topo object.

... Further arguments passed to or from other methods.

Value

A matrix containing statistics of the elements of the data slot.

Author(s)

Dan Kelley

See Also

Other things related to topo data: [[,topo-method, [[<-,topo-method, as.topo(), download.topo(),
plot,topo-method, read.topo(), subset,topo-method, topo-class, topoInterpolate(), topoWorld

Examples

library(oce)
data(topoWorld)
summary(topoWorld)

684 summary,xbt-method

summary,windrose-method

Summarize a windrose Object

Description

Summarizes some of the data in a windrose object.

Usage

S4 method for signature 'windrose'
summary(object, ...)

Arguments

object A windrose object.

... Further arguments passed to or from other methods.

Author(s)

Dan Kelley

See Also

Other things related to windrose data: [[,windrose-method, [[<-,windrose-method, as.windrose(),
plot,windrose-method, windrose-class

summary,xbt-method Summarize an xbt Object

Description

Summarizes some of the data in a xbt object.

Usage

S4 method for signature 'xbt'
summary(object, ...)

Arguments

object A xbt object.

... Further arguments passed to or from other methods.

sunAngle 685

Author(s)

Dan Kelley

See Also

The documentation for the xbt class explains the structure of xbt objects, and also outlines the other
functions dealing with them.

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, as.xbt(), plot,xbt-method,
read.xbt(), read.xbt.noaa1(), subset,xbt-method, xbt, xbt-class, xbt.edf

sunAngle Solar Angle as Function of Space and Time

Description

This calculates solar angle, based on a NASA-provided Fortran program, which (according to com-
ments in the code) is in turn based on "The Astronomical Almanac". Note that time may be a
single value or a vector of values; in the latter case, longitude, latitude and useRefraction are
all made to be of the same length as time, by calling rep(). This addresses the case of finding a
time-series of angles at a given spatial location. For other cases of arguments that are not single
values, either call sunAngle() repeatedly or, if that is too slow, use expand.grid() to set up values
of uniform length that are then supplied to sunAngle().

Usage

sunAngle(t, longitude = 0, latitude = 0, useRefraction = FALSE)

Arguments

t time, either a POSIXt object (converted to timezone "UTC", if it is not already in
that timezone), or a value (character or numeric) that can be converted to a time
with as.POSIXct(), assuming the timezone to be "UTC".

longitude observer longitude in degrees east.
latitude observer latitude in degrees north.
useRefraction boolean, set to TRUE to apply a correction for atmospheric refraction.

Value

A list containing the following:

• time the time
• azimuth, in degrees eastward of north, from 0 to 360.
• altitude, in degrees above the horizon, ranging from -90 to 90.
• diameter, solar diameter, in degrees.
• distance to sun, in astronomical units.
• declination angle in degrees, computed with sunDeclinationRightAscension().
• rightAscension angle in degrees, computed with sunDeclinationRightAscension().

686 sunAngle

Author(s)

Dan Kelley

References

Regarding declination and rightAscension, see references in the documentation for sunDeclinationRightAscension().
The other items are based on Fortran code retrieved from the file sunae.f, downloaded from the
ftp site climate1.gsfc.nasa.gov/wiscombe/Solar_Rad/SunAngles on 2009-11-1. Comments
in that code list as references:

Michalsky, J., 1988: The Astronomical Almanac’s algorithm for approximate solar position (1950-
2050), Solar Energy 40, 227-235

The Astronomical Almanac, U.S. Gov’t Printing Office, Washington, D.C. (published every year).

The code comments suggest that the appendix in Michalsky (1988) contains errors, and declares the
use of the following formulae in the 1995 version the Almanac:

• p. A12: approximation to sunrise/set times

• p. B61: solar altitude (AKA elevation) and azimuth

• p. B62: refraction correction

• p. C24: mean longitude, mean anomaly, ecliptic longitude, obliquity of ecliptic, right ascen-
sion, declination, Earth-Sun distance, angular diameter of Sun

• p. L2: Greenwich mean sidereal time (ignoring T^2, T^3 terms)

The code lists authors as Dr. Joe Michalsky and Dr. Lee Harrison (State University of New York),
with modifications by Dr. Warren Wiscombe (NASA Goddard Space Flight Center).

See Also

The corresponding function for the moon is moonAngle().

Other things related to astronomy: angle2hms(), eclipticalToEquatorial(), equatorialToLocalHorizontal(),
julianCenturyAnomaly(), julianDay(), moonAngle(), siderealTime(), sunDeclinationRightAscension()

Examples

rise <- as.POSIXct("2011-03-03 06:49:00", tz = "UTC") + 4 * 3600
set <- as.POSIXct("2011-03-03 18:04:00", tz = "UTC") + 4 * 3600
mismatch <- function(lonlat) {

sunAngle(rise, lonlat[1], lonlat[2])$altitude^2 + sunAngle(set, lonlat[1], lonlat[2])$altitude^2
}
result <- optim(c(1, 1), mismatch)
lonHfx <- (-63.55274)
latHfx <- 44.65
dist <- geodDist(result$par[1], result$par[2], lonHfx, latHfx)
cat(sprintf(

"Infer Halifax latitude %.2f and longitude %.2f; distance mismatch %.0f km",
result$par[2], result$par[1], dist

))

sunDeclinationRightAscension 687

sunDeclinationRightAscension

Sun Declination and Right Ascension

Description

The formulae are from Meeus (1991), chapter 24 (which uses chapter 21).

Usage

sunDeclinationRightAscension(time, apparent = FALSE)

Arguments

time a POSIXct time. This ought to be in UTC timezone; if not, the behaviour of this
function is unlikely to be correct.

apparent logical value indicating whether to return the ’apparent’ angles.

Value

A list containing declination and rightAscension, in degrees.

Author(s)

Dan Kelley, based on formulae in Meeus (1991).

References

• Meeus, Jean. Astronomical Algorithms. Second Edition. Richmond, Virginia, USA: Willmann-
Bell, 1991.

See Also

Other things related to astronomy: angle2hms(), eclipticalToEquatorial(), equatorialToLocalHorizontal(),
julianCenturyAnomaly(), julianDay(), moonAngle(), siderealTime(), sunAngle()

Examples

Example 24.a in Meeus (1991) (page 158 PDF, 153 print)
time <- as.POSIXct("1992-10-13 00:00:00", tz = "UTC")
a <- sunDeclinationRightAscension(time, apparent = TRUE)
stopifnot(abs(a$declination - (-7.78507)) < 0.00004)
stopifnot(abs(a$rightAscension - (-161.61919)) < 0.00003)
b <- sunDeclinationRightAscension(time)
check against previous results, to protect aginst code-drift errors
stopifnot(abs(b$declination - (-7.785464443)) < 0.000000001)
stopifnot(abs(b$rightAscension - (-161.6183305)) < 0.0000001)

688 swAbsoluteSalinity

swAbsoluteSalinity Seawater Absolute Salinity (GSW Formulation)

Description

Compute the seawater Absolute Salinity, according to the GSW/TEOS-10 formulation with gsw::gsw_SA_from_SP()
in the gsw package. Typically, this is a fraction of a unit higher than practical salinity as defined in
the UNESCO formulae.

Usage

swAbsoluteSalinity(
salinity,
pressure = NULL,
longitude = NULL,
latitude = NULL,
debug = getOption("oceDebug")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object (in which case salinity, etc. are inferred from the
object).

pressure pressure in dbar.

longitude longitude of observation.

latitude latitude of observation.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

Absolute Salinity in g/kg.

Author(s)

Dan Kelley

References

McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

https://CRAN.R-project.org/package=gsw

swAlpha 689

See Also

The related TEOS-10 quantity “conservative temperature” may be computed with swConservativeTemperature().
For a ctd object, absolute salinity may also be recovered by indexing as e.g. ctd[["absoluteSalinity"]]
or ctd[["SA"]].

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAlpha(), swAlphaOverBeta(), swBeta(),
swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

swAbsoluteSalinity(35.5, 300, 260, 16) # 35.67136

swAlpha Seawater Thermal Expansion Coefficient

Description

Compute α, the thermal expansion coefficient for seawater.

Usage

swAlpha(
salinity,
temperature = NULL,
pressure = 0,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object (in which case salinity, etc. are inferred from the
object).

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho().

pressure pressure (dbar)
longitude longitude of observation (only used if eos="gsw"; see “Details”).
latitude latitude of observation (only used if eos="gsw"; see “Details”).
eos equation of state, either "unesco" or "gsw".

690 swAlphaOverBeta

Value

Value in 1/degC.

Author(s)

Dan Kelley

References

The eos="unesco" formulae are based on the UNESCO equation of state, but are formulated empir-
ically by Trevor J. McDougall, 1987, Neutral Surfaces, Journal of Physical Oceanography, volume
17, pages 1950-1964. The eos="gsw" formulae come from GSW; see references in the swRho()
documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

swAlphaOverBeta Ratio of Seawater Thermal Expansion Coefficient to Haline Contrac-
tion Coefficient

Description

Compute α/β using McDougall’s (1987) algorithm.

Usage

swAlphaOverBeta(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

swAlphaOverBeta 691

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object (in which case salinity, etc. are inferred from the
object).

temperature in-situ temperature (◦C)

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" or "gsw".

Value

Value in psu/◦C.

Author(s)

Dan Kelley

References

The eos="unesco" formulae are based on the UNESCO equation of state, but are formulated empir-
ically by Trevor J. McDougall, 1987, Neutral Surfaces, Journal of Physical Oceanography, volume
17, pages 1950-1964. The eos="gsw" formulae come from GSW; see references in the swRho()
documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swBeta(),
swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

swAlphaOverBeta(40, 10, 4000, eos = "unesco") # 0.3476

692 swBeta

swBeta Seawater Haline Contraction Coefficient

Description

Compute β, the haline contraction coefficient for seawater.

Usage

swBeta(
salinity,
temperature = NULL,
pressure = 0,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object (in which case salinity, etc. are inferred from the
object).

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho().

pressure seawater pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" or "gsw".

Value

Value in 1/psu.

Author(s)

Dan Kelley

References

The eos="unesco" formulae are based on the UNESCO equation of state, but are formulated empir-
ically by Trevor J. McDougall, 1987, Neutral Surfaces, Journal of Physical Oceanography, volume
17, pages 1950-1964. The eos="gsw" formulae come from GSW; see references in the swRho()
documentation.

swConservativeTemperature 693

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

swConservativeTemperature

Seawater Conservative Temperature (GSW Formulation)

Description

Compute seawater Conservative Temperature, according to the GSW/TEOS-10 formulation.

Usage

swConservativeTemperature(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
debug = getOption("oceDebug")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object (in which case salinity, etc. are inferred from the
object).

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho().

pressure pressure (dbar)

longitude longitude of observation.

latitude latitude of observation.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

694 swCSTp

Details

If the first argument is an oce object, then values for salinity, etc., are extracted from it, and used
for the calculation, and the corresponding arguments to the present function are ignored.

The conservative temperature is calculated using the TEOS-10 function gsw::gsw_CT_from_t from
the gsw package.

Value

Conservative temperature in degrees Celcius.

Author(s)

Dan Kelley

References

McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

See Also

The related TEOS-10 quantity “absolute salinity” may be computed with swAbsoluteSalinity().
For a ctd object, conservative temperature may also be recovered by indexing as e.g. ctd[["conservativeTemperature"]]
or ctd[["CT"]].

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swDepth(), swDynamicHeight(), swLapseRate(), swN2(), swPressure(),
swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(), swSigma2(),
swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(), swSoundSpeed(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

swConservativeTemperature(35, 10, 1000, 188, 4) # 9.86883

swCSTp Electrical Conductivity Ratio From Salinity, Temperature and Pres-
sure

Description

Compute electrical conductivity ratio based on salinity, temperature, and pressure (relative to the
conductivity of seawater with salinity=35, temperature68=15, and pressure=0).

https://CRAN.R-project.org/package=gsw

swCSTp 695

Usage

swCSTp(
salinity,
temperature = 15,
pressure = 0,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity practical salinity, or a CTD object (in which case its temperature and pressure
are used, and the next two arguments are ignored)

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see the examples, as well
as the “Temperature units” section in the documentation for swRho().

pressure pressure (dbar)

eos equation of state, either "unesco" or "gsw".

Details

If eos="unesco", the calculation is done by a bisection root search on the UNESCO formula re-
lating salinity to conductivity, temperature, and pressure (see swSCTp()). If it is "gsw" then the
Gibbs-SeaWater formulation is used, via gsw::gsw_C_from_SP().

Value

Conductivity ratio (unitless), i.e. the ratio of conductivity to the conductivity at salinity=35, tem-
perature=15 (IPTS-68 scale) and pressure=0, which has numerical value 42.9140 mS/cm = 4.29140
S/m (see Culkin and Smith, 1980, in the regression result cited at the bottom of the left-hand column
on page 23).

Author(s)

Dan Kelley

References

1. Fofonoff, P. and R. C. Millard Jr, 1983. Algorithms for computation of fundamental properties
of seawater. Unesco Technical Papers in Marine Science, 44, 53 pp.

2. Culkin, F., and Norman D. Smith, 1980. Determination of the concentration of potassium
chloride solution having the same electrical conductivity, at 15 C and infinite frequency, as
standard seawater of salinity 35.0000 ppt (Chlorinity 19.37394 ppt). IEEE Journal of Oceanic
Engineering, 5, pp 22-23.

See Also

For thermal (as opposed to electrical) conductivity, see swThermalConductivity(). For computa-
tion of salinity from electrical conductivity, see swSCTp().

696 swDepth

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

stopifnot(abs(1.0 - swCSTp(35, T90fromT68(15), 0, eos = "unesco")) < 1e-7)
stopifnot(abs(1.0 - swCSTp(34.25045, T90fromT68(15), 2000, eos = "unesco")) < 1e-7)
stopifnot(abs(1.0 - swCSTp(34.25045, T90fromT68(15), 2000, eos = "gsw")) < 1e-7)

swDepth Water Depth

Description

Retrieve or compute depth below the surface, i.e. a positive number within the water column. If the
first parameter is an oce object that has an element named "depth" in its data slot, then return that
value. Otherwise, compute depth from a formula that includes pressure and latitude, as explained
in “Details”.

Usage

swDepth(
pressure,
latitude = 45,
eos = getOption("oceEOS", default = "gsw"),
debug = getOption("oceDebug")

)

Arguments

pressure either pressure (dbar), in which case latitude must also be given, or a ctd
object, in which case latitude will be inferred from the object.

latitude numeric value for latitude in degrees North.

eos character value indicating the formulation to be used, either "unesco" or "gsw".

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

swDepth 697

Details

For the calculated case, the method depends on the value of eos parameter. If this is "unesco",
then depth is calculated from pressure using Saunders and Fofonoff’s method, with the formula
refitted for 1980 UNESCO equation of state (reference 1). On the other hand, if it is eos="gsw",
then gsw::gsw_z_from_p() from the gsw package (references 2 and 3) is used.

Value

swDepth returns depth below the ocean surface, in metres.

Author(s)

Dan Kelley

References

1. Unesco 1983. Algorithms for computation of fundamental properties of seawater, 1983. Un-
esco Tech. Pap. in Mar. Sci., No. 44, 53 pp.

2. IOC, SCOR, and IAPSO (2010). The international thermodynamic equation of seawater-2010:
Calculation and use of thermodynamic properties. Technical Report 56, Intergovernmental
Oceanographic Commission, Manuals and Guide.

3. McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

d <- swDepth(10, 45)

https://CRAN.R-project.org/package=gsw

698 swDynamicHeight

swDynamicHeight Dynamic Height of a Seawater Profile

Description

Compute the dynamic height of a column of seawater.

Usage

swDynamicHeight(
x,
referencePressure = 2000,
subdivisions = 500,
rel.tol = .Machine$double.eps^0.25,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

x a section object.
referencePressure

reference pressure (dbar). If this exceeds the highest pressure supplied to swDynamicHeight(),
then that highest pressure is used, instead of the supplied value of referencePressure.

subdivisions number of subdivisions for call to integrate(). (The default value is consid-
erably larger than the default for integrate(), because otherwise some test
profiles failed to integrate.

rel.tol absolute tolerance for call to integrate(). Note that this call is made in scaled
coordinates, i.e. pressure is divided by its maximum value, and dz/dp is also
divided by its maximum.

eos equation of state, either "unesco" or "gsw".

Details

If the first argument is a section, then dynamic height is calculated for each station within a section,
and returns a list containing distance along the section along with dynamic height.

If the first argument is a ctd, then this returns just a single value, the dynamic height.

If eos="unesco", processing is as follows. First, a piecewise-linear model of the density variation
with pressure is developed using stats::approxfun(). (The option rule=2 is used to extrapolate
the uppermost density up to the surface, preventing a possible a bias for bottle data, in which the
first depth may be a few metres below the surface.) A second function is constructed as the density
of water with salinity 35PSU, temperature of 0◦C, and pressure as in the ctd. The difference of
the reciprocals of these densities, is then integrated with stats::integrate() with pressure limits
0 to referencePressure. (For improved numerical results, the variables are scaled before the
integration, making both independent and dependent variables be of order one.)

swDynamicHeight 699

If eos="gsw", gsw::gsw_geo_strf_dyn_height() is used to calculate a result in m^2/s^2, and
this is divided by 9.7963m/s2. If pressures are out of order, the data are sorted. If any pressure is
repeated, only the first level is used. If there are under 4 remaining distinct pressures, NA is returned,
with a warning.

Value

In the first form, a list containing distance, the distance (km(from the first station in the section
and height, the dynamic height (m). In the second form, a single value, containing the dynamic
height (m).

Sample of Usage

library(oce)
data(section)

Dynamic height and geostrophy
par(mfcol=c(2, 2))
par(mar=c(4.5, 4.5, 2, 1))

Left-hand column: whole section
(The smoothing lowers Gulf Stream speed greatly)
westToEast <- subset(section, 1<=stationId&stationId<=123)
dh <- swDynamicHeight(westToEast)
plot(dh$distance, dh$height, type="p", xlab="", ylab="dyn. height [m]")
ok <- !is.na(dh$height)
smu <- supsmu(dh$distance, dh$height)
lines(smu, col="blue")
f <- coriolis(section[["station", 1]][["latitude"]])
g <- gravity(section[["station", 1]][["latitude"]])
v <- diff(smu$y)/diff(smu$x) * g / f / 1e3 # 1e3 converts to m
plot(smu$x[-1], v, type="l", col="blue", xlab="distance [km]", ylab="velocity (m/s)")

right-hand column: gulf stream region, unsmoothed
gs <- subset(section, 102<=stationId&stationId<=124)
dh.gs <- swDynamicHeight(gs)
plot(dh.gs$distance, dh.gs$height, type="b", xlab="", ylab="dyn. height [m]")
v <- diff(dh.gs$height)/diff(dh.gs$distance) * g / f / 1e3
plot(dh.gs$distance[-1], v, type="l", col="blue",
xlab="distance [km]", ylab="velocity (m/s)")

Author(s)

Dan Kelley

References

Gill, A.E., 1982. Atmosphere-ocean Dynamics, Academic Press, New York, 662 pp.

700 swLapseRate

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swLapseRate(), swN2(), swPressure(),
swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(), swSigma2(),
swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(), swSoundSpeed(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

swLapseRate Seawater Lapse Rate

Description

Compute adiabatic lapse rate

Usage

swLapseRate(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either salinity (PSU) (in which case temperature and pressure must be pro-
vided) or a ctd object (in which case salinity, temperature and pressure
are determined from the object, and must not be provided in the argument list).

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

Details

If eos="unesco", the density is calculated using the UNESCO equation of state for seawater (ref-
erences 1 and 2), and if eos="gsw", the GSW formulation (references 3 and 4) is used.

swN2 701

Value

Lapse rate (degC/m).

Author(s)

Dan Kelley

References

Fofonoff, P. and R. C. Millard Jr, 1983. Algorithms for computation of fundamental properties of
seawater. Unesco Technical Papers in Marine Science, 44, 53 pp. (Section 7, pages 38-40)

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swN2(),
swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

lr <- swLapseRate(40, 40, 10000) # 3.255976e-4

swN2 Squared Buoyancy Frequency for Seawater

Description

Compute N2, the square of the buoyancy frequency for a seawater profile.

Usage

swN2(
pressure,
sigmaTheta = NULL,
derivs,
df,
debug = getOption("oceDebug"),
...

)

702 swN2

Arguments

pressure either pressure (dbar) (in which case sigmaTheta must be provided) or an object
of class ctd object (in which case sigmaTheta is inferred from the object.

sigmaTheta Surface-referenced potential density minus 1000 (kg/m3).

derivs optional argument to control how the derivative dσθ/dp is calculated. This may
be a character string or a function of two arguments. See “Details”.

df argument passed to smooth.spline() if this function is used for smoothing; set
to NA to prevent smoothing.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

... additional argument, passed to smooth.spline(), in the case that derivs="smoothing".
See “Details”.

Details

Smoothing is often useful prior to computing buoyancy frequency, and so this may optionally be
done with smooth.spline(), unless df=NA, in which case raw data are used. If df is not provided, a
possibly reasonable value computed from an analysis of the profile, based on the number of pressure
levels.

The core of the method involves computing potential density referenced to median pressure, using
the UNESCO-style swSigmaTheta function, and then differentiating this with respect to pressure.
The derivs argument is used to control how this is done, as follows.

• If derivs is not supplied, the action is as though it were given as the string "smoothing"

• If derivs equals "simple", then the derivative of density with respect to pressure is calculated
as the ratio of first-order derivatives of density and pressure, each calculated using diff(). (A
zero is appended at the top level.)

• If derivs equals "smoothing", then the processing depends on the number of data in the pro-
file, and on whether df is given as an optional argument. When the number of points exceeds
4, and when df exceeds 1, smooth.spline() is used to calculate smoothing spline represen-
tation the variation of density as a function of pressure, and derivatives are extracted from the
spline using predict. Otherwise, density is smoothed using smooth(), and derivatives are
calculated as with the "simple" method.

• If derivs is a function taking two arguments (first pressure, then density) then that function
is called directly to calculate the derivative, and no smoothing is done before or after that call.

For precise work, it makes sense to skip swN2 entirely, choosing whether, what, and how to smooth
based on an understanding of fundamental principles as well as data practicalities.

Value

Square of buoyancy frequency (radian2/s2).

swPressure 703

Deprecation Notice

Until 2019 April 11, swN2 had an argument named eos. However, this did not work as stated, unless
the first argument was a ctd object. Besides, the argument name was inherently deceptive, because
the UNESCO scheme does not specify how N2 is to be calculated. Nothing is really lost by making
this change, because the new default is the same as was previously available with the eos="unesco"
setup, and the gsw-formulated estimate of N2 is provided by gsw::gsw_Nsquared() in the gsw
package.

Author(s)

Dan Kelley

See Also

The gsw::gsw_Nsquared() function of the gsw provides an alternative to this, as formulated in
the GSW system. It has a more sophisticated treatment of potential density, but it is based on
simple first-difference derivatives, so its results may require smoothing, depending on the dataset
and purpose of the analysis.

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

library(oce)
data(ctd)
Left panel: density
p <- ctd[["pressure"]]
ylim <- rev(range(p))
par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(2, 0.7, 0))
plot(ctd[["sigmaTheta"]], p, ylim = ylim, type = "l", xlab = expression(sigma[theta]))
Right panel: N2, with default settings (black) and with df=2 (red)
N2 <- swN2(ctd)
plot(N2, p, ylim = ylim, xlab = "N2 [1/s^2]", ylab = "p", type = "l")
lines(swN2(ctd, df = 3), p, col = 2)

swPressure Water Pressure

Description

Compute seawater pressure from depth by inverting swDepth() using uniroot().

https://CRAN.R-project.org/package=gsw
https://CRAN.R-project.org/package=gsw

704 swPressure

Usage

swPressure(depth, latitude = 45, eos = getOption("oceEOS", default = "gsw"))

Arguments

depth distance below the surface in metres.

latitude Latitude in ◦N.

eos indication of formulation to be used, either "unesco" or "gsw".

Details

If eos="unesco" this is done by numerical inversion of swDepth() is done using uniroot(). If
eos="gsw", it is done using gsw::gsw_p_from_z() in the gsw package.

Value

Pressure in dbar.

Author(s)

Dan Kelley

References

Unesco 1983. Algorithms for computation of fundamental properties of seawater, 1983. Unesco
Tech. Pap. in Mar. Sci., No. 44, 53 pp.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(),
swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

swPressure(9712.653, 30, eos = "unesco") # 10000
swPressure(9712.653, 30, eos = "gsw") # 9998.863

https://CRAN.R-project.org/package=gsw

swRho 705

swRho Seawater Density

Description

Compute ρ, the in-situ density of seawater.

Usage

swRho(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw"),
debug = getOption("oceDebug")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)
longitude longitude of observation (only used if eos="gsw"; see “Details”).
latitude latitude of observation (only used if eos="gsw"; see “Details”).
eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3

and 4).
debug an integer specifying whether debugging information is to be printed during the

processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

If eos="unesco", the density is calculated using the UNESCO equation of state for seawater (ref-
erences 1 and 2), and if eos="gsw", the GSW formulation (references 3 and 4) is used.

706 swRho

Value

In-situ density (kg/m3).

Temperature units

The UNESCO formulae are defined in terms of temperature measured on the IPTS-68 scale, whereas
the replacement GSW formulae are based on the ITS-90 scale. Prior to the addition of GSW ca-
pabilities, the various sw* functions took temperature to be in IPTS-68 units. As GSW capabil-
ities were added in early 2015, the assumed unit of temperature was taken to be ITS-90. This
change means that old code has to be modified, by replacing e.g. swRho(S, T, p) with swRho(S,
T90fromT68(T), p). At typical oceanic values, the difference between the two scales is a few
millidegrees.

Author(s)

Dan Kelley

References

1. Fofonoff, P. and R. C. Millard Jr, 1983. Algorithms for computation of fundamental properties
of seawater. Unesco Technical Papers in Marine Science, 44, 53 pp.

2. Gill, A.E., 1982. Atmosphere-ocean Dynamics, Academic Press, New York, 662 pp.

3. IOC, SCOR, and IAPSO (2010). The international thermodynamic equation of seawater-2010:
Calculation and use of thermodynamic properties. Technical Report 56, Intergovernmental
Oceanographic Commission, Manuals and Guide.

4. McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

See Also

Related density routines include swSigma0() (and equivalents at other pressure horizons), swSigmaT(),
and swSigmaTheta().

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(),
swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

library(oce)
The numbers in the comments are the check values listed in reference 1;
note that temperature in that reference was on the T68 scale, but that
the present function works with the ITS-90 scale, so a conversion
is required.

swRrho 707

swRho(35, T90fromT68(5), 0, eos = "unesco") # 1027.67547
swRho(35, T90fromT68(5), 10000, eos = "unesco") # 1069.48914
swRho(35, T90fromT68(25), 0, eos = "unesco") # 1023.34306
swRho(35, T90fromT68(25), 10000, eos = "unesco") # 1062.53817

swRrho Density Ratio

Description

Compute density ratio for a ctd object. An error (perhaps with some hints) is issued for any other
type of object.

Usage

swRrho(
ctd,
sense = c("diffusive", "finger"),
smoothingLength = 10,
df,
eos = getOption("oceEOS", default = "gsw"),
debug = getOption("oceDebug")

)

Arguments

ctd an oce object that holds salinity, temperature, and pressure. If eos is
"gsw", then it must also hold longitude and latitude.

sense an indication of the sense of double diffusion under study and therefore of the
definition of Rrho; see “Details”

smoothingLength

ignored if df supplied, but otherwise the latter is calculated as the number of
data points, divided by the number within a depth interval of smoothingLength
metres.

df if given, this is provided to smooth.spline().

eos equation of state, either "unesco" or "gsw".

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

708 swSCTp

Details

If eos="unesco", the work is done by calculating salinity and potential-temperature derivatives
from smoothing splines whose properties are governed by smoothingLength or df. If sense="diffusive"
the definition is (beta ∗ dS/dz)/(alpha ∗ d(theta)/dz) and the reciprocal for "finger".

If eos="gsw", the work is done by extracting absolute salinity and conservative temperature, smooth-
ing with a smoothing spline as in the "unesco" case, and then calling gsw::gsw_Turner_Rsubrho()
on these smoothed fields. Since the gsw function works on mid-point pressures, approx() is used
to interpolate back to the original pressures.

If the default arguments are acceptable, ctd[["Rrho"]] may be used instead of swRrho(ctd).

Value

Density ratio defined in either the "diffusive" or "finger" sense.

Author(s)

Dan Kelley and Chantelle Layton

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(),
swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

library(oce)
data(ctd)
u <- swRrho(ctd, eos = "unesco")
g <- swRrho(ctd, eos = "gsw")
p <- ctd[["p"]]
plot(u, p, ylim = rev(range(p)), type = "l", xlab = expression(R[rho]))
lines(g, p, lty = 2, col = "red")
legend("topright", lty = 1:2, legend = c("unesco", "gsw"), col = c("black", "red"))

swSCTp Practical Salinity From Electrical Conductivity, Temperature and
Pressure

swSCTp 709

Description

Calculate salinity from what is actually measured by a CTD, i.e. conductivity, in-situ temperature
and pressure. Often this is done by the CTD processing software, but sometimes it is helpful to do
this directly, e.g. when there is a concern about mismatches in sensor response times.

Usage

swSCTp(
conductivity,
temperature = NULL,
pressure = NULL,
conductivityUnit,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

conductivity a measure of conductivity (see also conductivityUnit) or an oce object hold-
ing hydrographic information. In the second case, all the other arguments to
swSCTp are ignored.

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho().

pressure pressure (dbar).
conductivityUnit

string indicating the unit used for conductivity. This may be "ratio" or ""
(meaning conductivity ratio), "mS/cm" or "S/m". Note that the ratio mode as-
sumes that measured conductivity has been divided by the standard conductiv-
ity of 4.2914 S/m. In dealing with unfamiliar data for which the measurement
unit has not been recorded, it can be sensible to try all three possibilities for
conductivityUnit, to see which yields the most sensible salinities.

eos equation of state, either "unesco" or "gsw".

Details

Two variants are provided. First, if eos is "unesco", then salinity is calculated using the UNESCO
algorithm described by Fofonoff and Millard (1983) as in reference 1. Second, if eos is "gsw", then
the Gibbs-SeaWater formulation is used, via gsw::gsw_SP_from_C() in the gsw package. The
latter starts with the same formula as the former, but if this yields a Practical Salinity less than
2, then the result is instead calculated using formulae provided by Hill et al. (1986; reference 2),
modified to match the "unesco" value at Practical salinity equal to 2 (reference 3).

Value

Practical Salinity.

Author(s)

Dan Kelley

https://CRAN.R-project.org/package=gsw

710 swSigma

References

1. Fofonoff, P. and R. C. Millard Jr, 1983. Algorithms for computation of fundamental properties
of seawater. Unesco Technical Papers in Marine Science, 44, 53 pp.

2. K. Hill, T. Dauphinee, and D. Woods. “The Extension of the Practical Salinity Scale 1978
to Low Salinities.” IEEE Journal of Oceanic Engineering 11, no. 1 (January 1986): 109-12.
doi:10.1109/JOE.1986.1145154

3. gsw_from_SP online documentation, available at http://www.teos-10.org/pubs/gsw/html/gsw_C_from_SP.html

See Also

For thermal (as opposed to electrical) conductivity, see swThermalConductivity(). For computa-
tion of electrical conductivity from salinity, see swCSTp().

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(),
swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

1. Demonstrate agreement with test value in UNESCO documents
swSCTp(1, T90fromT68(15), 0, eos = "unesco") # expect 35
2. Demonstrate agreement of gsw and unesco, S>2 case
swSCTp(1, T90fromT68(15), 0, eos = "gsw") # again, expect 35
3. Demonstrate close values even in very brackish water
swSCTp(0.02, 10, 100, eos = "gsw") # 0.6013981
swSCTp(0.02, 10, 100, eos = "unesco") # 0.6011721

swSigma Seawater Density Anomaly

Description

Compute σθ, the density of seawater, minus 1000 kg/m3.

Usage

swSigma(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,

https://doi.org/10.1109/JOE.1986.1145154

swSigma 711

latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

Value

Density anomaly (kg/m3), as computed with swRho(), minus- 1000 kg/m3.

Author(s)

Dan Kelley

References

See citations provided in the swRho() documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma0(), swSigma1(),
swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

712 swSigma0

Examples

library(oce)
swSigma(35, 13, 1000, longitude = 300, latitude = 30, eos = "gsw") # 30.82374
swSigma(35, T90fromT68(13), 1000, eos = "unesco") # 30.8183

swSigma0 Seawater Potential Density Anomaly Referenced to Surface Pressure

Description

Compute the potential density of seawater (minus 1000 kg/m3), referenced to surface pressure.
This is done using gsw::gsw_sigma0() if eos="gsw", or using swSigmaTheta() if it is "unesco".
(The difference between the formulations is typically under 0.01 kg/m^3, corresponding to a few
millidegrees of temperature.)

Usage

swSigma0(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

swSigma1 713

Value

Potential density anomaly (kg/m3).

Author(s)

Dan Kelley

References

See citations provided in the swRho() documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma1(),
swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

swSigma1 Seawater Potential Density Anomaly Referenced to 1000db Pressure

Description

This is analogous to swSigma0(), but referenced to 1000db pressure.

Usage

swSigma1(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

714 swSigma2

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

Value

Potential density anomaly (kg/m3).

Author(s)

Dan Kelley

References

See citations provided in the swRho() documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

swSigma2 Seawater Potential Density Anomaly Referenced to 2000db Pressure

Description

This is analogous to swSigma0(), but referenced to 2000db pressure.

swSigma2 715

Usage

swSigma2(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

Value

Potential density anomaly (kg/m3).

Author(s)

Dan Kelley

References

See citations provided in the swRho() documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),

716 swSigma3

swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

swSigma3 Seawater Potential Density Anomaly Referenced to 3000db Pressure

Description

This is analogous to swSigma0(), but referenced to 3000db pressure.

Usage

swSigma3(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

Value

Potential density anomaly (kg/m3).

Author(s)

Dan Kelley

swSigma4 717

References

See citations provided in the swRho() documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

swSigma4 Seawater Potential Density Anomaly Referenced to 4000db Pressure

Description

This is analogous to swSigma0(), but referenced to 4000db pressure.

Usage

swSigma4(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

718 swSigmaT

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

Value

Potential density anomaly (kg/m3).

Author(s)

Dan Kelley

References

See citations provided in the swRho() documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

swSigmaT Seawater Quasi-Potential Density Anomaly

Description

Compute σt, a rough estimate of potential density of seawater, minus 1000 kg/m3.

Usage

swSigmaT(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

swSigmaT 719

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

Details

If the first argument is an oce object, then salinity, etc., are extracted from it, and used for the
calculation.

Value

Quasi-potential density anomaly (kg/m3), defined as the density calculated with pressure set to zero.

Author(s)

Dan Kelley

References

See citations provided in the swRho() documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

720 swSigmaTheta

Examples

swSigmaT(35, 13, 1000, longitude = 300, latitude = 30, eos = "gsw") # 26.39623
swSigmaT(35, T90fromT68(13), 1000, eos = "unesco") # 26.39354

swSigmaTheta Seawater Potential Density Anomaly

Description

Compute the potential density (minus 1000 kg/m^3) that seawater would have if raised adiabatically
to the surface. In the UNESCO system, this quantity is is denoted σθ (hence the function name), but
in the GSW system, a somewhat related quantity is denoted sigma0. (In a deep-water CTD cast, the
RMS deviation between sigma-theta and sigma0 is typically of order 0.0003 kg/m^3, corresponding
to a temperature shift of about 0.002C, so the distinction between the quantities is not large.)

Usage

swSigmaTheta(
salinity,
temperature = NULL,
pressure = NULL,
referencePressure = 0,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw"),
debug = getOption("oceDebug")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)
referencePressure

The reference pressure, in dbar.

longitude longitude of observation (only used if eos="gsw"; see “Details”).

swSigmaTheta 721

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

If the first argument is an oce object, then salinity, etc., are extracted from it, and used for the
calculation instead of any values provided in the other arguments.

Value

Potential density anomaly (kg/m3), defined as σθ = ρ(S, θ(S, t, p), 0

• 1000 kg/m3.

Author(s)

Dan Kelley

References

See citations provided in the swRho() documentation.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSoundAbsorption(), swSoundSpeed(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

stopifnot(abs(26.4212790994 - swSigmaTheta(35, 13, 1000, eos = "unesco")) < 1e-7)

722 swSoundAbsorption

swSoundAbsorption Seawater Sound Absorption

Description

Compute the sound absorption of seawater, in dB/m

Usage

swSoundAbsorption(
frequency,
salinity,
temperature,
pressure,
pH = 8,
formulation = c("fisher-simmons", "francois-garrison")

)

Arguments

frequency The frequency of sound, in Hz.

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

pH seawater pH

formulation character string indicating the formulation to use, either of "fischer-simmons"
or "francois-garrison"; see “References”.

Details

Salinity and pH are ignored in this formulation. Several formulae may be found in the literature,
and they give results differing by 10 percent, as shown in reference 3 for example. For this reason, it
is likely that more formulations will be added to this function, and entirely possible that the default
may change.

Value

Sound absorption in dB/m.

swSoundSpeed 723

Author(s)

Dan Kelley

References

1. F. H. Fisher and V. P. Simmons, 1977. Sound absorption in sea water. Journal of the Acoustical
Society of America, 62(3), 558-564.

2. R. E. Francois and G. R. Garrison, 1982. Sound absorption based on ocean measurements.
Part II: Boric acid contribution and equation for total absorption. Journal of the Acoustical
Society of America, 72(6):1879-1890.

3. http://resource.npl.co.uk/acoustics/techguides/seaabsorption/

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundSpeed(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

Fisher & Simmons (1977 table IV) gives 0.52 dB/km for 35 PSU, 5 degC, 500 atm
(4990 dbar of water)a and 10 kHz
alpha <- swSoundAbsorption(35, 4, 4990, 10e3)

reproduce part of Fig 8 of Francois and Garrison (1982 Fig 8)
f <- 1e3 * 10^(seq(-1, 3, 0.1)) # in KHz
plot(f / 1000, 1e3 * swSoundAbsorption(f, 35, 10, 0, formulation = "fr"),

xlab = " Freq [kHz]", ylab = " dB/km", type = "l", log = "xy"
)
lines(f / 1000, 1e3 * swSoundAbsorption(f, 0, 10, 0, formulation = "fr"), lty = "dashed")
legend("topleft", lty = c("solid", "dashed"), legend = c("S=35", "S=0"))

swSoundSpeed Seawater Sound Speed

Description

Compute the seawater speed of sound.

724 swSoundSpeed

Usage

swSoundSpeed(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object, in which case salinity, temperature (in the ITS-90
scale; see next item), etc. are inferred from the object, ignoring the other param-
eters, if they are supplied.

temperature in-situ temperature (◦C), defined on the ITS-90 scale. This scale is used by
GSW-style calculation (as requested by setting eos="gsw"), and is the value
contained within ctd objects (and probably most other objects created with data
acquired in the past decade or two). Since the UNESCO-style calculation is
based on IPTS-68, the temperature is converted within the present function, us-
ing T68fromT90().

pressure pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

Details

If eos="unesco", the sound speed is calculated using the formulation in section 9 of Fofonoff and
Millard (1983). If eos="gsw", then the gsw::gsw_sound_speed() function from the gsw package
is used.

Value

Sound speed (m/s).

Author(s)

Dan Kelley

References

Fofonoff, P. and R. C. Millard Jr, 1983. Algorithms for computation of fundamental properties of
seawater. Unesco Technical Papers in Marine Science, 44, 53 pp. (See section 9.)

https://CRAN.R-project.org/package=gsw

swSpecificHeat 725

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

swSoundSpeed(40, T90fromT68(40), 10000) # 1731.995 (p48 of Fofonoff + Millard 1983)

swSpecificHeat Seawater Specific Heat

Description

Compute specific heat of seawater.

Usage

swSpecificHeat(
salinity,
temperature = NULL,
pressure = 0,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity either practical salinity (in which case temperature and pressure must be pro-
vided) or an oce object (in which case salinity, etc. are inferred from the
object).

temperature in-situ temperature (◦C), defined on the ITS-90 scale.
pressure seawater pressure (dbar)
longitude longitude of observation (only used if eos="gsw"; see “Details”).
latitude latitude of observation (only used if eos="gsw"; see “Details”).
eos equation of state, either "unesco" or "gsw".

Details

If the first argument is a ctd object, then salinity, etc, are extracted from it, and used for the calcu-
lation.

726 swSpice

Value

Specific heat (J/kg/degC).

Author(s)

Dan Kelley

References

Millero et. al., J. Geophys. Res. 78 (1973), 4499-4507

Millero et. al., UNESCO report 38 (1981), 99-188.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

swSpecificHeat(40, T90fromT68(40), 10000, eos = "unesco") # 3949.499

swSpice Seawater Spiciness

Description

Compute seawater "spice", a variable that is in some sense orthogonal to density in TS space. Larger
spice values correspond to relative warm and salty water, compared with smaller spice values. Two
distinct variants exist. If eos="unesco" then Flament’s (2002) formulation is used. If eos="gsw"
then gsw::gsw_spiciness0() is used to compute a newer variant that is part of the Gibbs SeaWater
formulation (McDougall and Krzysik, 2015). See the “Examples” section for a graphical illustration
of the difference in a typical coastal case.

Usage

swSpice(
salinity,
temperature = NULL,
pressure = NULL,
longitude = NULL,
latitude = NULL,

swSpice 727

eos = getOption("oceEOS", default = "gsw"),
debug = getOption("oceDebug")

)

Arguments

salinity either salinity (PSU) (in which case temperature and pressure must be pro-
vided) or a ctd object (in which case salinity, temperature and pressure
are determined from the object, and must not be provided in the argument list).

temperature in-situ temperature (◦C) on the ITS-90 scale; see “Temperature units” in the
documentation for swRho().

pressure Seawater pressure (dbar) (only used if eos is "gsw"); see “Details”..

longitude longitude of observation (only used if eos is "gsw"; see “Details”).

latitude latitude of observation (only used if eos is "gsw"; see “Details”).

eos Character value specifying the equation of state, either "unesco" (for the Fla-
ment formulation, although this is not actually part of UNESCO) or "gsw" for
the Gibbs SeaWater formulation.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

If the first argument is a ctd object, then salinity, temperature and pressure values are extracted from
it, and used for the calculation. For the eos="gsw" case, longitude and latitude are also extracted,
because these are required by gsw::gsw_spiciness0().

Roughly speaking, seawater with a high spiciness is relatively warm and salty compared with less
spicy water. Another interpretation is that spice is a variable measuring distance orthogonal to
isopycnal lines on TS diagrams (if the diagrams are scaled to make the isopycnals run at 45 degrees).
Note that pressure, longitude and latitude are all ignored in the Flament definition.

Value

Flament-formulated spice kg/m3 if eos is "unesco" or surface-referenced GSW spiciness0 kg/m3

if eos is "gsw", the latter provided by gsw::gsw_spiciness0(), and hence aimed at application
within the top half-kilometre of the ocean.

Author(s)

Dan Kelley coded this, merely an interface to the code described by references 1 and 2.

728 swSpiciness0

References

1. Flament, P. “A State Variable for Characterizing Water Masses and Their Diffusive Stability:
Spiciness.” Progress in Oceanography, Observations of the 1997-98 El Nino along the West
Coast of North America, 54, no. 1 (July 1, 2002):493-501. doi:10.1016/S00796611(02)00065-
4

2. McDougall, Trevor J., and Oliver A. Krzysik. “Spiciness.” Journal of Marine Research 73,
no. 5 (September 1, 2015): 141-52.

See Also

Other functions that calculate seawater spiciness: swSpiciness0(), swSpiciness1(), swSpiciness2()

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

Compare unesco and gsw formulations
library(oce)
data(ctd)
p <- ctd[["pressure"]]
U <- swSpice(ctd, eos = "unesco")
G <- swSpice(ctd, eos = "gsw")
xlim <- range(c(U, G), na.rm = TRUE)
ylim <- rev(range(p))
plot(U, p,

xlim = xlim, ylim = ylim,
xlab = "Measure of Spiciness", ylab = "Pressure (dbar)"

)
points(G, p, col = 2)
legend("topleft", col = 1:2, pch = 1, legend = c("unesco", "gsw"))

swSpiciness0 Spiciness in gsw System, Referenced to Surface Pressure

Description

Computes seawater spiciness using gsw::gsw_spiciness0() for surface referenced computation.

Usage

swSpiciness0(salinity, temperature, pressure, longitude, latitude)

https://doi.org/10.1016/S0079-6611%2802%2900065-4
https://doi.org/10.1016/S0079-6611%2802%2900065-4

swSpiciness1 729

Arguments

salinity either salinity, or an oce object that contains salinity, temperature, pressure, lon-
gitude and latitude.

temperature in-situ temperature (ignored if salinity is an oce object)

pressure seawater pressure in dbar (ignored if salinity is an oce object)
longitude, latitude

observation location (ignored if salinity is an oce object).

Value

seawater spiciness with respect to a reference pressure of 0 dbar (that is, the sea surface), as defined
in the gsw (TEOS-10) system (McDougall et al, 2011).

Author(s)

Dan Kelley

References

McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

See Also

Other functions that calculate seawater spiciness: swSpice(), swSpiciness1(), swSpiciness2()

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

swSpiciness1 Spiciness in gsw System, Referenced to 1000 dbar Pressure

Description

Computes seawater spiciness using gsw::gsw_spiciness1() for a reference pressure of 1000 dbar.

Usage

swSpiciness1(salinity, temperature, pressure, longitude, latitude)

730 swSpiciness2

Arguments

salinity either salinity, or an oce object that contains salinity, temperature, pressure, lon-
gitude and latitude.

temperature in-situ temperature (ignored if salinity is an oce object)

pressure seawater pressure in dbar (ignored if salinity is an oce object)
longitude, latitude

observation location (ignored if salinity is an oce object).

Value

seawater spiciness with respect to a reference pressure of 1000 dbar, as defined in the gsw (TEOS-
10) system (McDougall et al, 2011) and computed with gsw::gsw_spiciness1().

Author(s)

Dan Kelley

References

McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

See Also

Other functions that calculate seawater spiciness: swSpice(), swSpiciness0(), swSpiciness2()

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

swSpiciness2 Spiciness in gsw System, Referenced to 2000 dbar Pressure

Description

Computes seawater spiciness using gsw::gsw_spiciness2() for a reference pressure of 2000 dbar.

Usage

swSpiciness2(salinity, temperature, pressure, longitude, latitude)

swSR 731

Arguments

salinity either salinity, or an oce object that contains salinity, temperature, pressure, lon-
gitude and latitude.

temperature in-situ temperature (ignored if salinity is an oce object)

pressure seawater pressure in dbar (ignored if salinity is an oce object)
longitude, latitude

observation location (ignored if salinity is an oce object).

Value

seawater spiciness with respect to a reference pressure of 2000 dbar, as defined in the gsw (TEOS-
10) system (McDougall et al, 2011) and computed with gsw::gsw_spiciness2().

Author(s)

Dan Kelley

References

McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

See Also

Other functions that calculate seawater spiciness: swSpice(), swSpiciness0(), swSpiciness1()

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

swSR Seawater Reference Salinity (GSW Formulation)

Description

Compute seawater Reference Salinity (SR), according to the GSW/TEOS-10 formulation with
gsw::gsw_SR_from_SP() in the gsw package.

Usage

swSR(salinity)

https://CRAN.R-project.org/package=gsw

732 swSstar

Arguments

salinity either practical salinity or an oce object that holds salinity in its data slot.

Value

Reference Salinity, SR, in g/kg.

Author(s)

Dan Kelley

References

McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

See Also

For some objects, SR may also be recovered by indexing as e.g. ctd[["SR"]].

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

SR <- swSR(35.0) # 35.16504

swSstar Seawater Preformed Salinity (GSW Formulation)

Description

Compute seawater Preformed Salinity (S*), according to the GSW/TEOS-10 formulation with
gsw::gsw_Sstar_from_SA() in the gsw package.

Usage

swSstar(salinity, pressure = NULL, longitude = NULL, latitude = NULL)

https://CRAN.R-project.org/package=gsw

swSTrho 733

Arguments

salinity either practical salinity (in which case pressure must be provided) or an oce
object with salinity and pressure in its data slot, and with longitude and
latitude either there, or in the metadata slot.

pressure pressure in dbar.

longitude longitude of observation.

latitude latitude of observation.

Value

Preformed Salinity, S*, in g/kg.

Author(s)

Dan Kelley

References

McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

See Also

For some objects, S-star may also be recovered by indexing as e.g. ctd[["Sstar"]].

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

swSstar(35.5, 300, 260, 16) # 35.66601

swSTrho Seawater Salinity From Temperature and Density

Description

Compute Practical or Absolute Salinity, given in-situ or Conservative Temperature, density, and
pressure. This is mainly used to draw isopycnal lines on TS diagrams, hence the dual meanings for
salinity and temperature, depending on the value of eos.

734 swSTrho

Usage

swSTrho(
temperature,
density,
pressure,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho().

density in-situ density or sigma value (kg/m3)

pressure in-situ pressure (dbar)

eos equation of state, either "unesco" (see references 1 and 2) or "gsw" (see refer-
ences 3 and 4).

Details

For eos="unesco", finds the practical salinity that yields the given density, with the given in-situ
temperature and pressure. The method is a bisection search with a salinity tolerance of 0.001. For
eos="gsw", the function gsw::gsw_SA_from_rho() in the gsw package is used to infer Absolute
Salinity from Conservative Temperature.

Value

Practical Salinity, if eos="unesco", or Absolute Salinity, if eos="gsw".

Author(s)

Dan Kelley

References

1. Fofonoff, P. and R. C. Millard Jr, 1983. Algorithms for computation of fundamental properties
of seawater. Unesco Technical Papers in Marine Science, 44, 53 pp

2. Gill, A.E., 1982. Atmosphere-ocean Dynamics, Academic Press, New York, 662 pp.

3. IOC, SCOR, and IAPSO (2010). The international thermodynamic equation of seawater-2010:
Calculation and use of thermodynamic properties. Technical Report 56, Intergovernmental
Oceanographic Commission, Manuals and Guide.

4. McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

https://CRAN.R-project.org/package=gsw

swTFreeze 735

See Also

swTSrho()

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSigma(), swSigma0(), swSigma1(),
swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(),
swZ()

Examples

swSTrho(10, 22, 0, eos = "gsw") # 28.76285
swSTrho(10, 22, 0, eos = "unesco") # 28.651625

swTFreeze Seawater Freezing Temperature

Description

Compute in-situ freezing temperature of seawater, using either the UNESCO formulation (com-
puted as in Section 5 of Fofonoff and Millard, 1983) or the GSW formulation (computed by using
gsw::gsw_SA_from_SP() to get Absolute Salinity, and then gsw::gsw_t_freezing() to get the
freezing temperature).

Usage

swTFreeze(
salinity,
pressure = NULL,
longitude = NULL,
latitude = NULL,
saturation_fraction = 1,
eos = getOption("oceEOS", default = "gsw")

)

Arguments

salinity Either practical salinity (PSU) or a ctd object from which practical salinity and
pressure (plus in the eos="gsw" case, longitude and latitude) are inferred.

pressure Seawater pressure (dbar).

longitude Longitude of observation (only used if eos="gsw"; see “Details”).

latitude Latitude of observation (only used if eos="gsw"; see “Details”).

736 swTFreeze

saturation_fraction

The saturation fraction of dissolved air in seawater, ignored if eos="unesco").

eos The equation of state, either "unesco" (Fofonoff and Millard, 1983; Gill 1982)
or "gsw" (IOC, SCOR and IAPSO 2010; McDougall and Barker 2011).

Details

If the first argument is an oce object, and if the pressure argument is NULL, then the pressure is
sought within the first argument. In the case of eos="gsw", then a similar procedure also applies to
the longitude and latitude arguments.

Value

Temperature (degC), defined on the ITS-90 scale.

Author(s)

Dan Kelley

References

Fofonoff, N. P., and R. C. Millard. Algorithms for Computation of Fundamental Properties of
Seawater. UNESCO Technical Papers in Marine Research. SCOR working group on Evaluation
of CTD data; UNESCO/ICES/SCOR/IAPSO Joint Panel on Oceanographic Tables and Standards,
1983.

Gill, A E. Atmosphere-Ocean Dynamics. New York, NY, USA: Academic Press, 1982.

IOC, SCOR, and IAPSO (2010). The international thermodynamic equation of seawater-2010:
Calculation and use of thermodynamic properties. Technical Report 56, Intergovernmental Oceano-
graphic Commission, Manuals and Guide, 2010.

McDougall, Trevor J., and Paul M. Barker. Getting Started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 2011.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

1. Test for a check-value given in reference 1. This value, -2.588567 degC,
is in the 1968 temperature scale (IPTS-68), but swTFreeze reports
in the newer ITS-90 scale, so we must convert before checking.
Tcheck <- -2.588567 # IPTS-68
T <- swTFreeze(salinity = 40, pressure = 500, eos = "unesco")

swThermalConductivity 737

stopifnot(abs(Tcheck - T68fromT90(T)) < 1e-6)

2. Compare unesco and gsw formulations.
data(ctd)
p <- ctd[["pressure"]]
par(mfrow = c(1, 2), mar = c(3, 3, 1, 2), mgp = c(2, 0.7, 0))
plot(swTFreeze(ctd, eos = "unesco"),

p,
xlab = "unesco", ylim = rev(range(p))

)
plot(swTFreeze(ctd, eos = "unesco") - swTFreeze(ctd, eos = "gsw"),

p,
xlab = "unesco-gsw", ylim = rev(range(p))

)

swThermalConductivity Seawater Thermal Conductivity

Description

Compute seawater thermal conductivity, in Wm−1◦C−1

Usage

swThermalConductivity(salinity, temperature = NULL, pressure = NULL)

Arguments

salinity salinity (PSU), or a ctd object, in which case temperature and pressure will
be ignored.

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho().

pressure pressure (dbar)

Details

Caldwell’s (1974) detailed formulation is used. To be specific, his equation 6 to calculate K, and his
two sentences above that equation are used to infer this to be K(0,T,S) in his notation of equation 7.
Then, application of his equations 7 and 8 is straightforward. He states an accuracy for this method
of 0.3 percent. (See the check against his Table 1 in the “Examples”.)

Value

Conductivity of seawater in Wm−1◦C−1. To calculate thermal diffusivity in m2/s2, divide by the
product of density and specific heat, as in the example.

738 swTheta

Author(s)

Dan Kelley

References

Caldwell, Douglas R., 1974. Thermal conductivity of seawater, Deep-sea Research, 21, 131-137.

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swTheta(), swViscosity(), swZ()

Examples

library(oce)
Values in m^2/s, a unit that is often used instead of W/(m*degC).
swThermalConductivity(35, 10, 100) / (swRho(35, 10, 100) * swSpecificHeat(35, 10, 100)) # ocean
swThermalConductivity(0, 20, 0) / (swRho(0, 20, 0) * swSpecificHeat(0, 20, 0)) # lab
Caldwell Table 1 gives 1478e-6 cal/(cm*sec*degC) at 31.5 o/oo, 10degC, 1kbar
joulePerCalorie <- 4.18400
cmPerM <- 100
swThermalConductivity(31.5, 10, 1000) / joulePerCalorie / cmPerM

swTheta Seawater Potential Temperature (UNESCO Version)

Description

Compute the potential temperature of seawater, denoted θ in the UNESCO system, and pt in the
GSW system.

Usage

swTheta(
salinity,
temperature = NULL,
pressure = NULL,
referencePressure = 0,
longitude = NULL,
latitude = NULL,
eos = getOption("oceEOS", default = "gsw"),
debug = getOption("oceDebug")

)

swTheta 739

Arguments

salinity either salinity (PSU) (in which case temperature and pressure must be pro-
vided) or an oce object (in which case salinity, etc. are inferred from the
object).

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho(), and the examples below.

pressure pressure (dbar)
referencePressure

reference pressure (dbar)

longitude longitude of observation (only used if eos="gsw"; see “Details”).

latitude latitude of observation (only used if eos="gsw"; see “Details”).

eos equation of state, either "unesco" (references 1 and 2) or "gsw" (references 3
and 4).

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

Different formulae are used depending on the equation of state. If eos is "unesco", the method of
Fofonoff et al. (1983) is used (see references 1 and 2). Otherwise, swTheta uses gsw::gsw_pt_from_t()
from the gsw package.

If the first argument is a ctd or section object, then values for salinity, etc., are extracted from it,
and used for the calculation, and the corresponding arguments to the present function are ignored.

Value

Potential temperature (◦C) of seawater, referenced to pressure referencePressure.

Author(s)

Dan Kelley

References

1. Fofonoff, P. and R. C. Millard Jr, 1983. Algorithms for computation of fundamental properties
of seawater. Unesco Technical Papers in Marine Science, 44, 53 pp

2. Gill, A.E., 1982. Atmosphere-ocean Dynamics, Academic Press, New York, 662 pp.

3. IOC, SCOR, and IAPSO (2010). The international thermodynamic equation of seawater-2010:
Calculation and use of thermodynamic properties. Technical Report 56, Intergovernmental
Oceanographic Commission, Manuals and Guide.

4. McDougall, T.J. and P.M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater
(GSW) Oceanographic Toolbox, 28pp., SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.

https://CRAN.R-project.org/package=gsw

740 swTSrho

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swViscosity(), swZ()

Examples

library(oce)
Example 1: test value from Fofonoff et al., 1983
stopifnot(abs(36.8818748026 - swTheta(40, T90fromT68(40), 10000, 0, eos = "unesco")) < 0.0000000001)

Example 2: a deep-water station. Note that theta and CT are
visually identical on this scale.
data(section)
stn <- section[["station", 70]]
plotProfile(stn, "temperature", ylim = c(6000, 1000))
lines(stn[["theta"]], stn[["pressure"]], col = 2)
lines(stn[["CT"]], stn[["pressure"]], col = 4, lty = 2)
legend("bottomright",

lwd = 1, col = c(1, 2, 4), lty = c(1, 1, 2),
legend = c("in-situ", "theta", "CT"),
title = sprintf("MAD(theta-CT)=%.4f", mean(abs(stn[["theta"]] - stn[["CT"]])))

)

swTSrho Seawater Temperature from Salinity and Density

Description

Compute in-situ temperature, given salinity, density, and pressure.

Usage

swTSrho(
salinity,
density,
pressure = NULL,
eos = getOption("oceEOS", default = "gsw")

)

swTSrho 741

Arguments

salinity in-situ salinity (PSU)

density in-situ density or sigma value (kg/m3)

pressure in-situ pressure (dbar)

eos equation of state to be used, either "unesco" or "gsw" (ignored at present).

Details

Finds the temperature that yields the given density, with the given salinity and pressure. The method
is a bisection search with temperature tolerance 0.001 ◦C.

Value

In-situ temperature in ◦C on the ITS-90 scale.

Author(s)

Dan Kelley

References

Fofonoff, P. and R. C. Millard Jr, 1983. Algorithms for computation of fundamental properties of
seawater. Unesco Technical Papers in Marine Science, 44, 53 pp

Gill, A.E., 1982. Atmosphere-ocean Dynamics, Academic Press, New York, 662 pp.

See Also

swSTrho()

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

swTSrho(35, 23, 0, eos = "unesco") # 26.11301

742 swViscosity

swViscosity Seawater Viscosity

Description

Compute viscosity of seawater, in Pa · s

Usage

swViscosity(salinity, temperature)

Arguments

salinity either salinity (PSU) (in which case temperature and pressure must be pro-
vided) or a ctd object (in which case salinity, temperature and pressure
are determined from the object, and must not be provided in the argument list).

temperature in-situ temperature (◦C), defined on the ITS-90 scale; see “Temperature units”
in the documentation for swRho(), and the examples below.

Details

If the first argument is a ctd object, then salinity, temperature and pressure values are extracted
from it, and used for the calculation.

The result is determined from a regression of the data provided in Table 87 of Dorsey (1940). The
fit matches the table to within 0.2 percent at worst, and with average absolute error of 0.07 percent.
The maximum deviation from the table is one unit in the last decimal place.

No pressure dependence was reported by Dorsey (1940).

Value

Viscosity of seawater in Pa · s. Divide by density to get kinematic viscosity in m2/s.

Author(s)

Dan Kelley

References

N. Ernest Dorsey (1940), Properties of ordinary Water-substance, American Chemical Society
Monograph Series. Reinhold Publishing.

swZ 743

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swZ()

Examples

swViscosity(30, 10) # 0.001383779

swZ Vertical Coordinate

Description

Compute height above the surface. This is the negative of depth, and so is defined simply in terms
of swDepth().

Usage

swZ(
pressure,
latitude = 45,
eos = getOption("oceEOS", default = "gsw"),
debug = getOption("oceDebug")

)

Arguments

pressure either pressure (dbar), in which case latitude must also be given, or a ctd
object, in which case latitude will be inferred from the object.

latitude numeric value for latitude in degrees North.

eos character value indicating the formulation to be used, either "unesco" or "gsw".

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

744 T68fromT90

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), T90fromT68(),
computableWaterProperties(), locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(),
swBeta(), swCSTp(), swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(),
swN2(), swPressure(), swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(),
swSigma1(), swSigma2(), swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(),
swSoundSpeed(), swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(),
swSstar(), swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity()

T68fromT90 Convert From ITS-90 to IPTS-68 Temperature

Description

Today’s instruments typically record in the ITS-90 scale, but some old datasets will be in the IPTS-
68 scale. T90fromT68() converts from the IPTS-68 to the ITS-90 scale, using Saunders’ (1990)
formula, while T68fromT90() does the reverse. The difference between IPTS-68 and ITS-90 values
is typically a few millidegrees (see ‘Examples’), which is seldom visible on a typical temperature
profile, but may be of interest in some precise work. Mostly for historical interest, T90fromT48()
is provided to convert from the ITS-48 system to ITS-90.

Usage

T68fromT90(temperature)

Arguments

temperature numeric vector of temperatures]in ◦C on the ITS-90 scale.

Value

Corresponding temperatures in ◦C on the IPTS-68 scale.

Author(s)

Dan Kelley

References

P. M. Saunders, 1990. The international temperature scale of 1990, ITS-90. WOCE Newsletter, vol-
ume 10, September 1990, page 10. http://www.nodc.noaa.gov/woce/wdiu/wocedocs/newsltr/news10/contents.htm

T90fromT48 745

See Also

Other functions that calculate seawater properties: T90fromT48(), T90fromT68(), computableWaterProperties(),
locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(), swBeta(), swCSTp(),
swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(), swN2(), swPressure(),
swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(), swSigma2(),
swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(), swSoundSpeed(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

library(oce)
T68 <- seq(3, 20, 1)
T90 <- T90fromT68(T68)
sqrt(mean((T68-T90)^2))

T90fromT48 Convert From ITS-48 to ITS-90 Temperature

Description

Today’s instruments typically record in the ITS-90 scale, but some old datasets will be in the IPTS-
68 scale. T90fromT68() converts from the IPTS-68 to the ITS-90 scale, using Saunders’ (1990)
formula, while T68fromT90() does the reverse. The difference between IPTS-68 and ITS-90 values
is typically a few millidegrees (see ‘Examples’), which is seldom visible on a typical temperature
profile, but may be of interest in some precise work. Mostly for historical interest, T90fromT48()
is provided to convert from the ITS-48 system to ITS-90.

Usage

T90fromT48(temperature)

Arguments

temperature Vector of temperatures in ◦C on the IPTS-48 scale.

Value

Corresponding temperatures in ◦C on the ITS-90 scale.

Author(s)

Dan Kelley

References

P. M. Saunders, 1990. The international temperature scale of 1990, ITS-90. WOCE Newsletter, vol-
ume 10, September 1990, page 10. http://www.nodc.noaa.gov/woce/wdiu/wocedocs/newsltr/news10/contents.htm

746 T90fromT68

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT68(), computableWaterProperties(),
locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(), swBeta(), swCSTp(),
swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(), swN2(), swPressure(),
swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(), swSigma2(),
swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(), swSoundSpeed(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

library(oce)
T68 <- seq(3, 20, 1)
T90 <- T90fromT68(T68)
sqrt(mean((T68-T90)^2))

T90fromT68 Convert From IPTS-68 to ITS-90 Temperature

Description

Today’s instruments typically record in the ITS-90 scale, but some old datasets will be in the IPTS-
68 scale. T90fromT68() converts from the IPTS-68 to the ITS-90 scale, using Saunders’ (1990)
formula, while T68fromT90() does the reverse. The difference between IPTS-68 and ITS-90 values
is typically a few millidegrees (see ‘Examples’), which is seldom visible on a typical temperature
profile, but may be of interest in some precise work. Mostly for historical interest, T90fromT48()
is provided to convert from the ITS-48 system to ITS-90.

Usage

T90fromT68(temperature)

Arguments

temperature numeric vector of temperatures in ◦C on the IPTS-68 scale.

Value

Corresponding temperatures in ◦C on the ITS-90 scale.

Author(s)

Dan Kelley

References

P. M. Saunders, 1990. The international temperature scale of 1990, ITS-90. WOCE Newsletter, vol-
ume 10, September 1990, page 10. http://www.nodc.noaa.gov/woce/wdiu/wocedocs/newsltr/news10/contents.htm

tail.oce 747

See Also

Other functions that calculate seawater properties: T68fromT90(), T90fromT48(), computableWaterProperties(),
locationForGsw(), swAbsoluteSalinity(), swAlpha(), swAlphaOverBeta(), swBeta(), swCSTp(),
swConservativeTemperature(), swDepth(), swDynamicHeight(), swLapseRate(), swN2(), swPressure(),
swRho(), swRrho(), swSCTp(), swSR(), swSTrho(), swSigma(), swSigma0(), swSigma1(), swSigma2(),
swSigma3(), swSigma4(), swSigmaT(), swSigmaTheta(), swSoundAbsorption(), swSoundSpeed(),
swSpecificHeat(), swSpice(), swSpiciness0(), swSpiciness1(), swSpiciness2(), swSstar(),
swTFreeze(), swTSrho(), swThermalConductivity(), swTheta(), swViscosity(), swZ()

Examples

library(oce)
T68 <- seq(3, 20, 1)
T90 <- T90fromT68(T68)
sqrt(mean((T68-T90)^2))

tail.oce Extract the End of an Oce Object

Description

Extract the End of an Oce Object

This function handles the following object classes directly: adp, adv, argo (selection by profile),
coastline, ctd, echosounder (selection by ping), section (selection by station) and topo (selection
by longitude and latitude). It does not handle amsr or landsat yet, instead issuing a warning and
returning x in those cases. For all other classes, it calls tail() with n as provided, for each item
in the data slot, issuing a warning if that item is not a vector; the author is quite aware that this
may not work well for all classes. The plan is to handle all appropriate classes by July 2018. Please
contact the author if there is a class you need handled before that date.

Usage

S3 method for class 'oce'
tail(x, n = 6L, ...)

Arguments

x an oce object.

n Number of elements to extract, as for tail().

... ignored

Author(s)

Dan Kelley

748 threenum

See Also

head.oce(), which yields the start of an oce object.

threenum Calculate Minimum, Mean, and Maximum Values

Description

This is a simpler cousin of the standard fivenum() function, used in summary() functions for oce
objects.

Usage

threenum(x)

Arguments

x a vector or matrix of numerical values.

Value

A character vector of three values: the minimum, the mean, the maximum.

Historical note

On Aug 5, 2019, the dimension was dropped as the fourth column, and this function returned to the
original intention (revealed by its name). Another change is that the function now returns numerical
results, leaving the task of setting the number of digits to summary().

Author(s)

Dan Kelley

Examples

library(oce)
threenum(1:10)

tidalCurrent 749

tidalCurrent Tidal Current Dataset

Description

The tidalCurrent dataset contains tidal velocities reported in Foreman’s (1978) report (reference
1) on his Fortran code for the analysis of tidal currents and provided in an associated webpage
(reference 2). Here, tidalCurrent is data frame containing

• time a POSIXct time.

• u the eastward component of velocity in m/s.

• v the northward component of velocity in m/s.

Author(s)

Dan Kelley (reformatting data provided by Michael Foreman)

Source

The data come from the tide8.dat and tide9.dat files provided at reference 2.

References

1. Foreman, M. G. G. "Manual for Tidal Currents Analysis and Prediction." Pacific Marine Sci-
ence Report. British Columbia, Canada: Institute of Ocean Sciences, Patricia Bay, 1978.

2. https://www.dfo-mpo.gc.ca/science/documents/data-donnees/tidal-marees/tidpack.zip

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
predict.tidem(), summary,tidem-method, tidedata, tidem, tidem-class, tidemAstron(),
tidemVuf(), webtide()

Examples

library(oce)
data(tidalCurrent)
par(mfrow = c(2, 1))
oce.plot.ts(tidalCurrent$time, tidalCurrent$u, ylab = "u [m/s]")
abline(h = 0, col = 2)
oce.plot.ts(tidalCurrent$time, tidalCurrent$v, ylab = "v [m/s]")
abline(h = 0, col = 2)

750 tidedata

tidedata Tidal Constituent Information

Description

The tidedata dataset contains Tide-constituent information that is use by tidem() to fit tidal mod-
els. tidedata is a list containing

const a list containing vectors name (a string with constituent name), freq (the frequency, in cycles
per hour), kmpr (a string naming the comparison constituent, blank if there is none), ikmpr
(index of comparison constituent, or 0 if there is none), df (frequency difference between
constituent and its comparison, used in the Rayleigh criterion), d1 through d6 (the first through
sixth Doodson numbers), semi, nsat (number of satellite constituents), ishallow, nshallow,
doodsonamp, and doodsonspecies.

sat a list containing vectors deldood, phcorr, amprat, ilatfac, and iconst.

shallow a list containing vectors iconst, coef, and iname.

Apart from the use of d1 through d6, the naming and content follows T_TIDE (see Pawlowicz et al.
2002), which in turn builds upon the analysis of Foreman (1978).

Author(s)

Dan Kelley

Source

The data come from the tide3.dat file of the T_TIDE package (Pawlowicz et al., 2002), and derive
from Appendices provided by Foreman (1978). The data are scanned using ‘tests/tide.R’ in this
package, which also performs some tests using T_TIDE values as a reference.

References

Foreman, M. G. G., 1978. Manual for Tidal Currents Analysis and Prediction. Pacific Marine
Science Report. British Columbia, Canada: Institute of Ocean Sciences, Patricia Bay.

Pawlowicz, Rich, Bob Beardsley, and Steve Lentz, 2002. Classical tidal harmonic analysis includ-
ing error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937.

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
predict.tidem(), summary,tidem-method, tidalCurrent, tidem, tidem-class, tidemAstron(),
tidemVuf(), webtide()

tidem 751

tidem Fit a Tidal Model to a Timeseries

Description

The fit is done in terms of sine and cosine components at the indicated tidal frequencies (after
possibly pruning to satisfy the Rayleigh criterion, as explained in phase 2 of the procedure outlined
in “Details”), with the amplitude and phase being calculated from the resultant coefficients on the
sine and cosine terms. The scheme was devised for hourly data; for other sampling schemes, see
“Application to non-hourly data”.

Usage

tidem(
t,
x,
constituents,
infer = NULL,
latitude = NULL,
rc = 1,
regress = lm,
debug = getOption("oceDebug")

)

Arguments

t either a vector of times or a sealevel object (as created with read.sealevel()
or as.sealevel()). In the first case, x must be provided. In the second case,
though, any x that is provided will be ignored, because sealevel objects contain
both time and water elevation, and the latter is used for x.

x an optional numerical vector holding something that varies with time. This
is ignored if t is a sealevel object, because it is inferred automatically, using
t[["elevation"]].

constituents an optional character vector holding the names of tidal constituents to which the
fit is done; see “Details” and “Constituent Naming Convention”.

infer a list of constituents to be inferred from fitted constituents according to the
method outlined in Section 2.3.4 of Foreman (1978). If infer is NULL, the
default, then no such inferences are made. Otherwise, some constituents are
computed based on other constituents, instead of being determined by regres-
sion at the proper frequency. If provided, infer must be a list containing four
elements: name, a vector of strings naming the constituents to be inferred; from,
a vector of strings naming the fitted constituents used as the sources for those
inferences (these source constituents are added to the regression list, if they are
not already there); amp, a numerical vector of factors to be applied to the source
amplitudes; and phase, a numerical vector of angles, in degrees, to be subtracted
from the source phases. For example, Following Foreman (1998), if any of the

752 tidem

name items have already been computed, then the suggested inference is ignored,
and the already-computed values are used.

infer=list(name=c("P1","K2"),
from=c("K1", "S2"),
amp=c(0.33093, 0.27215),
phase=c(-7.07, -22.4)

means that the amplitude of P1 will be set as 0.33093 times the calculated am-
plitude of K1, and that the P1 phase will be set to the K1 phase, minus an offset
of -7.07 degrees. (This example is used in the Foreman (1978) discussion of
a Fortran analysis code and also in Pawlowicz et al. (2002) discussion of the
T_TIDE Matlab code. Rounded to the 0.1mm resolution of values reported in
Foreman (1978) and Pawlowicz et al. (2002), the tidem results have root-mean-
square amplitude difference to Foreman’s (1978) Appendix 7.3 of 0.06mm; by
comparison, the results in Table 1 of Pawlowicz et al. (2002) agree with Fore-
man’s results to RMS difference 0.04mm.)

latitude if provided, the latitude of the observations. If not provided, tidem will try to
infer this from the first argument, if it is a sealevel object.

rc the value of the coefficient in the Rayleigh criterion.
regress function to be used for regression, by default lm(), but could be for example

rlm from the MASS package.
debug an integer specifying whether debugging information is to be printed during the

processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

A summary of constituents used by tidem() may be found with:

data(tidedata)
print(tidedata$const)

A multi-stage procedure is used to establish the list of tidal constituents to be used in the fit.

Phase 1: initial selection.

The initial list tidal constituents (prior to the pruning phase described below) to be used in the
analysis are specified as follows; see “Constituent Naming Convention”.

1. If constituents is not provided, then the constituent list will be made up of the 69 con-
stituents designated by Foreman as "standard". These include astronomical frequencies and
some shallow-water frequencies, and are as follows: c("Z0", "SA", "SSA", "MSM", "MM",
"MSF", "MF", "ALP1", "2Q1", "SIG1", "Q1", "RHO1", "O1", "TAU1", "BET1", "NO1", "CHI1",
"PI1", "P1", "S1", "K1", "PSI1", "PHI1", "THE1", "J1", "SO1", "OO1", "UPS1", "OQ2",
"EPS2", "2N2", "MU2", "N2", "NU2", "GAM2", "H1", "M2", "H2", "MKS2", "LDA2", "L2",
"T2", "S2", "R2", "K2", "MSN2", "ETA2", "MO3", "M3", "SO3", "MK3", "SK3", "MN4", "M4",
"SN4", "MS4", "MK4", "S4", "SK4", "2MK5", "2SK5", "2MN6", "M6", "2MS6", "2MK6", "2SM6",
"MSK6", "3MK7", "M8").

tidem 753

2. If the first item in constituents is the string "standard", then a provisional list is set up as in
Case 1, and then the (optional) rest of the elements of constituents are examined, in order.
Each of these constituents is based on the name of a tidal constituent in the Foreman (1978)
notation. (To get the list, execute data(tidedata) and then execute cat(tideData$name).)
Each named constituent is added to the existing list, if it is not already there. But, if the
constituent is preceded by a minus sign, then it is removed from the list (if it is already there).
Thus, for example, a user might specify constituents=c("standard", "-M2", "ST32") to
remove the M2 constituent and add the ST32 constituent.

3. If the first item is not "standard", then the list of constituents is processed as in Case 2, but
without starting with the standard list. As an example, constituents=c("K1", "M2") would
fit for just the K1 and M2 components. (It would be strange to use a minus sign to remove
items from the list, but the function allows that.)

In each of the above cases, the list is reordered in frequency prior to the analysis, so that the results
of summary,tidem-method() will be in a familiar form.

Phase 2: pruning based on Rayleigh’s criterion.

Once the initial constituent list is determined during Phase 1, tidem applies the Rayleigh criterion,
which holds that constituents of frequencies f1 and f2 cannot be resolved unless the time series
spans a time interval of at least rc/(f1 − f2). The details of the decision of which constituent to
prune is fairly complicated, involving decisions based on a comparison table. The details of this
process are provided by Foreman (1978).

Phase 3: optionally overruling Rayleigh’s criterion.

The pruning list from phase 2 can be overruled by the user. This is done by retaining any constituents
that the user has named in the constituents parameter. This action was added on 2017-12-27, to
make tidem behave the same way as the Foreman (1978) code, as illustrated in his Appendices 7.2
and 7.3. (As an aside, his Appendix 7.3 has some errors, e.g. the frequency for the 2SK5 constituent
is listed there (p58) as 0.20844743, but it is listed as 0.2084474129 in his Appendix 7.1 (p41). For
this reason, the frequency comparison is relaxed to a tol value of 1e-7 in a portion of the oce test
suite (see tests/testthat/test_tidem.R in the source).

Comments on phases 2 and 3

A specific example may be of help in understanding the removal of unresolvable constituents. For
example, the data(sealevel) dataset is of length 6718 hours, and this is too short to resolve the
full list of constituents, with the conventional (and, really, necessary) limit of rc=1. From Table
1 of Foreman (1978), this timeseries is too short to resolve the SA constituent, so that SA will not
be in the resultant. Similarly, Table 2 of Foreman (1978) dictates the removal of PI1, S1 and PSI1
from the list. And, finally, Table 3 of Foreman (1978) dictates the removal of H1, H2, T2 and R2, and
since that document suggests that GAM2 be subsumed into H1, then if H1 is already being deleted,
then GAM2 will also be deleted.

Value

An object of tidem, consisting of

const constituent number, e.g. 1 for Z0, 1 for SA, etc.

model the regression model

name a vector of constituent names, in non-subscript format, e.g. "M2".

754 tidem

frequency a vector of constituent frequencies, in inverse hours.

amplitude a vector of fitted constituent amplitudes, in metres.

phase a vector of fitted constituent phase. NOTE: The definition of phase is likely to
change as this function evolves. For now, it is phase with respect to the first data
sample.

p a vector containing a sort of p value for each constituent. This is calculated as
the average of the p values for the sine() and cosine() portions used in fitting;
whether it makes any sense is an open question.

Application to non-hourly data

The framework on which tidem() rests on the assumption of data that have been sampled on a
1-hour interval (see e.g. Foreman, 1977). Since regression (as opposed to spectral analysis) is used
to infer the amplitude and phase of tidal constituents, data gaps do not pose a serious problem.
Sampling intervals under an hour are also not a problem. However, trying to use tidem() on time
series that are sampled at uniform intervals that exceed 1 hour can lead to results that are difficult
to interpret. For example, some drifter data are sampled at a 6-hour interval. This makes it impos-
sible to fit for the S4 component (which has exactly 6 cycles per day), because the method works
by constructing sine and cosine series at tidal frequencies and using these as the basis for regres-
sion. Each of these series will have a constant value through the constructed time, and regression
cannot handle that (in addition to a constant-value constructed series that is used to fit for the Z0
constituent). tidem() tries to handle such problems by examining the range of the constructed sine
and cosine time-series, omitting any constituents that yield near-constant values in either of these.
Messages are issued if this problem is encountered. This prevents failure of the regression, and the
predictions of the regression seem to represent the data reasonably well, but the inferred constituent
amplitudes are not physically reasonable. Cautious use of tidem() to infer individual constituents
might be warranted, but users must be aware that the results will be difficult to interpret. The tool
is simply not designed for this use.

Bugs

1. This function is not fully developed yet, and both the form of the call and the results of the
calculation may change.

2. The reported p value may make no sense at all, and it might be removed in a future version of
this function. Perhaps a significance level should be presented, as in the software developed
by both Foreman and Pawlowicz.

Constituent Naming Convention

tidem uses constituent names that follow the convention set by Foreman (1978). This convention is
slightly different from that used in the T-TIDE package of Pawlowicz et al. (2002), with Foreman’s
UPS1 and M8 becoming UPSI and MS in T-TIDE. To permit the use of either notation, tidem()
uses tidemConstituentNameFix() to convert from T-TIDE names to the Foreman names, issuing
warnings when doing so.

Agreement with T_TIDE results

The tidem amplitude and phase results, obtained with

tidem 755

tidem(sealevelTuktoyaktuk, constituents=c("standard", "M10"),
infer=list(name=c("P1", "K2"),

from=c("K1", "S2"),
amp=c(0.33093, 0.27215),
phase=c(-7.07, -22.40)))

match the T_TIDE values listed in Table 1 of Pawlowicz et al. (2002), after rounding amplitude and
phase to 4 and 2 digits past the decimal place, respectively, to match the format of that table.

Author(s)

Dan Kelley

References

Foreman, M G., 1977 (revised 1996). Manual for Tidal Heights Analysis and Prediction. Pacific
Marine Science Report 77-10. British Columbia, Canada: Institute of Ocean Sciences, Patricia Bay.

Foreman, M. G. G., 1978. Manual for Tidal Currents Analysis and Prediction. Pacific Marine
Science Report 78-6. British Columbia, Canada: Institute of Ocean Sciences, Patricia Bay,

Foreman, M. G. G., Neufeld, E. T., 1991. Harmonic tidal analyses of long time series. International
Hydrographic Review, 68 (1), 95-108.

Leffler, K. E. and D. A. Jay, 2009. Enhancing tidal harmonic analysis: Robust (hybrid) solutions.
Continental Shelf Research, 29(1):78-88.

Pawlowicz, Rich, Bob Beardsley, and Steve Lentz, 2002. Classical tidal harmonic analysis includ-
ing error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937.

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
predict.tidem(), summary,tidem-method, tidalCurrent, tidedata, tidem-class, tidemAstron(),
tidemVuf(), webtide()

Examples

library(oce)
The demonstration time series from Foreman (1978),
also used in T_TIDE (Pawlowicz, 2002).
data(sealevelTuktoyaktuk)
tide <- tidem(sealevelTuktoyaktuk)
summary(tide)

AIC analysis
extractAIC(tide[["model"]])

Fake data at M2
library(oce)
data("tidedata")
M2 <- with(tidedata$const, freq[name == "M2"])
t <- seq(0, 10 * 86400, 3600)

756 tidem-class

eta <- sin(M2 * t * 2 * pi / 3600)
sl <- as.sealevel(eta)
m <- tidem(sl)
summary(m)

tidem-class Class to Store Tidal Models

Description

This class stores tidal-constituent models.

Slots

data As with all oce objects, the data slot for tidem objects is a list containing the main data for
the object.

metadata As with all oce objects, the metadata slot for tidem objects is a list containing infor-
mation about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for tidem objects is a list with
entries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of tidem objects (see [[<-,tidem-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a tidem object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,tidem-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,tidem-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

tidemAstron 757

Author(s)

Dan Kelley

See Also

Other functions that plot oce data: download.amsr(), plot,adp-method, plot,adv-method, plot,amsr-method,
plot,argo-method, plot,bremen-method, plot,cm-method, plot,coastline-method, plot,ctd-method,
plot,gps-method, plot,ladp-method, plot,landsat-method, plot,lisst-method, plot,lobo-method,
plot,met-method, plot,odf-method, plot,rsk-method, plot,satellite-method, plot,sealevel-method,
plot,section-method, plot,tidem-method, plot,topo-method, plot,windrose-method, plot,xbt-method,
plotProfile(), plotScan(), plotTS()

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
predict.tidem(), summary,tidem-method, tidalCurrent, tidedata, tidem, tidemAstron(),
tidemVuf(), webtide()

tidemAstron Astronomical Calculations for tidem

Description

Do some astronomical calculations for tidem(). This function is based directly on t_astron in the
T_TIDE Matlab package (see Pawlowicz et al. 2002), which inherits from the Fortran code described
by Foreman (1978).

Usage

tidemAstron(t)

Arguments

t Either a time in POSIXct format (with "UTC" timezone, or else odd behaviours
may result), or an integer. In the second case, it is converted to a time with
numberAsPOSIXct(), using tz="UTC".

Value

A list containing items named astro and ader (see the T_TIDE documentation).

Author(s)

Dan Kelley translated this from the t_astron function of the T_TIDE Matlab package (see Pawlow-
icz et al. 2002).

758 tidemConstituentNameFix

References

• Foreman, M. G. G., 1978. Manual for Tidal Currents Analysis and Prediction. Pacific Marine
Science Report. British Columbia, Canada: Institute of Ocean Sciences, Patricia Bay.

• Pawlowicz, Rich, Bob Beardsley, and Steve Lentz, 2002. Classical tidal harmonic analysis
including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-
937.

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
predict.tidem(), summary,tidem-method, tidalCurrent, tidedata, tidem, tidem-class, tidemVuf(),
webtide()

Examples

tidemAstron(as.POSIXct("2008-01-22 18:50:24"))

tidemConstituentNameFix

Change Tidal Constituent Name from T-TIDE to Foreman Convention

Description

This is used by tidem() to permit users to specify constituent names in either the T-TIDE conven-
tion (see Pawlowicz et al. 2002) or Foreman convention (see Foreman (1978). There are only two
such instances: "MS", which gets translated to "M8", and "UPSI", which gets translated to "UPS1".

Usage

tidemConstituentNameFix(names, debug = 1)

Arguments

names a vector of character values, holding constituent names

debug an integer controlling warnings. If this is zero, then no warnings are issued
during processing; otherwise, as is the default, warnings are issued for each
conversion that is required.

Value

A vector of character values of tidal constituent names, in the Foreman naming convention.

tidemVuf 759

References

Foreman, M. G. G., 1978. Manual for Tidal Currents Analysis and Prediction. Pacific Marine
Science Report. British Columbia, Canada: Institute of Ocean Sciences, Patricia Bay.

Pawlowicz, Rich, Bob Beardsley, and Steve Lentz, 2002. Classical tidal harmonic analysis includ-
ing error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-937.

tidemVuf Nodal Modulation Calculations for Tidal Analyses

Description

Carry out nodal modulation calculations for tidem(). This function is based directly on t_vuf in
the T_TIDE Matlab package (Pawlowicz et al., 2002), which inherits from the Fortran code described
by Foreman (1978).

Usage

tidemVuf(t, j, latitude = NULL)

Arguments

t a single time in POSIXct() format, with timezone "UTC".

j integer vector, giving indices of tidal constituents to use.

latitude optional numerical value containing the latitude in degrees North. If not pro-
vided, u in the return value will be a vector consisting of repeated 0 value, and
f will be a vector of repeated 1 value.

Value

A list containing items named v, u and f as described in the T_TIDE documentation, as well in
Pawlowicz et al. (2002) and Foreman (1978).

Author(s)

Dan Kelley translated this from the t_vuf function of the T_TIDE Matlab package (see Pawlowicz
et al. 2002).

References

• Foreman, M. G. G., 1978. Manual for Tidal Currents Analysis and Prediction. Pacific Marine
Science Report. British Columbia, Canada: Institute of Ocean Sciences, Patricia Bay.

• Pawlowicz, Rich, Bob Beardsley, and Steve Lentz, 2002. Classical tidal harmonic analysis
including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28, 929-
937.

760 timeToArgoJuld

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
predict.tidem(), summary,tidem-method, tidalCurrent, tidedata, tidem, tidem-class, tidemAstron(),
webtide()

Examples

Look up values for the M2 constituent in Halifax Harbour, Canada.
library(oce)
data("tidedata")
j <- with(tidedata$const, which(name == "M2"))
tidemVuf(t = as.POSIXct("2008-01-22 18:50:24"), j = j, lat = 44.63)

timeToArgoJuld Convert Time to Argo Julian Day (juld)

Description

This converts a POSIXct time into an Argo julian day, with the convention that juld=0 at 1950-01-
01.

Usage

timeToArgoJuld(t)

Arguments

t A POSIXct time or a string that can be converted to a POSIXct time

Author(s)

Jaimie Harbin and Dan Kelley

Examples

timeToArgoJuld("2020-07-01")

titleCase 761

titleCase Capitalize First Letter of Each of a Vector of Words

Description

This is used in making labels for data names in some ctd functions

Usage

titleCase(w)

Arguments

w vector of character strings

Value

vector of strings patterned on w but with first letter in upper case and others in lower case

toEnu Rotate Acoustic-Doppler Data to the ENU Coordinate System

Description

Rotate Acoustic-Doppler Data to the ENU Coordinate System

Usage

toEnu(x, ...)

Arguments

x an adp or adv object.

... extra arguments that are passed on to toEnuAdp() or toEnuAdv().

Value

An object of the same class as x, but with velocities in the enu coordinate system

Author(s)

Dan Kelley

762 toEnuAdp

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnuAdv(),
velocityStatistics(), xyzToEnu(), xyzToEnuAdv()

toEnuAdp Convert an adp Object to ENU Coordinates

Description

Convert an adp Object to ENU Coordinates

Usage

toEnuAdp(x, declination = 0, debug = getOption("oceDebug"))

Arguments

x an adp object.

declination magnetic declination to be added to the heading, to get ENU with N as "true"
north.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Author(s)

Dan Kelley

References
https://nortek.zendesk.com/hc/en-us/articles/360029820971-How-is-a-Coordinate-transformation-done-

toEnuAdv 763

See Also

See read.adp() for notes on functions relating to "adp" objects. Also, see beamToXyzAdp() and
xyzToEnuAdp().

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

toEnuAdv Convert an adv Object to ENU Coordinates

Description

Convert an adv Object to ENU Coordinates

Usage

toEnuAdv(x, declination = 0, debug = getOption("oceDebug"))

Arguments

x an adv object.

declination magnetic declination to be added to the heading, to get ENU with N as "true"
north.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Author(s)

Dan Kelley

References

1. https://nortek.zendesk.com/hc/en-us/articles/360029820971-How-is-a-Coordinate-transformation-done-

764 topo-class

See Also

See read.adv() for notes on functions relating to "adv" objects. Also, see beamToXyzAdv() and
xyzToEnuAdv().

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
velocityStatistics(), xyzToEnu(), xyzToEnuAdv()

topo-class Class to Store Topographic Data

Description

This class stores topographic data, as read with read.topo() or assembled with as.topo(). Plot-
ting is handled with plot,topo-method() and summaries with summary,topo-method().

Slots

data As with all oce objects, the data slot for topo objects is a list containing the main data for
the object. The key items stored in this slot are: longititude, latitude, and z.

metadata As with all oce objects, the metadata slot for topo objects is a list containing informa-
tion about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for topo objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of topo objects (see [[<-,topo-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a topo object may be retrieved in the standard
R way using slot(). For example slot(o,"data") returns the data slot of an object named o,
and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,topo-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

The [[,topo-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method

topoInterpolate 765

can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class,
rsk-class, sealevel-class, section-class, windrose-class, xbt-class

Other things related to topo data: [[,topo-method, [[<-,topo-method, as.topo(), download.topo(),
plot,topo-method, read.topo(), subset,topo-method, summary,topo-method, topoInterpolate(),
topoWorld

topoInterpolate Interpolate Within a topo Object

Description

Bilinear interpolation is used so that values will vary smoothly within a longitude-latitude grid cell.
Note that the sign convention for longitude and latitude must match that in topo.

Usage

topoInterpolate(longitude, latitude, topo)

Arguments

longitude Vector of longitudes (in the same sign convention as used in topo).

latitude Vector of latitudes (in the same sign convention as used in topo).

topo A topo object.

Value

Vector of heights giving the elevation of the earth above means sea level at the indicated location
on the earth.

Author(s)

Dan Kelley

766 topoWorld

See Also

Other things related to topo data: [[,topo-method, [[<-,topo-method, as.topo(), download.topo(),
plot,topo-method, read.topo(), subset,topo-method, summary,topo-method, topo-class,
topoWorld

Examples

library(oce)
data(topoWorld)
"The Gully", approx. 400m deep, connects Gulf of St Lawrence with North Atlantic
topoInterpolate(45, -57, topoWorld)

topoWorld Global Topographic Data (at Half-degree Resolution)

Description

Global topographic dataset at half-degree resolution, downloaded from a NOAA server on May
18, 2019. Longitude, accessible as topoWorld[["longitude"]], ranges from -179.75 to 129.75
degrees north. Latitude (topoWorld[["latitude"]]) ranges from -89.75 to 89.75 degrees east.
Height (topoWorld[["z"]]) is measured in metres above nominal sea level.

The coarse resolution can be a problem in plotting depth contours along with coastlines in regions
of steep topography. For example, near the southeast corner of Newfoundland, a 200m contour will
overlap a coastline drawn with coastlineWorldFine from the ocedata package. The solution in
such cases is to download a higher-resolution topography file, perhaps using download.topo(),
and then use read.topo() to create another topo object. (With other data sources, as.topo() may
be helpful.)

Usage

data(topoWorld)

Historical note

From late 2009 until May 18, 2019, the topoWorld dataset was created with a fairly complicated
code that read a binary file downloaded from NOAA (‘http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO5/TOPO/ETOPO5’),
decoded, decimated from 1/12th degree resolution to 1/2 degree resolution, and passed through
matrixShiftLongitude() to put longitude between -180 and 180 degrees. The new scheme for
creating the dataset, (see “Source”) is much simpler, and also a much better model of how users are
likely to deal with topography files in the more modern netCDF format. Note that the new version
differs from the old one in longitude and latitude being shifted by 1/4 degree, and by a mean eleva-
tion difference of under 10m. The old and new versions appear identical when plotted at the global
scale that is the recommended for such a coarse topographic file.

https://CRAN.R-project.org/package=ocedata

unabbreviateYear 767

Sample of Usage

library(oce)
data(topoWorld)
par(mfrow=c(2, 1))
plot(topoWorld, location=NULL)
imagep(topoWorld)

Source

This is created with read.topo(), using a file downloaded with

topoFile <- download.topo(west=-180, east=180, south=-90, north=90,
resolution=30, destdir=".")

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk,
section, wind, xbt

Other things related to topo data: [[,topo-method, [[<-,topo-method, as.topo(), download.topo(),
plot,topo-method, read.topo(), subset,topo-method, summary,topo-method, topo-class,
topoInterpolate()

unabbreviateYear Determine Year From Various Abbreviations

Description

Various data files may contain various abbreviations for years. For example, 99 refers to 1999, and
8 refers to 2008. Sometimes, even 108 refers to 2008 (the idea being that the "zero" year was 1900).
This function deals with the three cases mentioned. It will fail if someone supplies 60, meaning
year 2060 as opposed to 1960.

Usage

unabbreviateYear(year)

Arguments

year a year, or vector of years, possibly abbreviated

Author(s)

Dan Kelley

768 undriftTime

See Also

Other things related to time: ctimeToSeconds(), julianCenturyAnomaly(), julianDay(), numberAsHMS(),
numberAsPOSIXct(), secondsToCtime()

Examples

fullYear <- unabbreviateYear(c(99, 8, 108))

undriftTime Correct for Drift in an Instrument Clock

Description

It is assumed that the instrument clock matches the real time at the start of the sampling, and that the
clock drifts linearly (i.e. is uniformly fast or slow) over the sampling interval. Linear interpolation
is used to infer the values of all variables in the data slot. The data length is altered in this process,
e.g. a slow instrument clock (positive slowEnd) takes too few samples in a given time interval, so
undriftTime will increase the number of data.

Usage

undriftTime(x, slowEnd = 0, tname = "time")

Arguments

x an oce object.

slowEnd number of seconds to add to final instrument time, to get the correct time of the
final sample. This will be a positive number, for a "slow" instrument clock.

tname Character string indicating the name of the time column in the data slot of x.

Value

An object of the same class as x, with the data slot adjusted appropriately.

Sample of Usage

library(oce)
file <- "~/data/archive/sleiwex/2008/moorings/m08/pt/rbr_011855/raw/pt_rbr_011855.dat"
rbr011855 <- read.oce(file)
d <- subset(rbr011855, time < as.POSIXct("2008-06-25 10:05:00"))
x <- undriftTime(d, 1) # clock lost 1 second over whole experiment
summary(d)
summary(x)

Author(s)

Dan Kelley

unduplicateNames 769

unduplicateNames Rename Duplicated Character Strings

Description

Append numeric suffices to character strings, to avoid repeats. This is used by various data input
functions, to handle the fact that several oceanographic data formats permit the reuse of variable
names within a given file.

Usage

unduplicateNames(strings, style = 1)

Arguments

strings Vector of character strings.

style An integer giving the style. If style is 1, then e.g. a triplicate of "a" yields "a",
"a1", and "a2". If style is 2, then the same input yields "a_001", "a_002",
and "a_003".

Value

Vector of strings with repeats distinguished by suffix.

See Also

This is used in several functions, e.g. read.ctd.sbe() and read.odf().

Examples

unduplicateNames(c("a", "b", "a", "c", "b"))
unduplicateNames(c("a", "b", "a", "c", "b"), style = 2)

ungrid Extract (x, y, z) From (x, y, grid)

Description

Extract the grid points from a grid, returning columns. This is useful for e.g. gridding large datasets,
in which the first step might be to use binMean2D(), followed by interpBarnes().

Usage

ungrid(x, y, grid)

770 unitFromString

Arguments

x a vector holding the x coordinates of grid.

y a vector holding the y coordinates of grid.

grid a matrix holding the grid.

Value

A list containing three vectors: x, the grid x values, y, the grid y values, and grid, the grid values.

Author(s)

Dan Kelley

Examples

library(oce)
data(wind)
u <- interpBarnes(wind$x, wind$y, wind$z)
contour(uxg, uyg, u$zg)
U <- ungrid(uxg, uyg, u$zg)
points(Ux, Uy, col = oce.colorsViridis(100)[rescale(U$grid, rlow = 1, rhigh = 100)], pch = 20)

unitFromString Decode Units From Strings

Description

This is mainly intended for internal use within the package, e.g. by read.odf(), and so the list of
string-to-unit mappings is not documented, since developers can learn it from simple examination
of the code. The focus of unitFromString() is on strings that are found in oceanographic files
available to the author, not on all possible units.

Usage

unitFromString(unit, scale = NULL)

Arguments

unit a character value indicating the unit. These are matched according to rules de-
veloped to work with actual data files, and so the list is not by any means ex-
haustive.

scale a character value indicating the scale. The default value of NULL dictates that the
scale is to be inferred from the unit. If a non-NULL value is supplied, it will be
used, even if it makes no sense in relation to value of unit.

Value

A list() of two items: unit which is an expression(), and scale, which is a string.

unitFromStringRsk 771

See Also

Other functions that interpret variable names and units from headers: ODFNames2oceNames(),
cnvName2oceName(), oceNames2whpNames(), oceUnits2whpUnits(), unitFromStringRsk(), woceNames2oceNames(),
woceUnit2oceUnit()

Examples

unitFromString("dbar") # dbar (no scale)
unitFromString("deg c") # modern temperature (ITS-90 scale)

unitFromStringRsk Infer rsk Units From a Vector of Strings

Description

This is used by read.rsk() to infer the units of data, based on strings stored in .rsk files. Lacking
a definitive guide to the format of these file, this function was based on visual inspection of the data
contained within a few sample files; unusual sensors may not be handled properly.

Usage

unitFromStringRsk(s)

Arguments

s Vector of character strings, holding the units entry in the channels table of the
.rsk database.

Value

List of unit lists.

See Also

Other functions that interpret variable names and units from headers: ODFNames2oceNames(),
cnvName2oceName(), oceNames2whpNames(), oceUnits2whpUnits(), unitFromString(), woceNames2oceNames(),
woceUnit2oceUnit()

772 unwrapAngle

unwrapAngle Unwrap an Angle That Suffers Modulo-360 Problems

Description

This is mostly used for instrument heading angles, in cases where the instrument is aligned nearly
northward, so that small variations in heading (e.g. due to mooring motion) can yield values that
swing from small angles to large angles, because of the modulo-360 cut point. The method is to use
the cosine and sine of the angle, to construct "x" and "y" values on a unit circle, then to find means
and medians of x and y respectively, and finally to use atan2() to infer the angles.

Usage

unwrapAngle(angle)

Arguments

angle an angle (in degrees) that is thought be near 360 degrees, with added noise

Value

A list with two estimates: mean is based on an arithmetic mean, and median is based on the median.
Both are mapped to the range 0 to 360.

Author(s)

Dan Kelley

Examples

library(oce)
true <- 355
a <- true + rnorm(100, sd = 10)
a <- ifelse(a > 360, a - 360, a)
a2 <- unwrapAngle(a)
par(mar = c(3, 3, 5, 3))
hist(a, breaks = 360)
abline(v = a2$mean, col = "blue", lty = "dashed")
abline(v = true, col = "blue")
mtext("true (solid)\n estimate (dashed)", at = true, side = 3, col = "blue")
abline(v = mean(a), col = "red")
mtext("mean", at = mean(a), side = 3, col = "red")

useHeading 773

useHeading Replace the Heading for One Instrument With That of Another

Description

Replace the heading angles in one oce object with that from another, possibly with a constant
adjustment.

Usage

useHeading(b, g, add = 0)

Arguments

b object holding data from an instrument whose heading is bad, but whose other
data are good.

g object holding data from an instrument whose heading is good, and should be
interpolated to the time base of b.

add an angle, in degrees, to be added to the heading.

Value

A copy of b, but with b$data$heading replaced with heading angles that result from linear inter-
polation of the headings in g, and then adding the angle add.

Author(s)

Dan Kelley

usrLonLat Calculate Geographic Coordinates of Plot Box

Description

Trace along the plot box, converting from xy coordinates to lonlat coordinates. The results are used
by mapGrid() and mapAxis() to ignore out-of-frame grid lines and axis labels.

Usage

usrLonLat(n = 25, debug = getOption("oceDebug"))

774 utm2lonlat

Arguments

n number of points to check along each side of the plot box.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

Some projections, such as "wintri", have trouble inverting points that are "off the globe". In such
cases, the returned value has lonmin, lonmax, latmin and latmax set to NA, and ok set to FALSE.

Value

usrLonLat returns a list containing numerical values lonmin, lonmax, latmin, and latmax, along
with logical value ok. The last of these indicates whether at least one point on the plot box is
invertible. Note that longitudes are in the range from -180 to 180 degrees.

Author(s)

Dan Kelley

See Also

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapPolygon(), mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(),
utm2lonlat()

utm2lonlat Convert UTM to Longitude and Latitude

Description

Convert UTM to Longitude and Latitude

Usage

utm2lonlat(easting, northing, zone = 1, hemisphere = "N", km = FALSE)

utm2lonlat 775

Arguments

easting easting coordinate (in km or m, depending on value of km). Alternatively, a list
containing items named easting, northing, and zone, in which case these are
taken from the list and the arguments named northing, zone and are ignored.

northing northing coordinate (in km or m, depending on value of km).

zone UTM zone

hemisphere indication of hemisphere; "N" for North, anything else for South.

km logical value indicating whether easting and northing are in kilometers or
meters.

Value

utm2lonlat returns a list containing longitude and latitude.

Author(s)

Dan Kelley

References
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system, down-
loaded May 31, 2014.

See Also

lonlat2utm() does the inverse operation. For general projections and their inverses, use lonlat2map()
and map2lonlat().

Other functions related to maps: formatPosition(), lonlat2map(), lonlat2utm(), map2lonlat(),
mapArrows(), mapAxis(), mapContour(), mapCoordinateSystem(), mapDirectionField(), mapGrid(),
mapImage(), mapLines(), mapLocator(), mapLongitudeLatitudeXY(), mapPlot(), mapPoints(),
mapPolygon(), mapScalebar(), mapText(), mapTissot(), oceCRS(), oceProject(), shiftLongitude(),
usrLonLat()

Examples

library(oce)
Cape Split, in the Minas Basin of the Bay of Fundy
utm2lonlat(852863, 5029997, 19)

776 vectorShow

vectorShow Show Some Values From a List, Vector or Matrix

Description

This is similar to str(), but it shows data at the first and last of the vector, which can be quite
helpful in debugging.

Usage

vectorShow(
v,
msg = "",
postscript = "",
digits = 5L,
n = 2L,
showNA = FALSE,
showNewline = TRUE

)

Arguments

v the item to be summarized. If this is a list of a vector of named items, then
information is provided for each element. Otherwise, information is provided
for the first and last n values.

msg optional character value indicating a message to show, introducing the vector. If
not provided, then a message is created from v. If msg is a non-empty string,
then that string is pasted together with a colon (unless msg already contains a
colon), before pasting a summary of data values.

postscript optional character value indicating an optional message to append at the end of
the return value.

digits for numerical values of v, this is the number of digits to use, in formatting the
numbers with format(); otherwise, digits is ignored.

n number of elements to show at start and end. If n is negative, then all the ele-
ments are shown.

showNA logical value indicating whether to show the number of NA values. This is done
only if the output contains ellipses, meaning that some values are skipped, be-
cause if all values are shown, it will be perfectly obvious whether there are any
NA values.

showNewline logical value indicating whether to put a newline character at the end of the
output string. The default, TRUE, is convenient for printing, but using FALSE
makes more sense if the result is to be used with, e.g. mtext().

Value

A string ending in a newline character, suitable for display with cat() or oceDebug().

velocityStatistics 777

Author(s)

Dan Kelley

Examples

List
limits <- list(low = 0, high = 1)
vectorShow(limits)

Vector of named items
planktonCount <- c(phytoplankton = 100, zooplankton = 20)
vectorShow(planktonCount)

Vector
vectorShow(pi)

Matrix
vectorShow(volcano)

Other arguments
knot2mps <- 0.5144444
vectorShow(knot2mps, postscript = "knots per m/s")
vectorShow("January", msg = "The first month is")

velocityStatistics Report Statistics of adp or adv Velocities

Description

Report statistics of ADP or ADV velocities, such as means and variance ellipses.

Usage

velocityStatistics(x, control, ...)

Arguments

x an adp or adv object.

control An optional list used to specify more information. This is presently ignored for
adv objects. For adp objects, if control$bin is an integer, it is taken as the bin
to be selected (otherwise, an average across bins is used).

... additional arguments that are used in the call to mean().

Value

A list containing items the major and minor axes of the covariance ellipse (ellipseMajor and
ellipseMinor), the angle of the major axis anticlockwise of the horizontal axis (ellipseAngle),
and the x and y components of the mean velocity (uMean and vMean).

778 webtide

Author(s)

Dan Kelley

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
toEnuAdv(), xyzToEnu(), xyzToEnuAdv()

Examples

library(oce)
data(adp)
a <- velocityStatistics(adp)
print(a)
t <- seq(0, 2 * pi, length.out = 100)
theta <- a$ellipseAngle * pi / 180
y <- a$ellipseMajor * cos(t) * sin(theta) + a$ellipseMinor * sin(t) * cos(theta)
x <- a$ellipseMajor * cos(t) * cos(theta) - a$ellipseMinor * sin(t) * sin(theta)
plot(adp, which = "uv+ellipse+arrow")
lines(x, y, col = "blue", lty = "dashed", lwd = 5)
arrows(0, 0, a$uMean, a$vMean, lwd = 5, length = 1 / 10, col = "blue", lty = "dashed")

webtide Get a Tidal Prediction From a WebTide Database

Description

Get a tidal prediction from a WebTide database. This only works if the standalone WebTide ap-
plication is installed, and if it is installed in a standard location. The details of installation are not
within the oce purview.

webtide 779

Usage

webtide(
action = c("map", "predict"),
longitude,
latitude,
node,
time,
basedir = getOption("webtide"),
region = "nwatl",
plot = TRUE,
tformat,
debug = getOption("oceDebug"),
...

)

Arguments

action An indication of the action, either action="map" to draw a map or action="predict"
to get a prediction; see “Details”.

longitude, latitude
optional location at which prediction is required (ignored if node is given).

node optional integer relating to a node in the database. If node is given, then neither
latitude nor longitude may be given. If node is positive, then specifies indi-
cates the node. If it is negative, locator() is called so that the user can click
(once) on the map, after which the node is displayed on the map.

time a vector of times (in the UTC timezone) at which prediction is to be made. If
not supplied, this will be the week starting at the present time, computed with
presentTime(), with a 15 minute increment.

basedir directory containing the WebTide application.

region database region, given as a directory name in the WebTide directory. For exam-
ple, h3o is for Halifax Harbour, nwatl is for the northwest Atlantic, and sshelf
is for the Scotian Shelf and Gulf of Maine.

plot boolean indicating whether to plot.

tformat optional argument passed to oce.plot.ts(), for plot types that call that func-
tion. (See strptime() for the format used.)

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

... optional arguments passed to plotting functions. A common example is to set
xlim and ylim, to focus a map region.

780 webtide

Details

There are two methods of using this function. Case 1: action="map". In this case, if plot is FALSE,
a list is returned, containing all the nodes in the selected database, along with all the latitudes and
longitudes. This value is also returned (silently) if plot is true, but in that case, a plot is drawn
to indicate the node locations. If latitude and longitude are given, then the node nearest that
spot is indicated on the map; otherwise, if node is given, then the location of that node is indicated.
There is also a special case: if node is negative and interactive() is TRUE, then locator() is
called, and the node nearest the spot where the user clicks the mouse is indicated in the plot and in
the return value.

Case 2: action="predict". If plot is FALSE, then a list is returned, indicating time, predicted
elevation, velocity components u and v, node number, the name of the basedir, and the region.
If plot is TRUE, this list is returned silently, and time-series plots are drawn for elevation, u, and v.

Naturally, webtide will not work unless WebTide has been installed on the computer.

Value

The value depends on action:

• If action="map" the return value is a list containing the index of the nearest node, along with
the latitude and longitude of that node. If plot is FALSE, this value is returned invisibly.

• If action="predict", the return value is a list containing a vector of times (time), as well
as vectors of the predicted elevation in metres and the predicted horizontal components of
velocity, u and v, along with the node number, and the basedir and region as supplied to
this function. If plot is FALSE, this value is returned invisibly.

Caution

WebTide is not an open-source application, so the present function was designed based on little
more than guesses about the WebTide file structure. Users should be on the lookout for odd results.

Sample of Usage

needs WebTide at the system level
library(oce)
1. prediction at Halifax NS
longitude <- -63.57
latitude <- 44.65
prediction <- webtide("predict", longitude=longitude, latitude=latitude)
mtext(paste0("prediction at ", latitude, "N and ", longitude, "E"), line=0.75, side=3)
2. map
webtide(lon=-63.57,lat=44.65,xlim=c(-64,-63),ylim=c(43.0,46))

Author(s)

Dan Kelley

wind 781

Source

The WebTide software may be downloaded for free at the Department of Fisheries and Oceans
(Canada) website at http://www.bio.gc.ca/science/research-recherche/ocean/webtide/index-en.php
(checked February 2016 and May 2017).

See Also

Other things related to tides: [[,tidem-method, [[<-,tidem-method, as.tidem(), plot,tidem-method,
predict.tidem(), summary,tidem-method, tidalCurrent, tidedata, tidem, tidem-class, tidemAstron(),
tidemVuf()

wind Sample Wind Data

Description

Wind data inferred from Figure 5 of Koch et al. (1983), provided to illustrate the interpBarnes()
function. Columns wind$x and wind$y are location, while wind$z is the wind speed, in m/s.

References

S. E. Koch and M. DesJardins and P. J. Kocin, 1983. “An interactive Barnes objective map analysis
scheme for use with satellite and conventional data,” J. Climate Appl. Met., vol 22, p. 1487-1503.

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk,
section, topoWorld, xbt

window.oce Window an oce Object by Time or Distance

Description

Windows x on either time or distance, depending on the value of which. In each case, values of
start and end may be integers, to indicate a portion of the time or distance range. If which is
"time", then the start and end values may also be provided as POSIX times, or character strings
indicating times (in time zone given by the value of getOption("oceTz")). Note that subset()
may be more useful than this function.

782 window.oce

Usage

S3 method for class 'oce'
window(
x,
start = NULL,
end = NULL,
frequency = NULL,
deltat = NULL,
extend = FALSE,
which = c("time", "distance"),
indexReturn = FALSE,
debug = getOption("oceDebug"),
...

)

Arguments

x an oce object.

start the start time (or distance) of the time (or space) region of interest. This may be
a single value or a vector.

end the end time (or distance) of the time (or space) region of interest. This may be
a single value or a vector.

frequency not permitted yet.

deltat not permitted yet

extend not permitted yet

which string containing the name of the quantity on which sampling is done. Possi-
bilities are "time", which applies the windowing on the time entry of the data
slot, and "distance", for the distance entry (for those objects, such as adp,
that have this entry).

indexReturn boolean flag indicating whether to return a list of the "kept" indices for the time
entry of the data slot, as well as the timeSlow entry, if there is one.. Either of
these lists will be NULL, if the object lacks the relevant items.

debug a flag that turns on debugging.

... ignored

Value

Normally, this is new oce object. However, if indexReturn=TRUE, the return value is two-element
list containing items named index and indexSlow, which are the indices for the time entry of the
data slot (and the timeSlow, if it exists).

Author(s)

Dan Kelley

windrose-class 783

See Also

subset() provides more flexible selection of subsets.

Examples

library(oce)
data(adp)
plot(adp)
early <- window(adp, start = "2008-06-26 00:00:00", end = "2008-06-26 12:00:00")
plot(early)
bottom <- window(adp, start = 0, end = 20, which = "distance")
plot(bottom)

windrose-class Class to Store windrose Data

Description

This class stores windrose objects, which store statistical information about winds, mainly for
plotting as "wind rose" plots with plot,windrose-method(). Unlike most other oce objects, there
is no reading method for windrose objects, because there is no standard way to store wind data in
files; instead, as.windrose() is provided to construct windrose objects.

Slots

data As with all oce objects, the data slot for windrose objects is a list containing the main data
for the object.

metadata As with all oce objects, the metadata slot for windrose objects is a list containing
information about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for windrose objects is a list with
entries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of windrose objects (see
[[<-,windrose-method), it is better to use oceSetData() and oceSetMetadata(), because those
functions save an entry in the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a windrose object may be retrieved in the
standard R way using slot(). For example slot(o,"data") returns the data slot of an object
named o, and similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,windrose-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

784 woceNames2oceNames

The [[,windrose-method operator can also be used to retrieve items from within the data and
metadata slots. For example, o[["temperature"]] can be used to retrieve temperature from an
object containing that quantity. The rule is that a named quantity is sought first within the object’s
metadata slot, with the data slot being checked only if metadata does not contain the item. This [[
method can also be used to get certain derived quantities, if the object contains sufficient information
to calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

See Also

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class,
rsk-class, sealevel-class, section-class, topo-class, xbt-class

Other things related to windrose data: [[,windrose-method, [[<-,windrose-method, as.windrose(),
plot,windrose-method, summary,windrose-method

woceNames2oceNames Translate WOCE Data Names to Oce Data Names

Description

Translate WOCE-style names to oce names, using gsub() to match patterns. For example, the
pattern "CTDOXY.*" is taken to mean oxygen.

Usage

woceNames2oceNames(names)

Arguments

names vector of strings holding WOCE-style names.

Value

vector of strings holding oce-style names.

Author(s)

Dan Kelley

References

Several online sources list WOCE names. An example is https://cchdo.github.io/hdo-assets/documentation/manuals/pdf/90_1/chap4.pdf

woceUnit2oceUnit 785

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceUnit2oceUnit(), write.ctd()

Other functions that interpret variable names and units from headers: ODFNames2oceNames(),
cnvName2oceName(), oceNames2whpNames(), oceUnits2whpUnits(), unitFromString(), unitFromStringRsk(),
woceUnit2oceUnit()

Other functions that convert variable names to the oce convention: ODFNames2oceNames(), argoNames2oceNames(),
bodcNames2oceNames(), metNames2oceNames()

woceUnit2oceUnit Translate WOCE Units to oce Units

Description

Translate WOCE-style units to oce units.

Usage

woceUnit2oceUnit(woceUnit)

Arguments

woceUnit string holding a WOCE unit

Value

expression in oce unit form

Author(s)

Dan Kelley

See Also

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),

786 write.ctd

read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), write.ctd()

Other functions that interpret variable names and units from headers: ODFNames2oceNames(),
cnvName2oceName(), oceNames2whpNames(), oceUnits2whpUnits(), unitFromString(), unitFromStringRsk(),
woceNames2oceNames()

write.ctd Save a ctd Object in a CSV File

Description

Writes a comma-separated file containing the data frame stored in the data slot of the first param-
eter. The file is suitable for reading with a spreadsheet, or with read.csv(). This output file will
contain some of the metadata in x, if metadata is TRUE.

Usage

write.ctd(object, file, metadata = TRUE, flags = TRUE, format = "csv")

Arguments

object a ctd object.

file Either a character string (the file name) or a connection. If not provided, file
defaults to stdout().

metadata a logical value indicating whether to put some selected metadata elements at the
start of the output file.

flags a logical value indicating whether to show data-quality flags as well as data.

format string indicating the format to use. This may be "csv" for a simple CSV format,
or "whp" for the World Hydrographic Program format, described in reference 1
and exemplified in reference 2.

Sample of Usage

library(oce)
data(ctd)
write.ctd(ctd, "ctd.csv")
d <- read.csv("ctd.csv")
plot(as.ctd(d$salinity, d$temperature, d$pressure))

Author(s)

Dan Kelley

xbt 787

References

The following links used to work, but failed as of December 2020.

1. https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/exchange_format_desc.htm

2. https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/exchange/example_ct1.csv

See Also

The documentation for ctd explains the structure of CTD objects.

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, [[<-,ctd-method,
as.ctd(), cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(),
ctdFindProfilesRBR(), ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz,
d200321-001.ctd.gz, d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method,
initializeFlagScheme,ctd-method, oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method,
plotProfile(), plotScan(), plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(),
read.ctd.odv(), read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(),
read.ctd.woce.other(), setFlags,ctd-method, subset,ctd-method, summary,ctd-method,
woceNames2oceNames(), woceUnit2oceUnit()

xbt Sample xbt Data

Description

An xbt object created by using read.xbt() on a Sippican file created by extracting the near-surface
fraction of the sample provided in Section 5.5.6 of reference 1.

Usage

data(xbt)

References

1. Sippican, Inc. "Bathythermograph Data Acquisition System: Installation, Operation and
Maintenance Manual (P/N 308195, Rev. A)," 2003. https://pages.uoregon.edu/drt/MGL0910_Science_Report/attachments/MK21_ISA_Manual_Rev_A.pdf.

See Also

Other datasets provided with oce: adp, adv, amsr, argo, cm, coastlineWorld, ctd, ctdRaw,
echosounder, landsat, lisst, lobo, met, ocecolors, rsk, sealevel, sealevelTuktoyaktuk,
section, topoWorld, wind

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, as.xbt(), plot,xbt-method,
read.xbt(), read.xbt.noaa1(), subset,xbt-method, summary,xbt-method, xbt-class, xbt.edf

788 xbt-class

Examples

library(oce)
data(xbt)
summary(xbt)
plot(xbt)

xbt-class Class to Store XBT (Expendable Bathythermograph) Data

Description

This class stores expendable bathythermograph (XBT) data, e.g. from a Sippican device. Reference
1 gives some information on Sippican devices, and reference 2 is a useful introduction to the modern
literature on XBTs in general.

Slots

data As with all oce objects, the data slot for xbt objects is a list containing the main data for
the object. The key items stored in this slot are depth (or z) and temperature, although
some datasets also have soundSpeed. Note that depth and z are inferred from time in water,
using an empirical formula for instrument descent rate, and that soundSpeed is #’ calculated
using a fixed practical salinity of 35. Note that the [[accessor will compute any of depth,
z or pressure, based on whatever is in the data object. Similarly, soundspeed will compute
sound speed (assuming a practical salinity of 35), if that that item is present in the data slot.

metadata As with all oce objects, the metadata slot for xbt objects is a list containing information
about the data or about the object itself.

processingLog As with all oce objects, the processingLog slot for xbt objects is a list with en-
tries describing the creation and evolution of the object. The contents are updated by various
oce functions to keep a record of processing steps. Object summaries and processingLogShow()
both display the log.

Modifying slot contents

Although the [[<- operator may permit modification of the contents of xbt objects (see [[<-,xbt-method),
it is better to use oceSetData() and oceSetMetadata(), because those functions save an entry in
the processingLog that describes the change.

Retrieving slot contents

The full contents of the data and metadata slots of a xbt object may be retrieved in the standard R
way using slot(). For example slot(o,"data") returns the data slot of an object named o, and
similarly slot(o,"metadata") returns the metadata slot.

The slots may also be obtained with the [[,xbt-method operator, as e.g. o[["data"]] and
o[["metadata"]], respectively.

xbt.edf 789

The [[,xbt-method operator can also be used to retrieve items from within the data and metadata
slots. For example, o[["temperature"]] can be used to retrieve temperature from an object con-
taining that quantity. The rule is that a named quantity is sought first within the object’s metadata
slot, with the data slot being checked only if metadata does not contain the item. This [[method
can also be used to get certain derived quantities, if the object contains sufficient information to
calculate them. For example, an object that holds (practical) salinity, temperature and pressure,
along with longitude and latitude, has sufficient information to compute Absolute Salinity, and so
o[["SA"]] will yield the calculated Absolute Salinity.

It is also possible to find items more directly, using oceGetData() and oceGetMetadata(), but
neither of these functions can retrieve derived items.

Author(s)

Dan Kelley

References

1. Sippican, Inc. "Bathythermograph Data Acquisition System: Installation, Operation and
Maintenance Manual (P/N 308195, Rev. A)," 2003. https://pages.uoregon.edu/drt/MGL0910_Science_Report/attachments/MK21_ISA_Manual_Rev_A.pdf.

2. Cheng, Lijing, John Abraham, Gustavo Goni, Timothy Boyer, Susan Wijffels, Rebecca Cow-
ley, Viktor Gouretski, et al. "XBT Science: Assessment of Instrumental Biases and Er-
rors." Bulletin of the American Meteorological Society 97, no. 6 (June 2016): 924-33.
10.1175/BAMS-D-15-00031.1

See Also

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, as.xbt(), plot,xbt-method,
read.xbt(), read.xbt.noaa1(), subset,xbt-method, summary,xbt-method, xbt, xbt.edf

Other classes provided by oce: adp-class, adv-class, argo-class, bremen-class, cm-class,
coastline-class, ctd-class, lisst-class, lobo-class, met-class, oce-class, odf-class,
rsk-class, sealevel-class, section-class, topo-class, windrose-class

xbt.edf Sample xbt File in .edf Format

Description

Sample xbt File in .edf Format

See Also

Other raw datasets: CTD_BCD2014666_008_1_DN.ODF.gz, adp_rdi.000, ctd.cnv.gz, ctd_aml_type1.csv.gz,
ctd_aml_type3.csv.gz, d200321-001.ctd.gz, d201211_0011.cnv.gz

Other things related to xbt data: [[,xbt-method, [[<-,xbt-method, as.xbt(), plot,xbt-method,
read.xbt(), read.xbt.noaa1(), subset,xbt-method, summary,xbt-method, xbt, xbt-class

790 xyzToEnu

Examples

xbt <- read.oce(system.file("extdata", "xbt.edf", package="oce"))

xyzToEnu Convert Acoustic-Doppler Data From XYZ to ENU Coordinates

Description

Convert Acoustic-Doppler Data From XYZ to ENU Coordinates

Usage

xyzToEnu(x, ...)

Arguments

x an adp or adv object.

... extra arguments that are passed on to xyzToEnuAdp() or xyzToEnuAdv(); see
the documentation for those functions, for the details.

Value

An object of the same class as x, but with velocities in east-north-up coordinates instead of xyz
coordinates.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
toEnuAdv(), velocityStatistics(), xyzToEnuAdv()

xyzToEnuAdp 791

xyzToEnuAdp Convert adp Object From XYZ to ENU Coordinates

Description

Convert ADP velocity components from a xyz-based coordinate system to an enu-based coordinate
system, by using the instrument’s recording of information relating to heading, pitch, and roll. The
action is based on what is stored in the data, and so it depends greatly on instrument type and the
style of original data format. This function handles data from RDI Teledyne, Sontek, and some
Nortek instruments directly.

Usage

xyzToEnuAdp(x, declination = 0, debug = getOption("oceDebug"))

Arguments

x an adp object.

declination magnetic declination to be added to the heading after "righting" (see below), to
get ENU with N as "true" north. If this is set to NULL, then the returned object is
set up without adjusting the compass for declination. That means that north in
its metadata slot will be set to "magnetic", and also that there will be no item
named declination in that slot. Note that applyMagneticDeclination() can
be used later, to set a declination.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Details

The first step is to convert the (x,y,z) velocity components (stored in the three columns of x[["v"]][,,1:3])
into what RDI (reference 1, pages 11 and 12) calls "ship" (or "righted") components. For example,
the z coordinate, which may point upwards or downwards depending on instrument orientation, is
mapped onto a "mast" coordinate that points more nearly upwards than downward. The other ship
coordinates are called "starboard" and "forward", the meanings of which will be clear to mariners.
Once the (x,y,z) velocities are converted to ship velocities, the orientation of the instrument is ex-
tracted from heading, pitch, and roll vectors stored in the object. These angles are defined differently
for RDI and Sontek profilers.

The code handles every case individually, based on the table given below. The table comes from
Clark Richards, a former PhD student at Dalhousie University (reference 2), who developed it based
on instrument documentation, discussion on user groups, and analysis of measurements acquired
with RDI and Sontek acoustic current profilers in the SLEIWEX experiment. In the table, (X, Y, Z)

792 xyzToEnuAdp

denote instrument-coordinate velocities, (S, F, M) denote ship-coordinate velocities, and (H, P, R)
denote heading, pitch, and roll.

Case Mfr. Instr. Orient. H P R S F M
1 RDI ADCP up H arctan(tan(P)*cos(R)) R -X Y -Z
2 RDI ADCP down H arctan(tan(P)*cos(R)) -R X Y Z
3 Nortek ADP up H-90 R -P X Y Z
4 Nortek ADP down H-90 R -P X -Y -Z
5 Sontek ADP up H-90 -P -R X Y Z
6 Sontek ADP down H-90 -P -R X Y Z
7 Sontek PCADP up H-90 R -P X Y Z
8 Sontek PCADP down H-90 R -P X Y Z

Finally, a standardized rotation matrix is used to convert from ship coordinates to earth coordinates.
As described in the RDI coordinate transformation manual (reference 1, pages 13 and 14), this
matrix is based on sines and cosines of heading, pitch, and roll If CH and SH denote cosine and sine
of heading (after adjusting for declination), with similar terms for pitch and roll using second letters
P and R, the rotation matrix is

rbind(c(CH*CR + SH*SP*SR, SH*CP, CH*SR - SH*SP*CR), c(-SH*CR
+ CH*SP*SR, CH*CP, -SH*SR - CH*SP*CR), c(-CP*SR, SP, CP*CR))

This matrix is left-multiplied by a matrix with three rows, the top a vector of "starboard" values, the
middle a vector of "forward" values, and the bottom a vector of "mast" values. Finally, the columns
of data$v[,,1:3] are filled in with the result of the matrix multiplication.

Value

An object with data$v[,,1:3] altered appropriately, and x[["oceCoordinate"]] changed from
xyz to enu.

Author(s)

Dan Kelley and Clark Richards

References

1. Teledyne RD Instruments. “ADCP Coordinate Transformation: Formulas and Calculations,”
January 2010. P/N 951-6079-00.

2. Clark Richards, 2012, PhD Dalhousie University Department of Oceanography.

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,

xyzToEnuAdpAD2CP 793

is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdpAD2CP()

xyzToEnuAdpAD2CP Convert adp Object of AD2CP type From XYZ to ENU Coordinates

Description

This function is in active development, and both the methodology and user interface may change
without notice. Only developers (or invitees) should be trying to use this function.

Usage

xyzToEnuAdpAD2CP(x, declination = 0, debug = getOption("oceDebug"))

Arguments

x an adp object created by read.adp.ad2cp().

declination IGNORED at present, but will be used at some later time.

debug an integer specifying whether debugging information is to be printed during the
processing. This is a general parameter that is used by many oce functions.
Generally, setting debug=0 turns off the printing, while higher values suggest
that more information be printed. If one function calls another, it usually reduces
the value of debug first, so that a user can often obtain deeper debugging by
specifying higher debug values.

Value

An object with data$v[,,1:3] altered appropriately, and x[["oceCoordinate"]] changed from
xyz to enu.

Limitations

This only works if the instrument orientation is "AHRS", and even that is not tested yet. Plus, as
noted, the declination is ignored.

Author(s)

Dan Kelley

References

1. Nortek AS. “Signature Integration 55|250|500|1000kHz.” Nortek AS, 2017.

2. Nortek AS. “Signature Integration 55|250|500|1000kHz.” Nortek AS, 2018. https://www.nortekgroup.com/assets/software/N3015-
007-Integrators-Guide-AD2CP_1018.pdf.

794 xyzToEnuAdv

See Also

Other things related to adp data: [[,adp-method, [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp()

xyzToEnuAdv Convert an adv Object From XYZ to ENU Coordinates

Description

Convert ADV velocity components from a xyz-based coordinate system to an enu-based coordinate
system.

Usage

xyzToEnuAdv(
x,
declination = 0,
cabled = FALSE,
horizontalCase,
sensorOrientation,
debug = getOption("oceDebug")

)

Arguments

x an adv object.

declination magnetic declination to be added to the heading after "righting" (see below), to
get ENU with N as "true" north. If this is set to NULL, then the returned object is
set up without adjusting the compass for declination. That means that north in
its metadata slot will be set to "magnetic", and also that there will be no item
named declination in that slot. Note that applyMagneticDeclination() can
be used later, to set a declination.

cabled boolean value indicating whether the sensor head is connected to the pressure
case with a cable. If cabled=FALSE, then horizontalCase is ignored. See
“Details”.

horizontalCase optional boolean value indicating whether the sensor case is oriented horizon-
tally. Ignored unless cabled is TRUE. See “Details”.

xyzToEnuAdv 795

sensorOrientation

optional string indicating the direction in which the sensor points. The value,
which must be "upward" or "downward", over-rides the value of orientation,
in the metadata slot, which will have been set by read.adv(), provided that
the data file contained the full header. See “Details”.

debug a flag that, if non-zero, turns on debugging. Higher values yield more extensive
debugging.

Details

The coordinate transformation is done using the heading, pitch, and roll information contained
within x. The algorithm is similar to that used for Teledyne/RDI ADCP units, taking into account
the different definitions of heading, pitch, and roll as they are defined for the velocimeters.

Generally, the transformation must be done on a time-by-time basis, which is a slow operation.
However, this function checks whether the vectors for heading, pitch and roll, are all of unit length,
and in that case, the calculation is altered, resulting in shorter execution times. Note that the angles
are held in (data$timeSlow, data$headingSlow, ...) for Nortek instruments and (data$time,
data$heading, ...) for Sontek instruments.

Since the documentation provided by instrument manufacturers can be vague on the coordinate
transformations, the method used here had to be developed indirectly. (This is in contrast to the
RDI ADCP instruments, for which there are clear instructions.) documents that manufacturers
provide. If results seem incorrect (e.g. if currents go east instead of west), users should examine the
code in detail for the case at hand. The first step is to set debug to 1, so that the processing will print
a trail of processing steps. The next step should be to consult the table below, to see if it matches the
understanding (or empirical tests) of the user. It should not be difficult to tailor the code, if needed.

The code handles every case individually, based on the table given below. The table comes from
Clark Richards, a former PhD student at Dalhousie University (reference 2), who developed it based
on instrument documentation, discussion on user groups, and analysis of measurements acquired
with Nortek and Sontek velocimeters in the SLEIWEX experiment.

The column labelled Cabled'' indicates whether the sensor and the pressure case are connected with a flexible cable, and the column labelled H.case”
indicates whether the pressure case is oriented horizontally. These two properties are not discover-
able in the headers of the data files, and so they must be supplied with the arguments cabled and
horizontalCase. The source code refers to the information in this table by case numbers. (Cases
5 and 6 are not handled.) Angles are abbreviated as follows:: heading H,'' pitch P,” and roll “R”.
Entries X, Y and Z refer to instrument coordinates of the same names. Entries S, F and M refer
to so-called ship coordinates starboard, forward, and mast; it is these that are used together with a
rotation matrix to get velocity components in the east, north, and upward directions.

Case Mfr. Instr. Cabled H. case Orient. H P R S F M
1 Nortek vector no - up H-90 R -P X -Y -Z
2 Nortek vector no - down H-90 R -P X Y Z
3 Nortek vector yes yes up H-90 R -P X Y Z
4 Nortek vector yes yes down H-90 R P X -Y -Z
5 Nortek vector yes no up - - - - - -
6 Nortek vector yes no down - - - - - -
7 Sontek adv - - up H-90 R -P X -Y -Z
8 Sontek adv - - down H-90 R -P X Y Z

796 [[,adp-method

Author(s)

Dan Kelley, in collaboration with Clark Richards

References

1. https://nortek.zendesk.com/hc/en-us/articles/360029820971-How-is-a-Coordinate-transformation-done-

2. Clark Richards, 2012, PhD Dalhousie University Department of Oceanography.

See Also

See read.adv() for notes on functions relating to adv objects.
Other things related to adv data: [[,adv-method, [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
toEnuAdv(), velocityStatistics(), xyzToEnu()

[[,adp-method Extract Something From an adp Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'adp'
x[[i, j, ...]]

Arguments

x an adp object.
i character value indicating the name of an item to extract.
j optional additional information on the i item.
... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.
Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

[[,adp-method 797

Details of the Specialized Method

Note that the entries within adp objects vary greatly, from instrument to instrument, and so are only
sketched here, and in the output from [["?"]].

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are not authoritative, because information pro-
vided by different instruments is so varied.

• If i is "u1" then the return value is v[,1]. The same holds for 2, etc., depending on the
number of beams in the instrument.

• If i is "a1" then signal amplitude is returned, and similarly for other digits. The results can
be in raw() or numeric form, as shown in the examples.

• If i is "q1" then signal quality is returned, and similarly for other digits. As with amplitude,
the result can be in raw() or numeric form.

• If i is "coordinate", then the coordinate system is retrieved.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

798 [[,adv-method

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adv-method, [[,amsr-method, [[,argo-method,
[[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method, [[,echosounder-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to adp data: [[<-,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

Examples

data(adp)
Tests for beam 1, distance bin 1, first 5 observation times
adp[["v"]][1:5, 1, 1]
adp[["a"]][1:5, 1, 1]
adp[["a", "numeric"]][1:5, 1, 1]
as.numeric(adp[["a"]][1:5, 1, 1]) # same as above

[[,adv-method Extract Something from an adv Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'adv'
x[[i, j, ...]]

[[,adv-method 799

Arguments

x an adv object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively, while
dataDerived and metadataDerived hold the names of related things that can be derived
from the object’s contents.

• If i is "u1" then the return value is v[,1], and similarly for "u2" and "u3".

• If i is "a1" then signal amplitude is returned, and similarly for "a2" and "a3". The results
can be in raw() or numeric form, as illustrated in the “Examples”.

• If i is "q1" then signal quality is returned, and similarly for "q2" and "q3". As with amplitude,
the result can be in raw() or numeric form.

• If i is "heading", "pitch" or "roll", then these values are extracted from the "slow" form
in the object (e.g. in headingSlow within the data slot). In that case, accessing by full name,
e.g. x[["headingSlow"]] retrieves the item as expected, but x[["heading"]] interpolates
to the faster timescale, using approx(timeSlow,headingSlow,time).

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),

800 [[,adv-method

and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,amsr-method, [[,argo-method,
[[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method, [[,echosounder-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to adv data: [[<-,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
toEnuAdv(), velocityStatistics(), xyzToEnu(), xyzToEnuAdv()

Examples

data(adv)
head(adv[["q"]]) # in raw form
head(adv[["q", "numeric"]]) # in numeric form

[[,amsr-method 801

[[,amsr-method Extract Something From an amsr Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'amsr'
x[[i, j, ...]]

Arguments

x an amsr object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Value

[[returns numeric matrix data.

Details of the Specialized Method

The [[method handles both old-format and new-format amsr objects. Old-format objects are read
by read.amsr() from from gzipped files holding data in raw format, from which [[computes
numeric results with linear relationships provided at at http://www.remss.com/missions/amsre.
By contrast, new-format objects are read from NetCDF files that hold the data as 4-byte numeric
values that are read directly, without applying a scaling transformation. The other difference is that
old-format objects contain day and night values, e.g. SSTDay and SSTNight, whereas new-format
objects contain single values that combine these, e.g. SST.

If i is "?", then the return value is a list containing four items, each of which is a character vector
holding the names of things that can be accessed with [[. The data and metadata items hold

802 [[,amsr-method

the names of entries in the object’s data and metadata slots, respectively. The dataDerived and
metadataDerived items are things that [[can compute and then return.

Data within the data slot may be found directly (for both new-format and old-format objects) or
indirectly (only for old-style objects). For example, SST works by direct lookup for new-format
objects, but it is computed using SSTNight and SSTDay for old-format objects. Use e.g. a[["?"]]
for any given object, to see what can be retrieved.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,argo-method,
[[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method, [[,echosounder-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,

[[,argo-method 803

[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to amsr data: [[<-,amsr-method, amsr, amsr-class, composite,amsr-method,
download.amsr(), plot,amsr-method, read.amsr(), subset,amsr-method, summary,amsr-method

Examples

Histogram of SST values (for an old-format dataset)
library(oce)
data(amsr)
hist(amsr[["SST"]])

[[,argo-method Extract Something From an argo Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'argo'
x[[i, j, ...]]

Arguments

x an argo object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

804 [[,argo-method

Details of the Specialized Method

Note that argo data may contain both unadjusted data and adjusted data. By default, this extraction
function refers to the former, but a preference for the latter may be set with preferAdjusted(), the
documentation of which explains (fairly complex) details.

The results from argo[[i]] or argo[[i,j]] depend on the nature of i and (if provided) j. The
details are as follows.

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items hold the names of things that can be inferred from
the object’s contents, e.g. "SA" is named in dataDerived, indicating that argo[["SA"]] is
permitted (to compute Absolute Salinity).

• If i is "profile" and j is an integer vector, then an argo object is returned, as specified by j.
For example, argo[["profile", 2:5]] is equivalent to subset(argo, profile %in% 2:5).

• If i is "CT", then Conservative Temperature is returned, as computed with gsw::gsw_CT_from_t(SA,t,p),
where first SA is computed as explained in the next item, t is in-situ temperature, and p is pres-
sure.

• If i is "N2", then the square of buoyancy is returned, as computed with swN2().

• If i is "SA", then Absolute Salinity is returned, as computed with gsw::gsw_SA_from_SP().

• If i is "sigmaTheta", then potential density anomaly (referenced to zero pressure) is com-
puted, with swSigmaTheta(), where the equation of state is taken to be getOption("oceEOS", default="gsw").

• If i is "sigma0", "sigma1", "sigma2", "sigma3" or "sigma4", then the associated func-
tion in the gsw package. For example, "sigma0" uses gsw::gsw_sigma0(), which returns
potential density anomaly referenced to 0 dbar, according to the gsw equation of state.

• If i is "theta", then potential temperature (referenced to zero pressure) is computed, with
swTheta(), where the equation of state is taken to be getOption("oceEOS", default="gsw").

• If i is "depth", then a matrix of depths is returned.

• If i is "id" or "ID", then the id element within the metadata slot is returned.

• If i is in the data slot of x, then it is returned, otherwise if it is in the metadata slot, then that
is returned, otherwise NULL is returned.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

https://CRAN.R-project.org/package=gsw

[[,argo-method 805

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method, [[,echosounder-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to argo data: [[<-,argo-method, argo, argo-class, argoGrid(), argoNames2oceNames(),
as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(), read.argo.copernicus(),
subset,argo-method, summary,argo-method

Examples

data(argo)
1. show that dataset has 223 profiles, each with 56 levels
dim(argo[["temperature"]])

2. show importance of focussing on data flagged 'good'
fivenum(argo[["salinity"]], na.rm = TRUE)
fivenum(argo[["salinity"]][argo[["salinityFlag"]] == 1], na.rm = TRUE)

806 [[,bremen-method

[[,bremen-method Extract Something From a bremen Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'bremen'
x[[i, j, ...]]

Arguments

x a bremen object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by bremen objects.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

[[,cm-method 807

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,cm-method, [[,coastline-method, [[,ctd-method, [[,echosounder-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to bremen data: [[<-,bremen-method, bremen-class, plot,bremen-method,
read.bremen(), summary,bremen-method

[[,cm-method Extract Something From a cm Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

808 [[,cm-method

Usage

S4 method for signature 'cm'
x[[i, j, ...]]

Arguments

x a cm object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by cm objects.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

[[,coastline-method 809

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,coastline-method, [[,ctd-method, [[,echosounder-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to cm data: [[<-,cm-method, applyMagneticDeclination,cm-method, as.cm(),
cm, cm-class, plot,cm-method, read.cm(), rotateAboutZ(), subset,cm-method, summary,cm-method

[[,coastline-method Extract Something From a coastline Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'coastline'
x[[i, j, ...]]

Arguments

x a coastline object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

810 [[,coastline-method

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined for coastline objects.

• In many cases, the focus will be on the coastline trace in longitude-latitude space, so x[["longitude"]]
and x[["latitude"]] are commonly used.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

[[,ctd-method 811

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,ctd-method, [[,echosounder-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to coastline data: [[<-,coastline-method, as.coastline(), coastline-class,
coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(), plot,coastline-method,
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

[[,ctd-method Extract Something From a ctd Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'ctd'
x[[i, j, ...]]

Arguments

x a ctd object.
i character value indicating the name of an item to extract.
j optional additional information on the i item.
... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

812 [[,ctd-method

Details of the Specialized Method

Some uses of [[,ctd-method involve direct retrieval of items within the data slot of the ctd object,
while other uses involve calculations based on items in that data slot. For example, all ctd objects
should hold an item named temperature in the data slot, so for example x[["temperature"]]
will retrieve that item. By contrast, x[["sigmaTheta"]] is taken to be a request to compute σθ, and
so it yields a call to swTheta(x) even if the data slot of x might happen to contain an item named
theta. This can be confusing at first, but it tends to lead to fewer surprises in everyday work,
for otherwise the user would be forced to check the contents of any ctd object under analysis, to
determine whether that item will be looked up or computed. Nothing is lost in this scheme, since
the data within the object are always accessible with oceGetData().

It should be noted that the accessor is set up to retrieve quantities in conventional units. For example,
read.ctd.sbe() is used on a .cnv file that stores pressure in psi, it will be stored in the same unit
within the ctd object, but x[["pressure"]] will return a value that has been converted to decibars.
(To get pressure in PSI, use x[["pressurePSI"]].) Similarly, temperature is returned in the ITS-90
scale, with a conversion having been performed with T90fromT68(), if the object holds temperature
in IPTS-68. Again, temperature on the IPTS-68 scale is returned with x@data$temperature.

This preference for computed over stored quantities is accomplished by first checking for computed
quantities, and then falling back to the general [[method if no match is found.

Some quantities are optionally computed. For example, some data files (e.g. the one upon which
the section() dataset is based) store nitrite along with the sum of nitrite and nitrate, the latter
with name NO2+NO3. In this case, e.g. x[["nitrate"]] will detect the setup, and subtract nitrite
from the sum to yield nitrate.

The list given below provides notes on some quantities that are available using e.g. ctd[[i]].

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items hold the names of things that can be inferred from
the object’s contents, e.g. "SA" is named in dataDerived, indicating that argo[["SA"]] is
permitted (to compute Absolute Salinity).

• If i is "conductivity" without a second argument (e.g. a[["conductivity"]]) then the
return value is the seawater electrical conductivity (if available or computable). However,
if a second argument is given, and it is string specifying a unit, then conversion is made to
that unit. The permitted units are: either "" or "ratio" (for ratio), "uS/cm", "mS/cm" and
"S/m". The calculations are based on the definition of conductivity ratio as the ratio between
measured conductivity and the standard value 4.2914 S/m.

• If i is "CT" or "Conservative Temperature" then Conservative Temperature, computed with
gsw::gsw_CT_from_t(), is returned.

• If i is "density" then seawater density, computed with swRho(x), is returned. (Note that it
may be better to call that function directly, to gain control of the choice of equation of state,
etc.)

• If i is "depth" then the depth in metres below the surface, computed with swDepth(x), is
returned.

• If i is "N2" then the square of Brunt-Vaisala frequency, computed with swN2(x), is returned.
• If i is "potential temperature" or "theta", then potential temperature in the UNESCO

formulation, computed with swTheta(x), is returned.

[[,ctd-method 813

• If i is "Rrho" then density ratio, computed with swRrho(x), is returned.

• If i is "SA" or "Absolute Salinity" then Absolute Salinity, computed with gsw::gsw_SA_from_SP(),
is returned. The calculation involves location as well as measured water properties. If the ob-
ject x does not containing information on the location, then 30N and 60W is used for the
calculation, and a warning is generated.

• If i is "sigmaTheta" then a form of potential density anomaly, computed with swSigmaTh-
eta(x), is returned.

• If i is "sigma0" then potential density anomaly referenced to a sea pressure of 0dbar (the
surface), computed with swSigma0(x), is returned.

• If i is "sigma2" then potential density anomaly referenced to a sea pressure of 1000dbar,
computed with swSigma1(x), is returned.

• If i is "sigma2" then potential density anomaly referenced to a sea pressure of 2000dbar,
computed with swSigma2(x), is returned.

• If i is "sigma3" then potential density anomaly referenced to a sea pressure of 3000dbar,
computed with swSigma3(x), is returned.

• If i is "sigma4" then potential density anomaly referenced to a sea pressure of 4000dbar,
computed with swSigma4(x), is returned.

• If i is "SP" then salinity on the Practical Salinity Scale, which is salinity in the data slot,
is returned.

• If i is "spice" then swSpice() is called to compute a quantity that is in some sense orthog-
onal to density on a T-S diagram. This is done by calling swSpice() with the eos argument
set to "unesco". In an earlier version of oce, [[could be provided with a second argument to
yield a return value for "spiciness", a variable that is described in the next item. On 2024-02-
14, this possibility was removed because it could lead to user confusion and non-reproducible
code. To get spiciness, use [["spiciness0"]].

• If i is "spiciness0", "spiciness1" or "spiciness2", then the return value comes from the
Gibbs SeaWater formulation of a variable that is in some sense orthogonal to density on a T-S
diagram. The numbers refer to the reference pressure, in units of 1000 dbar. These results are
computed with gsw::gsw_spiciness0(), etc.

• If i is "SR" then Reference Salinity, computed with gsw::gsw_SR_from_SP(), is returned.

• If i is "Sstar" then Preformed Salinity, computed with gsw::gsw_SR_from_SP(), is re-
turned. See SA for a note on longitude and latitude.

• If i is "time" then either vector of times or a single time, is returned, if available. A vector
is returned if time is present in the data slot, or if a time can be inferred from other entries
in the data slot (some of which, such as the common timeS, also employ startTime within
the metadata slot). A single value is returned if the dataset only has information on the start
time (which is stored as startTime within the metadata slot. If it is impossible to determine
the sampling time, then NULL is returned. These time variants occur, in the present version of
oce, only for data read by read.ctd.sbe(), the documentation of which explains how times
are computed.

• If i is "z" then vertical coordinate in metres above the surface, computed with swZ(x), is
returned.

814 [[,ctd-method

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,echosounder-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[<-,ctd-method, as.ctd(),
cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),

[[,echosounder-method 815

plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

data(ctd)
head(ctd[["temperature"]])

[[,echosounder-method Extract Something From an echosounder Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'echosounder'
x[[i, j, ...]]

Arguments

x an echosounder object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

816 [[,echosounder-method

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
metadataDerived item is NULL, while the dataDerived item holds "Sv" and "TS" (see
next).

• If i is "Sv", then the following is returned.

20*log10(a) -
(x@metadata$sourceLevel+x@metadata$receiverSensitivity+x@metadata$transmitPower) +
20*log10(r) +
2*absorption*r -
x@metadata$correction +
10*log10(soundSpeed*x@metadata$pulseDuration/1e6*psi/2)

• If i is "TS", then the following is returned.

20*log10(a) -
(x@metadata$sourceLevel+x@metadata$receiverSensitivity+x@metadata$transmitPower) +
40*log10(r) +
2*absorption*r +
x@metadata$correction

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

[[,g1sst-method 817

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to echosounder data: [[<-,echosounder-method, as.echosounder(), echosounder,
echosounder-class, findBottom(), plot,echosounder-method, read.echosounder(), subset,echosounder-method,
summary,echosounder-method

[[,g1sst-method Extract Something From a g1sst Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'g1sst'
x[[i, j, ...]]

Arguments

x a g1sst object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

818 [[,g1sst-method

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by g1sst objects.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

[[,gps-method 819

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,gps-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to g1sst data: [[<-,g1sst-method, g1sst-class, read.g1sst()

[[,gps-method Extract Something From a gps Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'gps'
x[[i, j, ...]]

Arguments

x a gps object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

820 [[,gps-method

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by gps objects.

• If i is "longitude" or "latitude", then the corresponding vector is returned.

• If i is "filename" then a filename is returned, if known (i.e. if the object was created with
read.gps() or with as.gps() with the filename argument specified).

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

[[,ladp-method 821

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,ladp-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to gps data: [[<-,gps-method, as.gps(), gps-class, plot,gps-method,
read.gps(), summary,gps-method

[[,ladp-method Extract Something From an ladp Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'ladp'
x[[i, j, ...]]

Arguments

x an ladp object.
i character value indicating the name of an item to extract.
j optional additional information on the i item.
... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

If i is "?", then the return value is a list containing four items, each of which is a character vector
holding the names of things that can be accessed with [[. The data and metadata items hold the
names of entries in the object’s data and metadata slots, respectively. The metadataDerived item
is NULL, and the dataDerived item holds the following synonyms: "p" for "pressure", "t" for
"temperature" and "S" for "salinity".

822 [[,ladp-method

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,landsat-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to ladp data: [[<-,ladp-method, as.ladp(), ladp-class, plot,ladp-method,
summary,ladp-method

[[,landsat-method 823

[[,landsat-method Extract Something From a landsat Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'landsat'
x[[i, j, ...]]

Arguments

x a landsat object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

If i is "?", then the return value is a list containing four items, each of which is a character vector
holding the names of things that can be accessed with [[. The data and metadata items hold the
names of entries in the object’s data and metadata slots, respectively. The data entries are difficult
to deal with directly, and so users are advised to use dataDerived instead.

Accessing band data. The data may be accessed with e.g. landsat[["panchromatic"]], for
the panchromatic band. If a new “band” is added with landsatAdd(), it may be referred by
name. In all cases, a second argument can be provided, to govern decimation. If this is miss-
ing, all the relevant data are returned. If this is present and equal to TRUE, then the data will
be automatically decimated (subsampled) to give approximately 800 elements in the longest side
of the matrix. If this is present and numerical, then its value governs decimation. For exam-
ple, landsat[["panchromatic",TRUE]] will auto-decimate, typically reducing the grid width and
height from 16000 to about 800. Similarly, landsat[["panchromatic",10]] will reduce width
and height to about 1600. On machines with limited RAM (e.g. under about 6GB), decimation is a

824 [[,landsat-method

good idea in almost all processing steps. It also makes sense for plotting, and in fact is done through
the ‘decimate‘ argument of plot,landsat-method().

Accessing derived data. One may retrieve several derived quantities that are calculated from data
stored in the object: landsat[["longitude"]] and landsat[["latitude"]] give pixel locations.
Accessing landsat[["temperature"]] creates an estimate of ground temperature as follows (see
reference 4). First, the “count value” in band 10, denoted b10 say, is scaled with coefficients stored
in the image metadata using λL = b10ML+AL where ML and AL are values stored in the metadata
(e.g. the first in landsat@metadata$header$radiance_mult_band_10) Then the result is used,
again with coefficients in the metadata, to compute Celcius temperature T = K2/ln(ϵK1/λL +
1) − 273.15. The value of the emissivity ϵ is set to unity by read.landsat(), although it can
be changed easily later, by assigning a new value to ‘landsat@metadata$emissivity‘. The default
emissivity value set by read.landsat() is from reference 11, and is within the oceanic range
suggested by reference 5. Adjustment is as simple as altering ‘landsat@metadata$emissivity‘. This
value can be a single number meant to apply for the whole image, or a matrix with dimensions
matching those of band 10. The matrix case is probably more useful for images of land, where one
might wish to account for the different emissivities of soil and vegetation, etc.; for example, Table
4 of reference 9 lists 0.9668 for soil and 0.9863 for vegetation, while Table 5 of reference 10 lists
0.971 and 0.987 for the same quantities.

Accessing metadata. Anything in the metadata can be accessed by name, e.g. landsat[["time"]].
Note that some items are simply copied over from the source data file and are not altered by e.g.
decimation. An exception is the lat-lon box, which is altered by landsatTrim().

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

[[,lisst-method 825

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,lisst-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to landsat data: [[<-,landsat-method, landsat, landsat-class, landsatAdd(),
landsatTrim(), plot,landsat-method, read.landsat(), summary,landsat-method

[[,lisst-method Extract Something From a lisst Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'lisst'
x[[i, j, ...]]

Arguments

x a lisst object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

826 [[,lisst-method

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by lisst objects.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

[[,lobo-method 827

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to lisst data: [[<-,lisst-method, as.lisst(), lisst-class, plot,lisst-method,
read.lisst(), summary,lisst-method

[[,lobo-method Extract Something From a lobo Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'lobo'
x[[i, j, ...]]

Arguments

x a lobo object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

828 [[,lobo-method

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by cm objects.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,

[[,met-method 829

[[,lisst-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to lobo data: [[<-,lobo-method, as.lobo(), lobo, lobo-class, plot,lobo-method,
read.lobo(), subset,lobo-method, summary,lobo-method

[[,met-method Extract Something From a met Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'met'
x[[i, j, ...]]

Arguments

x a met object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by met objects.

830 [[,met-method

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,oce-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to met data: [[<-,met-method, as.met(), download.met(), met, met-class,
plot,met-method, read.met(), subset,met-method, summary,met-method

[[,oce-method 831

[[,oce-method Extract Something From an oce Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'oce'
x[[i, j, ...]]

Arguments

x an oce object.
i character value indicating the name of an item to extract.
j optional additional information on the i item.
... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

832 [[,odf-method

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Many oce object classes have specialized versions of [[that handle the details in specialized way.

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,odf-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

[[,odf-method Extract Something From an odf Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'odf'
x[[i, j, ...]]

Arguments

x an odf object.
i character value indicating the name of an item to extract.
j optional additional information on the i item.
... ignored.

[[,odf-method 833

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

If i is "?", then the return value is a list containing four items, each of which is a character vector
holding the names of things that can be accessed with [[. The data and metadata items hold
the names of entries in the object’s data and metadata slots, respectively. The dataDerived and
metadataDerived items are each NULL, because no derived values are defined by odf objects.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

834 [[,rsk-method

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,rsk-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
ODFNames2oceNames(), [[<-,odf-method, odf-class, plot,odf-method, read.ctd.odf(), read.odf(),
subset,odf-method, summary,odf-method

[[,rsk-method Extract Something From a rsk Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'rsk'
x[[i, j, ...]]

Arguments

x an rsk object.
i character value indicating the name of an item to extract.
j optional additional information on the i item.
... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.
Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by rsk objects.

[[,rsk-method 835

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,sealevel-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to rsk data: [[<-,rsk-method, as.rsk(), ctdFindProfilesRBR(), plot,rsk-method,
read.rsk(), rsk, rsk-class, rskPatm(), rskToc(), subset,rsk-method, summary,rsk-method

836 [[,sealevel-method

[[,sealevel-method Extract Something From a sealevel Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'sealevel'
x[[i, j, ...]]

Arguments

x a sealevel object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by sealevel objects.

• In many cases, the focus will be on variations of sealevel elevation over time, so it is common
to use e.g. x[["time"]] and x[["elevation"]] to retrieve vectors of these quantities. An-
other common task is to retrieve the location of the observations, using e.g. x[["longitude"]]
and x[["latitude"]].

[[,sealevel-method 837

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method,
[[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to sealevel data: [[<-,sealevel-method, as.sealevel(), plot,sealevel-method,
read.sealevel(), sealevel, sealevel-class, sealevelTuktoyaktuk, subset,sealevel-method,
summary,sealevel-method

838 [[,section-method

[[,section-method Extract Something From a section Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'section'
x[[i, j, ...]]

Arguments

x a section object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

There are several possibilities, depending on the nature of i.

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. This list is compiled by
examining all the stations in the object, and reporting an entry if it is found in any one of them.
The data and metadata items hold the names of entries in the object’s data and metadata slots,
respectively. The dataDerived and metadataDerived items hold data-like and metadata-like
things that can be derived from these.

• If i is "station", then [[will return a list() of ctd objects holding the station data. If j is
also given, it specifies a station (or set of stations) to be returned. if j contains just a single
value, then that station is returned, but otherwise a list is returned. If j is an integer, then the
stations are specified by index, but if it is character, then stations are specified by the names
stored within their metadata. (Missing stations yield NULL in the return value.)

• If i is "station ID", then the IDs of the stations in the section are returned.

[[,section-method 839

• If i is "dynamic height", then an estimate of dynamic height is returned, as calculated with
swDynamicHeight(x).

• If i is "distance", then the distance along the section is returned, using geodDist().

• If i is "depth", then a vector containing the depths of the stations is returned.

• If i is "z", then a vector containing the z coordinates is returned.

• If i is "theta" or "potential temperature", then the potential temperatures of all the sta-
tions are returned in one vector. Similarly, "spice" returns the property known as spice, using
swSpice().

• If i is a string ending with "Flag", then the characters prior to that ending are taken to be the
name of a variable contained within the stations in the section. If this flag is available in the
first station of the section, then the flag values are looked up for every station.

If j is "byStation", then a list is returned, with one (unnamed) item per station.

If j is "grid:distance-pressure" or "grid:time-pressure", then a gridded representation of
i is returned, as a list with elements: distance (in km) or time (in POSIXct); pressure (in
dbar) and field (in whatever unit is used for i). See the examples in the documentation for
plot,section-method().

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

840 [[,tidem-method

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method,
[[,sealevel-method, [[,tidem-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to section data: [[<-,section-method, as.section(), handleFlags,section-method,
initializeFlagScheme,section-method, plot,section-method, read.section(), section,
section-class, sectionAddStation(), sectionGrid(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

Examples

data(section)
length(section[["latitude"]])
length(section[["latitude", "byStation"]])
Vector of all salinities, for all stations
Sv <- section[["salinity"]]
List of salinities, grouped by station
Sl <- section[["salinity", "byStation"]]
First station salinities
Sl[[1]]

[[,tidem-method Extract Something From a tidem Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'tidem'
x[[i, j, ...]]

[[,tidem-method 841

Arguments

x a tidem object.
i character value indicating the name of an item to extract.
j optional additional information on the i item.
... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. Note that
metadataDerived holds only "", because no derived metadata values are defined for tidem
objects.

• If i is "frequency" or "freq", then a vector of constituent frequencies is returned.
• If i is "amplitude" then a vector of constituent amplitudes is returned.
• If i is "phase" then a vector of constituent phases is returned.
• If i is "constituents" then a data frame holding constituent name, frequency, amplitude and

phase is returned.
• If i is a vector of constituent names, then the return value is as for "constituents", except

that only the named those constituents are returned.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

842 [[,topo-method

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method,
[[,sealevel-method, [[,section-method, [[,topo-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to tides: [[<-,tidem-method, as.tidem(), plot,tidem-method, predict.tidem(),
summary,tidem-method, tidalCurrent, tidedata, tidem, tidem-class, tidemAstron(), tidemVuf(),
webtide()

[[,topo-method Extract Something From a topo Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'topo'
x[[i, j, ...]]

Arguments

x a topo object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

[[,topo-method 843

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
available for topo objects.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

844 [[,windrose-method

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method,
[[,sealevel-method, [[,section-method, [[,tidem-method, [[,windrose-method, [[,xbt-method,
[[<-,adv-method

Other things related to topo data: [[<-,topo-method, as.topo(), download.topo(), plot,topo-method,
read.topo(), subset,topo-method, summary,topo-method, topo-class, topoInterpolate(),
topoWorld

Examples

data(topoWorld)
dim(topoWorld[["z"]])

[[,windrose-method Extract Something From a windrose Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'windrose'
x[[i, j, ...]]

Arguments

x a windrose object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

[[,windrose-method 845

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
metadataDerived and dataDerived items are both NULL.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

846 [[,xbt-method

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method,
[[,sealevel-method, [[,section-method, [[,tidem-method, [[,topo-method, [[,xbt-method,
[[<-,adv-method

Other things related to windrose data: [[<-,windrose-method, as.windrose(), plot,windrose-method,
summary,windrose-method, windrose-class

[[,xbt-method Extract Something From an xbt Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 method for signature 'xbt'
x[[i, j, ...]]

Arguments

x an xbt object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

Details

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

[[,xbt-method 847

Details of the Specialized Method

• If i is "?", then the return value is a list containing four items, each of which is a character
vector holding the names of things that can be accessed with [[. The data and metadata
items hold the names of entries in the object’s data and metadata slots, respectively. The
dataDerived and metadataDerived items are each NULL, because no derived values are
defined by cm objects.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,

848 [[<-,adp-method

[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method,
[[,sealevel-method, [[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method,
[[<-,adv-method

Other things related to xbt data: [[<-,xbt-method, as.xbt(), plot,xbt-method, read.xbt(),
read.xbt.noaa1(), subset,xbt-method, summary,xbt-method, xbt, xbt-class, xbt.edf

[[<-,adp-method Replace Parts of an adp Object

Description

In addition to the usual insertion of elements by name, note that e.g. pitch gets stored into
pitchSlow.

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'adp'
x[[i, j, ...]] <- value

Arguments

x an adp object.
i character value naming the item to replace.
j optional additional information on the i item.
... optional additional information (ignored).
value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

[[<-,adv-method 849

Author(s)

Dan Kelley

See Also

Other functions that replace parts of oce objects: [[<-,amsr-method, [[<-,argo-method, [[<-,bremen-method,
[[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method, [[<-,g1sst-method,
[[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to adp data: [[,adp-method, ad2cpCodeToName(), ad2cpHeaderValue(),
adp, adp-class, adpAd2cpFileTrim(), adpConvertRawToNumeric(), adpEnsembleAverage(),
adpFlagPastBoundary(), adpRdiFileTrim(), adp_rdi.000, applyMagneticDeclination,adp-method,
as.adp(), beamName(), beamToXyz(), beamToXyzAdp(), beamToXyzAdpAD2CP(), beamToXyzAdv(),
beamUnspreadAdp(), binmapAdp(), enuToOther(), enuToOtherAdp(), handleFlags,adp-method,
is.ad2cp(), plot,adp-method, read.adp(), read.adp.ad2cp(), read.adp.nortek(), read.adp.rdi(),
read.adp.sontek(), read.adp.sontek.serial(), read.aquadopp(), read.aquadoppHR(), read.aquadoppProfiler(),
rotateAboutZ(), setFlags,adp-method, subset,adp-method, subtractBottomVelocity(), summary,adp-method,
toEnu(), toEnuAdp(), velocityStatistics(), xyzToEnu(), xyzToEnuAdp(), xyzToEnuAdpAD2CP()

[[<-,adv-method Replace Parts of an adv Object

Description

Generally, the [[method lets users extract information from oce objects, without having to know
the details of the internal storage. For many oce sub-classes, [[can also return quantities that are
computed from the object’s contents.

Usage

S4 replacement method for signature 'adv'
x[[i, j, ...]] <- value

Arguments

x an adv object.

i character value indicating the name of an item to extract.

j optional additional information on the i item.

... ignored.

value The value to be inserted into x.

850 [[<-,adv-method

Details

If the adv object holds slow variables (i.e. if timeSlow is in the data slot), then assigning to .e.g.
heading will not actually assign to a variable of that name, but instead assigns to headingSlow. To
catch misapplication of this rule, an error message will be issued if the assigned value is not of the
same length as timeSlow.

A two-step process is used to try to find the requested information. First, a class-specific function
is used (see “Details of the Specialized Method”). If this yields nothing, then a general method is
used (see “Details of the General Method”). If both methods fail, then [[returns NULL.

Some understanding of the subclass is required to know what can be retrieved with [[. When
dealing with an unfamiliar subclass, it can be useful to first use x[["?"]] to get a listing of the
retrievable items. See “Details of the Specialized Method” for more information.

Details of the General Method

Note: the text of this section is identical for all oce subclasses, and so some of what you read here
may not be relevant to the class being described in this help page.

If the specialized method produces no matches, the following generalized method is applied. As
with the specialized method, the procedure hinges first on the values of i and, optionally, j. The
work proceeds in steps, by testing a sequence of possible conditions in sequence.

1. A check is made as to whether i names one of the standard oce slots. If so, [[returns the
slot contents of that slot. Thus, x[["metadata"]] will retrieve the metadata slot, while
x[["data"]] and x[["processingLog"]] return those slots.

2. If i is a string ending in the "Unit", then the characters preceding that string are taken to be
the name of an item in the data object, and a list containing the unit is returned (or NULL if
there is no such unit). This list consists of an item named unit, which is an expression(),
and an item named scale, which is a string describing the measurement scale. If the string
ends in " unit", e.g. x[["temperature unit"]] (note the space), then just the expression is
returned, and if it ends in " scale", then just the scale is returned.

3. If i is a string ending in "Flag", then the corresponding data-quality flag is returned (or NULL
if there is no such flag).

4. If the object holds hydrographic information (pressure, salinity, temperature, longitude and
latitude) then another set of possibilities arises. If i is "sigmaTheta", then the value of
swSigmaTheta() is called with x as the sole argument, and the results are returned. Simi-
larly, swSigma0() is used if i="sigma0", and swSpice() is used if i="spice". Of course,
these actions only make sense for objects that contain the relevant items within their data slot.

5. After these possibilities are eliminated, the action depends on whether j has been provided. If
j is not provided, or is the string "", then i is sought in the metadata slot, and then in the data
slot, returning whichever is found first. In other words, if j is not provided, the metadata slot
takes preference over the data slot. However, if j is provided, then it must be either the string
"metadata" or "data", and it directs where to look.

6. If none of the above-listed conditions holds, then NULL is returned.

Author(s)

Dan Kelley

[[<-,amsr-method 851

See Also

Other functions that extract parts of oce objects: [[,adp-method, [[,adv-method, [[,amsr-method,
[[,argo-method, [[,bremen-method, [[,cm-method, [[,coastline-method, [[,ctd-method,
[[,echosounder-method, [[,g1sst-method, [[,gps-method, [[,ladp-method, [[,landsat-method,
[[,lisst-method, [[,lobo-method, [[,met-method, [[,oce-method, [[,odf-method, [[,rsk-method,
[[,sealevel-method, [[,section-method, [[,tidem-method, [[,topo-method, [[,windrose-method,
[[,xbt-method

Other things related to adv data: [[,adv-method, adv, adv-class, advSontekAdrFileTrim(),
applyMagneticDeclination,adv-method, beamName(), beamToXyz(), enuToOther(), enuToOtherAdv(),
plot,adv-method, read.adv(), read.adv.nortek(), read.adv.sontek.adr(), read.adv.sontek.serial(),
read.adv.sontek.text(), rotateAboutZ(), subset,adv-method, summary,adv-method, toEnu(),
toEnuAdv(), velocityStatistics(), xyzToEnu(), xyzToEnuAdv()

[[<-,amsr-method Replace Parts of an amsr Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'amsr'
x[[i, j, ...]] <- value

Arguments

x an amsr object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

852 [[<-,argo-method

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,argo-method, [[<-,bremen-method,
[[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method, [[<-,g1sst-method,
[[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to amsr data: [[,amsr-method, amsr, amsr-class, composite,amsr-method,
download.amsr(), plot,amsr-method, read.amsr(), subset,amsr-method, summary,amsr-method

[[<-,argo-method Replace Parts of an argo Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'argo'
x[[i, j, ...]] <- value

Arguments

x an argo object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

[[<-,bremen-method 853

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,bremen-method,
[[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method, [[<-,g1sst-method,
[[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to argo data: [[,argo-method, argo, argo-class, argoGrid(), argoNames2oceNames(),
as.argo(), handleFlags,argo-method, plot,argo-method, read.argo(), read.argo.copernicus(),
subset,argo-method, summary,argo-method

[[<-,bremen-method Replace Parts of a bremen Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'bremen'
x[[i, j, ...]] <- value

854 [[<-,bremen-method

Arguments

x a bremen object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method, [[<-,g1sst-method,
[[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to bremen data: [[,bremen-method, bremen-class, plot,bremen-method,
read.bremen(), summary,bremen-method

[[<-,cm-method 855

[[<-,cm-method Replace Parts of a cm Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'cm'
x[[i, j, ...]] <- value

Arguments

x a cm object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

856 [[<-,coastline-method

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method,
[[<-,sealevel-method, [[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method,
[[<-,xbt-method

Other things related to cm data: [[,cm-method, applyMagneticDeclination,cm-method, as.cm(),
cm, cm-class, plot,cm-method, read.cm(), rotateAboutZ(), subset,cm-method, summary,cm-method

[[<-,coastline-method Replace Parts of a coastline Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'coastline'
x[[i, j, ...]] <- value

Arguments

x a coastline object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

[[<-,ctd-method 857

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

Author(s)

Dan Kelley

See Also

Other things related to coastline data: [[,coastline-method, as.coastline(), coastline-class,
coastlineBest(), coastlineCut(), coastlineWorld, download.coastline(), plot,coastline-method,
read.coastline.openstreetmap(), read.coastline.shapefile(), subset,coastline-method,
summary,coastline-method

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,ctd-method, [[<-,echosounder-method, [[<-,g1sst-method,
[[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

[[<-,ctd-method Replace Parts of a ctd Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'ctd'
x[[i, j, ...]] <- value

Arguments

x a ctd object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

858 [[<-,ctd-method

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method,
[[<-,sealevel-method, [[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method,
[[<-,xbt-method

Other things related to ctd data: CTD_BCD2014666_008_1_DN.ODF.gz, [[,ctd-method, as.ctd(),
cnvName2oceName(), ctd, ctd-class, ctd.cnv.gz, ctdDecimate(), ctdFindProfiles(), ctdFindProfilesRBR(),
ctdRaw, ctdRepair(), ctdTrim(), ctd_aml_type1.csv.gz, ctd_aml_type3.csv.gz, d200321-001.ctd.gz,
d201211_0011.cnv.gz, handleFlags,ctd-method, initialize,ctd-method, initializeFlagScheme,ctd-method,
oceNames2whpNames(), oceUnits2whpUnits(), plot,ctd-method, plotProfile(), plotScan(),
plotTS(), read.ctd(), read.ctd.aml(), read.ctd.itp(), read.ctd.odf(), read.ctd.odv(),
read.ctd.saiv(), read.ctd.sbe(), read.ctd.ssda(), read.ctd.woce(), read.ctd.woce.other(),
setFlags,ctd-method, subset,ctd-method, summary,ctd-method, woceNames2oceNames(), woceUnit2oceUnit(),
write.ctd()

Examples

data(ctd)
summary(ctd)
Move the CTD profile a nautical mile north.
ctd[["latitude"]] <- 1 / 60 + ctd[["latitude"]] # acts in metadata
Increase the salinity by 0.01.
ctd[["salinity"]] <- 0.01 + ctd[["salinity"]] # acts in data
summary(ctd)

[[<-,echosounder-method 859

[[<-,echosounder-method

Replace Parts of an echosounder Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'echosounder'
x[[i, j, ...]] <- value

Arguments

x an echosounder object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

860 [[<-,g1sst-method

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,g1sst-method,
[[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to echosounder data: [[,echosounder-method, as.echosounder(), echosounder,
echosounder-class, findBottom(), plot,echosounder-method, read.echosounder(), subset,echosounder-method,
summary,echosounder-method

[[<-,g1sst-method Replace Parts of a g1sst Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'g1sst'
x[[i, j, ...]] <- value

Arguments

x a g1sst object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

[[<-,gps-method 861

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to g1sst data: [[,g1sst-method, g1sst-class, read.g1sst()

[[<-,gps-method Replace Parts of a gps Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'gps'
x[[i, j, ...]] <- value

Arguments

x a gps object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

862 [[<-,ladp-method

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to gps data: [[,gps-method, as.gps(), gps-class, plot,gps-method, read.gps(),
summary,gps-method

[[<-,ladp-method Replace Parts of an ladp Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'ladp'
x[[i, j, ...]] <- value

Arguments

x an ladp object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

[[<-,landsat-method 863

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,landsat-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to ladp data: [[,ladp-method, as.ladp(), ladp-class, plot,ladp-method,
summary,ladp-method

[[<-,landsat-method Replace Parts of a landsat Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'landsat'
x[[i, j, ...]] <- value

864 [[<-,landsat-method

Arguments

x a landsat object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,lisst-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to landsat data: [[,landsat-method, landsat, landsat-class, landsatAdd(),
landsatTrim(), plot,landsat-method, read.landsat(), summary,landsat-method

[[<-,lisst-method 865

[[<-,lisst-method Replace Parts of a lisst Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'lisst'
x[[i, j, ...]] <- value

Arguments

x a lisst object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

866 [[<-,lobo-method

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lobo-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to lisst data: [[,lisst-method, as.lisst(), lisst-class, plot,lisst-method,
read.lisst(), summary,lisst-method

[[<-,lobo-method Replace Parts of a lobo Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'lobo'
x[[i, j, ...]] <- value

Arguments

x a lobo object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

[[<-,met-method 867

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to lobo data: [[,lobo-method, as.lobo(), lobo, lobo-class, plot,lobo-method,
read.lobo(), subset,lobo-method, summary,lobo-method

[[<-,met-method Replace Parts of a met Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'met'
x[[i, j, ...]] <- value

Arguments

x a met object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

868 [[<-,oce-method

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to met data: [[,met-method, as.met(), download.met(), met, met-class,
plot,met-method, read.met(), subset,met-method, summary,met-method

[[<-,oce-method Replace Parts of an oce Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'oce'
x[[i, j, ...]] <- value

Arguments

x an oce object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

[[<-,odf-method 869

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

Author(s)

Dan Kelley

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,odf-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

[[<-,odf-method Replace Parts of an odf Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'odf'
x[[i, j, ...]] <- value

870 [[<-,odf-method

Arguments

x an odf object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,rsk-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to odf data: CTD_BCD2014666_008_1_DN.ODF.gz, ODF2oce(), ODFListFromHeader(),
ODFNames2oceNames(), [[,odf-method, odf-class, plot,odf-method, read.ctd.odf(), read.odf(),
subset,odf-method, summary,odf-method

[[<-,rsk-method 871

[[<-,rsk-method Replace Parts of an rsk Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'rsk'
x[[i, j, ...]] <- value

Arguments

x an rsk object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

872 [[<-,sealevel-method

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,sealevel-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to rsk data: [[,rsk-method, as.rsk(), ctdFindProfilesRBR(), plot,rsk-method,
read.rsk(), rsk, rsk-class, rskPatm(), rskToc(), subset,rsk-method, summary,rsk-method

[[<-,sealevel-method Replace Parts of a sealevel Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'sealevel'
x[[i, j, ...]] <- value

Arguments

x a sealevel object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

[[<-,section-method 873

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method,
[[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to sealevel data: [[,sealevel-method, as.sealevel(), plot,sealevel-method,
read.sealevel(), sealevel, sealevel-class, sealevelTuktoyaktuk, subset,sealevel-method,
summary,sealevel-method

[[<-,section-method Replace Parts of a section Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'section'
x[[i, j, ...]] <- value

Arguments

x a section object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

874 [[<-,tidem-method

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

Author(s)

Dan Kelley

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method,
[[<-,sealevel-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method, [[<-,xbt-method

Other things related to section data: [[,section-method, as.section(), handleFlags,section-method,
initializeFlagScheme,section-method, plot,section-method, read.section(), section,
section-class, sectionAddStation(), sectionGrid(), sectionSmooth(), sectionSort(),
subset,section-method, summary,section-method

Examples

1. Change section ID from a03 to A03
data(section)
section[["sectionId"]]
section[["sectionId"]] <- toupper(section[["sectionId"]])
section[["sectionId"]]
2. Add a millidegree to temperatures at station 10
section[["station", 10]][["temperature"]] <-

1e-3 + section[["station", 10]][["temperature"]]

[[<-,tidem-method Replace Parts of a tidem Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

[[<-,tidem-method 875

Usage

S4 replacement method for signature 'tidem'
x[[i, j, ...]] <- value

Arguments

x a tidem object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method,
[[<-,sealevel-method, [[<-,section-method, [[<-,topo-method, [[<-,windrose-method,
[[<-,xbt-method

Other things related to tides: [[,tidem-method, as.tidem(), plot,tidem-method, predict.tidem(),
summary,tidem-method, tidalCurrent, tidedata, tidem, tidem-class, tidemAstron(), tidemVuf(),
webtide()

876 [[<-,topo-method

[[<-,topo-method Replace Parts of a topo Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'topo'
x[[i, j, ...]] <- value

Arguments

x a topo object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

[[<-,windrose-method 877

See Also

Other things related to topo data: [[,topo-method, as.topo(), download.topo(), plot,topo-method,
read.topo(), subset,topo-method, summary,topo-method, topo-class, topoInterpolate(),
topoWorld

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method,
[[<-,sealevel-method, [[<-,section-method, [[<-,tidem-method, [[<-,windrose-method,
[[<-,xbt-method

[[<-,windrose-method Replace Parts of a windrose Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'windrose'
x[[i, j, ...]] <- value

Arguments

x a windrose object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

878 [[<-,xbt-method

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method,
[[<-,sealevel-method, [[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,xbt-method

Other things related to windrose data: [[,windrose-method, as.windrose(), plot,windrose-method,
summary,windrose-method, windrose-class

[[<-,xbt-method Replace Parts of an xbt Object

Description

The [[<- method works for all oce objects. The purpose, as with the related extraction method,
[[, is to insulate users from the internal details of oce objects, by looking for items within the
various storage slots of the object. Items not actually stored can also be replaced, including units
and data-quality flags.

Usage

S4 replacement method for signature 'xbt'
x[[i, j, ...]] <- value

Arguments

x an xbt object.

i character value naming the item to replace.

j optional additional information on the i item.

... optional additional information (ignored).

value The value to be placed into x, somewhere.

[[<-,xbt-method 879

Details

As with [[method, the procedure works in steps.

First, the metadata slot of x is checked to see whether it contains something named with i. If so,
then the named item is replaced with value.

Otherwise, if the string value of i ends in Unit, then the characters preceding that are taken as the
name of a variable, and the metadata slot of x is updated to store that unit, e.g.

x[["temperatureUnits"]] <- list(unit=expression(degree*F),scale="")

Similarly, if i ends in Flag, then quality-control flags are set up as defined by result, e.g.

o[["temperatureFlags"]] <- c(2,4,2,2)

Otherwise, pmatch() is used for a partial-string match with the names of the items that are in the
data slot of x. The first item found (if any) is then updated to hold the value result.

If none of these conditions is met, a warning is issued.

See Also

Other functions that replace parts of oce objects: [[<-,adp-method, [[<-,amsr-method, [[<-,argo-method,
[[<-,bremen-method, [[<-,cm-method, [[<-,coastline-method, [[<-,ctd-method, [[<-,echosounder-method,
[[<-,g1sst-method, [[<-,gps-method, [[<-,ladp-method, [[<-,landsat-method, [[<-,lisst-method,
[[<-,lobo-method, [[<-,met-method, [[<-,oce-method, [[<-,odf-method, [[<-,rsk-method,
[[<-,sealevel-method, [[<-,section-method, [[<-,tidem-method, [[<-,topo-method, [[<-,windrose-method

Other things related to xbt data: [[,xbt-method, as.xbt(), plot,xbt-method, read.xbt(),
read.xbt.noaa1(), subset,xbt-method, summary,xbt-method, xbt, xbt-class, xbt.edf

Index

∗ bin-related functions
binApply1D, 91
binApply2D, 92
binAverage, 93
binCount1D, 95
binCount2D, 96
binMean1D, 98
binMean2D, 99

∗ classes holding satellite data
amsr-class, 36
g1sst-class, 191
landsat-class, 253
satellite-class, 619

∗ classes provided by oce
adp-class, 19
adv-class, 32
argo-class, 48
bremen-class, 103
cm-class, 106
coastline-class, 112
ctd-class, 130
lisst-class, 260
lobo-class, 262
met-class, 313
oce-class, 322
odf-class, 386
rsk-class, 613
sealevel-class, 621
section-class, 625
topo-class, 764
windrose-class, 783
xbt-class, 788

∗ datasets provided with oce
adp, 18
adv, 31
amsr, 35
argo, 47
cm, 105
coastlineWorld, 115

ctd, 129
ctdRaw, 140
echosounder, 175
landsat, 252
lisst, 259
lobo, 261
met, 312
ocecolors, 336
rsk, 612
sealevel, 620
sealevelTuktoyaktuk, 622
section, 624
topoWorld, 766
wind, 781
xbt, 787

∗ functions related to maps
formatPosition, 189
lonlat2map, 266
lonlat2utm, 267
map2lonlat, 275
mapArrows, 276
mapAxis, 278
mapContour, 280
mapCoordinateSystem, 282
mapDirectionField, 283
mapGrid, 286
mapImage, 288
mapLines, 291
mapLocator, 292
mapLongitudeLatitudeXY, 293
mapPlot, 294
mapPoints, 303
mapPolygon, 304
mapScalebar, 306
mapText, 307
mapTissot, 308
oceCRS, 367
oceProject, 378
shiftLongitude, 641

880

INDEX 881

usrLonLat, 773
utm2lonlat, 774

∗ functions relating to data-quality flags
defaultFlags, 156
handleFlags, 203
handleFlags,adp-method, 205
handleFlags,argo-method, 207
handleFlags,ctd-method, 209
handleFlags,oce-method, 212
handleFlags,section-method, 213
initializeFlags, 225
initializeFlags,adp-method, 226
initializeFlags,oce-method, 227
initializeFlagScheme, 228
initializeFlagScheme,ctd-method,

231
initializeFlagScheme,oce-method,

233
initializeFlagScheme,section-method,

236
initializeFlagSchemeInternal, 239
initializeFlagsInternal, 241
setFlags, 634
setFlags,adp-method, 635
setFlags,ctd-method, 637
setFlags,oce-method, 640

∗ functions relating to geodesy
geodDist, 193
geodGc, 195
geodXy, 196
geodXyInverse, 198

∗ functions relating to time
decodeTime, 154

∗ functions that calculate seawater
properties

computableWaterProperties, 123
locationForGsw, 263
swAbsoluteSalinity, 688
swAlpha, 689
swAlphaOverBeta, 690
swBeta, 692
swConservativeTemperature, 693
swCSTp, 694
swDepth, 696
swDynamicHeight, 698
swLapseRate, 700
swN2, 701
swPressure, 703

swRho, 705
swRrho, 707
swSCTp, 708
swSigma, 710
swSigma0, 712
swSigma1, 713
swSigma2, 714
swSigma3, 716
swSigma4, 717
swSigmaT, 718
swSigmaTheta, 720
swSoundAbsorption, 722
swSoundSpeed, 723
swSpecificHeat, 725
swSpice, 726
swSpiciness0, 728
swSpiciness1, 729
swSpiciness2, 730
swSR, 731
swSstar, 732
swSTrho, 733
swTFreeze, 735
swThermalConductivity, 737
swTheta, 738
swTSrho, 740
swViscosity, 742
swZ, 743
T68fromT90, 744
T90fromT48, 745
T90fromT68, 746

∗ functions that calculate seawater spiciness
swSpice, 726
swSpiciness0, 728
swSpiciness1, 729
swSpiciness2, 730

∗ functions that concatenate oce objects
concatenate, 124
concatenate,adp-method, 125
concatenate,list-method, 126
concatenate,oce-method, 127

∗ functions that convert variable names to
the oce convention

argoNames2oceNames, 52
bodcNames2oceNames, 101
metNames2oceNames, 314
ODFNames2oceNames, 389
woceNames2oceNames, 784

∗ functions that create composite objects

882 INDEX

composite, 121
composite,amsr-method, 122
composite,list-method, 123

∗ functions that create labels
labelWithUnit, 250
resizableLabel, 608

∗ functions that download files
download.amsr, 160
download.coastline, 162
download.met, 164
download.topo, 166

∗ functions that extract parts of oce objects
[[,adp-method, 796
[[,adv-method, 798
[[,amsr-method, 801
[[,argo-method, 803
[[,bremen-method, 806
[[,cm-method, 807
[[,coastline-method, 809
[[,ctd-method, 811
[[,echosounder-method, 815
[[,g1sst-method, 817
[[,gps-method, 819
[[,ladp-method, 821
[[,landsat-method, 823
[[,lisst-method, 825
[[,lobo-method, 827
[[,met-method, 829
[[,oce-method, 831
[[,odf-method, 832
[[,rsk-method, 834
[[,sealevel-method, 836
[[,section-method, 838
[[,tidem-method, 840
[[,topo-method, 842
[[,windrose-method, 844
[[,xbt-method, 846
[[<-,adv-method, 849

∗ functions that interpret variable names
and units from headers

cnvName2oceName, 107
oceNames2whpNames, 376
oceUnits2whpUnits, 385
ODFNames2oceNames, 389
unitFromString, 770
unitFromStringRsk, 771
woceNames2oceNames, 784
woceUnit2oceUnit, 785

∗ functions that plot oce data
download.amsr, 160
plot,adp-method, 394
plot,adv-method, 401
plot,amsr-method, 404
plot,argo-method, 407
plot,bremen-method, 409
plot,cm-method, 410
plot,coastline-method, 412
plot,ctd-method, 416
plot,gps-method, 426
plot,ladp-method, 428
plot,landsat-method, 429
plot,lisst-method, 431
plot,lobo-method, 433
plot,met-method, 434
plot,odf-method, 436
plot,rsk-method, 437
plot,satellite-method, 440
plot,sealevel-method, 440
plot,section-method, 442
plot,tidem-method, 449
plot,topo-method, 450
plot,windrose-method, 453
plot,xbt-method, 454
plotProfile, 458
plotScan, 462
plotTS, 467
tidem-class, 756

∗ functions that read adp data
read.adp, 483
read.adp.ad2cp, 485
read.adp.nortek, 489
read.adp.rdi, 492
read.adp.sontek, 499
read.adp.sontek.serial, 502
read.aquadopp, 532
read.aquadoppHR, 535
read.aquadoppProfiler, 538

∗ functions that read ctd data
read.ctd, 552
read.ctd.aml, 554
read.ctd.itp, 556
read.ctd.odf, 559
read.ctd.saiv, 564
read.ctd.sbe, 566
read.ctd.ssda, 570
read.ctd.woce, 572

INDEX 883

read.ctd.woce.other, 574
∗ functions that replace parts of oce objects

[[<-,adp-method, 848
[[<-,amsr-method, 851
[[<-,argo-method, 852
[[<-,bremen-method, 853
[[<-,cm-method, 855
[[<-,coastline-method, 856
[[<-,ctd-method, 857
[[<-,echosounder-method, 859
[[<-,g1sst-method, 860
[[<-,gps-method, 861
[[<-,ladp-method, 862
[[<-,landsat-method, 863
[[<-,lisst-method, 865
[[<-,lobo-method, 866
[[<-,met-method, 867
[[<-,oce-method, 868
[[<-,odf-method, 869
[[<-,rsk-method, 871
[[<-,sealevel-method, 872
[[<-,section-method, 873
[[<-,tidem-method, 874
[[<-,topo-method, 876
[[<-,windrose-method, 877
[[<-,xbt-method, 878

∗ functions that subset oce objects
subset,adp-method, 646
subset,adv-method, 647
subset,amsr-method, 648
subset,argo-method, 649
subset,cm-method, 651
subset,coastline-method, 652
subset,ctd-method, 653
subset,echosounder-method, 655
subset,lobo-method, 656
subset,met-method, 657
subset,oce-method, 658
subset,odf-method, 659
subset,rsk-method, 660
subset,sealevel-method, 661
subset,section-method, 662
subset,topo-method, 664
subset,xbt-method, 665

∗ functions that trim data files
adpAd2cpFileTrim, 24
adpRdiFileTrim, 29
advSontekAdrFileTrim, 33

oceFileTrim, 372
∗ raw datasets

adp_rdi.000, 30
ctd.cnv.gz, 132
ctd_aml_type1.csv.gz, 145
ctd_aml_type3.csv.gz, 146
CTD_BCD2014666_008_1_DN.ODF.gz,

147
d200321-001.ctd.gz, 150
d201211_0011.cnv.gz, 151
xbt.edf, 789

∗ satellite datasets provided with oce
amsr, 35
landsat, 252

∗ things related to ad2cp data
ad2cpCodeToName, 15
ad2cpHeaderValue, 16
adpAd2cpFileTrim, 24
is.ad2cp, 246
read.adp.ad2cp, 485

∗ things related to adp data
[[,adp-method, 796
[[<-,adp-method, 848
ad2cpCodeToName, 15
ad2cpHeaderValue, 16
adp, 18
adp-class, 19
adp_rdi.000, 30
adpAd2cpFileTrim, 24
adpConvertRawToNumeric, 25
adpEnsembleAverage, 26
adpFlagPastBoundary, 28
adpRdiFileTrim, 29
applyMagneticDeclination,adp-method,

41
as.adp, 55
beamName, 84
beamToXyz, 85
beamToXyzAdp, 86
beamToXyzAdpAD2CP, 87
beamToXyzAdv, 88
beamUnspreadAdp, 89
binmapAdp, 97
enuToOther, 178
enuToOtherAdp, 179
handleFlags,adp-method, 205
is.ad2cp, 246
plot,adp-method, 394

884 INDEX

read.adp, 483
read.adp.ad2cp, 485
read.adp.nortek, 489
read.adp.rdi, 492
read.adp.sontek, 499
read.adp.sontek.serial, 502
read.aquadopp, 532
read.aquadoppHR, 535
read.aquadoppProfiler, 538
rotateAboutZ, 611
setFlags,adp-method, 635
subset,adp-method, 646
subtractBottomVelocity, 666
summary,adp-method, 667
toEnu, 761
toEnuAdp, 762
velocityStatistics, 777
xyzToEnu, 790
xyzToEnuAdp, 791
xyzToEnuAdpAD2CP, 793

∗ things related to adv data
[[,adv-method, 798
[[<-,adv-method, 849
adv, 31
adv-class, 32
advSontekAdrFileTrim, 33
applyMagneticDeclination,adv-method,

42
beamName, 84
beamToXyz, 85
enuToOther, 178
enuToOtherAdv, 181
plot,adv-method, 401
read.adv, 504
read.adv.nortek, 510
read.adv.sontek.adr, 515
read.adv.sontek.serial, 521
read.adv.sontek.text, 526
rotateAboutZ, 611
subset,adv-method, 647
summary,adv-method, 668
toEnu, 761
toEnuAdv, 763
velocityStatistics, 777
xyzToEnu, 790
xyzToEnuAdv, 794

∗ things related to amsr data
[[,amsr-method, 801

[[<-,amsr-method, 851
amsr, 35
amsr-class, 36
composite,amsr-method, 122
download.amsr, 160
plot,amsr-method, 404
read.amsr, 532
subset,amsr-method, 648
summary,amsr-method, 668

∗ things related to argo data
[[,argo-method, 803
[[<-,argo-method, 852
argo, 47
argo-class, 48
argoGrid, 50
argoNames2oceNames, 52
as.argo, 56
handleFlags,argo-method, 207
plot,argo-method, 407
read.argo, 540
read.argo.copernicus, 544
subset,argo-method, 649
summary,argo-method, 669

∗ things related to astronomy
angle2hms, 38
eclipticalToEquatorial, 177
equatorialToLocalHorizontal, 182
julianCenturyAnomaly, 247
julianDay, 248
moonAngle, 315
siderealTime, 643
sunAngle, 685
sunDeclinationRightAscension, 687

∗ things related to bremen data
[[,bremen-method, 806
[[<-,bremen-method, 853
bremen-class, 103
plot,bremen-method, 409
read.bremen, 545
summary,bremen-method, 670

∗ things related to cm data
[[,cm-method, 807
[[<-,cm-method, 855
applyMagneticDeclination,cm-method,

44
as.cm, 57
cm, 105
cm-class, 106

INDEX 885

plot,cm-method, 410
read.cm, 546
rotateAboutZ, 611
subset,cm-method, 651
summary,cm-method, 670

∗ things related to coastline data
[[,coastline-method, 809
[[<-,coastline-method, 856
as.coastline, 59
coastline-class, 112
coastlineBest, 113
coastlineCut, 114
coastlineWorld, 115
download.coastline, 162
plot,coastline-method, 412
read.coastline.openstreetmap, 550
read.coastline.shapefile, 551
subset,coastline-method, 652
summary,coastline-method, 671

∗ things related to colors
colormap, 115
colormapGMT, 120
ocecolors, 336
oceColors9B, 338
oceColorsCDOM, 339
oceColorsChlorophyll, 340
oceColorsClosure, 342
oceColorsDensity, 343
oceColorsFreesurface, 344
oceColorsGebco, 346
oceColorsJet, 347
oceColorsOxygen, 348
oceColorsPalette, 350
oceColorsPAR, 351
oceColorsPhase, 352
oceColorsSalinity, 354
oceColorsTemperature, 355
oceColorsTurbidity, 357
oceColorsTurbo, 359
oceColorsTwo, 360
oceColorsVelocity, 361
oceColorsViridis, 362
oceColorsVorticity, 364

∗ things related to ctd data
[[,ctd-method, 811
[[<-,ctd-method, 857
as.ctd, 60
cnvName2oceName, 107

ctd, 129
ctd-class, 130
ctd.cnv.gz, 132
ctd_aml_type1.csv.gz, 145
ctd_aml_type3.csv.gz, 146
CTD_BCD2014666_008_1_DN.ODF.gz,

147
ctdDecimate, 133
ctdFindProfiles, 136
ctdFindProfilesRBR, 139
ctdRaw, 140
ctdRepair, 141
ctdTrim, 142
d200321-001.ctd.gz, 150
d201211_0011.cnv.gz, 151
handleFlags,ctd-method, 209
initialize,ctd-method, 223
initializeFlagScheme,ctd-method,

231
oceNames2whpNames, 376
oceUnits2whpUnits, 385
plot,ctd-method, 416
plotProfile, 458
plotScan, 462
plotTS, 467
read.ctd, 552
read.ctd.aml, 554
read.ctd.itp, 556
read.ctd.odf, 559
read.ctd.odv, 562
read.ctd.saiv, 564
read.ctd.sbe, 566
read.ctd.ssda, 570
read.ctd.woce, 572
read.ctd.woce.other, 574
setFlags,ctd-method, 637
subset,ctd-method, 653
summary,ctd-method, 672
woceNames2oceNames, 784
woceUnit2oceUnit, 785
write.ctd, 786

∗ things related to echosounder data
[[,echosounder-method, 815
[[<-,echosounder-method, 859
as.echosounder, 64
echosounder, 175
echosounder-class, 176
findBottom, 186

886 INDEX

plot,echosounder-method, 423
read.echosounder, 576
subset,echosounder-method, 655
summary,echosounder-method, 673

∗ things related to g1sst data
[[,g1sst-method, 817
[[<-,g1sst-method, 860
g1sst-class, 191
read.g1sst, 577

∗ things related to gps data
[[,gps-method, 819
[[<-,gps-method, 861
as.gps, 65
gps-class, 200
plot,gps-method, 426
read.gps, 579
summary,gps-method, 673

∗ things related to ladp data
[[,ladp-method, 821
[[<-,ladp-method, 862
as.ladp, 66
ladp-class, 251
plot,ladp-method, 428
summary,ladp-method, 674

∗ things related to landsat data
[[,landsat-method, 823
[[<-,landsat-method, 863
landsat, 252
landsat-class, 253
landsatAdd, 256
landsatTrim, 257
plot,landsat-method, 429
read.landsat, 581
summary,landsat-method, 675

∗ things related to lisst data
[[,lisst-method, 825
[[<-,lisst-method, 865
as.lisst, 67
lisst-class, 260
plot,lisst-method, 431
read.lisst, 583
summary,lisst-method, 675

∗ things related to lobo data
[[,lobo-method, 827
[[<-,lobo-method, 866
as.lobo, 68
lobo, 261
lobo-class, 262

plot,lobo-method, 433
read.lobo, 584
subset,lobo-method, 656
summary,lobo-method, 676

∗ things related to magnetism
applyMagneticDeclination, 40
applyMagneticDeclination,adp-method,

41
applyMagneticDeclination,adv-method,

42
applyMagneticDeclination,cm-method,

44
applyMagneticDeclination,oce-method,

45
magneticField, 270

∗ things related to met data
[[,met-method, 829
[[<-,met-method, 867
as.met, 69
download.met, 164
met, 312
met-class, 313
plot,met-method, 434
read.met, 586
subset,met-method, 657
summary,met-method, 677

∗ things related to oce data
initializeFlagScheme, 228
initializeFlagScheme,oce-method,

233
initializeFlagSchemeInternal, 239

∗ things related to odf data
[[,odf-method, 832
[[<-,odf-method, 869
CTD_BCD2014666_008_1_DN.ODF.gz,

147
odf-class, 386
ODF2oce, 387
ODFListFromHeader, 388
ODFNames2oceNames, 389
plot,odf-method, 436
read.ctd.odf, 559
read.odf, 592
subset,odf-method, 659
summary,odf-method, 678

∗ things related to processing logs
processingLog<-, 476
processingLogAppend, 477

INDEX 887

processingLogItem, 478
processingLogShow, 478

∗ things related to rsk data
[[,rsk-method, 834
[[<-,rsk-method, 871
as.rsk, 71
ctdFindProfilesRBR, 139
plot,rsk-method, 437
read.rsk, 595
rsk, 612
rsk-class, 613
rskPatm, 616
rskToc, 617
subset,rsk-method, 660
summary,rsk-method, 679

∗ things related to sealevel data
[[,sealevel-method, 836
[[<-,sealevel-method, 872
as.sealevel, 72
plot,sealevel-method, 440
read.sealevel, 598
sealevel, 620
sealevel-class, 621
sealevelTuktoyaktuk, 622
subset,sealevel-method, 661
summary,sealevel-method, 680

∗ things related to section data
[[,section-method, 838
[[<-,section-method, 873
as.section, 74
handleFlags,section-method, 213
initializeFlagScheme,section-method,

236
plot,section-method, 442
read.section, 599
section, 624
section-class, 625
sectionAddStation, 626
sectionGrid, 628
sectionSmooth, 629
sectionSort, 633
subset,section-method, 662
summary,section-method, 681

∗ things related to the data slot
oceDeleteData, 369
oceGetData, 374
oceRenameData, 379
oceSetData, 381

∗ things related to the metadata slot
oceDeleteMetadata, 369
oceGetMetadata, 375
oceRenameMetadata, 380
oceSetMetadata, 382

∗ things related to tides
[[,tidem-method, 840
[[<-,tidem-method, 874
as.tidem, 76
plot,tidem-method, 449
predict.tidem, 472
summary,tidem-method, 682
tidalCurrent, 749
tidedata, 750
tidem, 751
tidem-class, 756
tidemAstron, 757
tidemVuf, 759
webtide, 778

∗ things related to time
ctimeToSeconds, 147
julianCenturyAnomaly, 247
julianDay, 248
numberAsHMS, 318
numberAsPOSIXct, 319
secondsToCtime, 623
unabbreviateYear, 767

∗ things related to topo data
[[,topo-method, 842
[[<-,topo-method, 876
as.topo, 79
download.topo, 166
plot,topo-method, 450
read.topo, 601
subset,topo-method, 664
summary,topo-method, 683
topo-class, 764
topoInterpolate, 765
topoWorld, 766

∗ things related to windrose data
[[,windrose-method, 844
[[<-,windrose-method, 877
as.windrose, 81
plot,windrose-method, 453
summary,windrose-method, 684
windrose-class, 783

∗ things related to xbt data
[[,xbt-method, 846

888 INDEX

[[<-,xbt-method, 878
as.xbt, 82
plot,xbt-method, 454
read.xbt, 603
read.xbt.noaa1, 606
subset,xbt-method, 665
summary,xbt-method, 684
xbt, 787
xbt-class, 788
xbt.edf, 789

∗ things relating to time
GMTOffsetFromTz, 199

∗ things relating to vector calculus
curl, 148
grad, 201

.filled.contour(), 289, 290

.leap.seconds, 319
[[,adp-method, 796
[[,adv-method, 798
[[,amsr-method, 801
[[,argo-method, 803
[[,bremen-method, 806
[[,cm-method, 807
[[,coastline-method, 809
[[,ctd-method, 811
[[,echosounder-method, 815
[[,g1sst-method, 817
[[,gps-method, 819
[[,ladp-method, 821
[[,landsat-method, 823
[[,lisst-method, 825
[[,lobo-method, 827
[[,met-method, 829
[[,oce-method, 831
[[,odf-method, 832
[[,rsk-method, 834
[[,sealevel-method, 836
[[,section-method, 838
[[,tidem-method, 840
[[,topo-method, 842
[[,windrose-method, 844
[[,xbt-method, 846
[[<-,adp-method, 848
[[<-,adv-method, 849
[[<-,amsr-method, 851
[[<-,argo-method, 852
[[<-,bremen-method, 853
[[<-,cm-method, 855

[[<-,coastline-method, 856
[[<-,ctd-method, 857
[[<-,echosounder-method, 859
[[<-,g1sst-method, 860
[[<-,gps-method, 861
[[<-,ladp-method, 862
[[<-,landsat-method, 863
[[<-,lisst-method, 865
[[<-,lobo-method, 866
[[<-,met-method, 867
[[<-,oce-method, 868
[[<-,odf-method, 869
[[<-,rsk-method, 871
[[<-,sealevel-method, 872
[[<-,section-method, 873
[[<-,tidem-method, 874
[[<-,topo-method, 876
[[<-,windrose-method, 877
[[<-,xbt-method, 878

abbreviateTimeLabels, 14
ad2cpCodeToName, 15, 17, 19, 24–27, 29–31,

42, 56, 84, 85, 87–90, 98, 179, 180,
206, 247, 400, 485, 488, 491, 499,
501, 504, 535, 537, 540, 611, 636,
647, 666, 667, 762, 763, 778, 790,
792, 794, 798, 849

ad2cpHeaderValue, 16, 16, 19, 24–27, 29–31,
42, 56, 84, 85, 87–90, 98, 179, 180,
206, 247, 400, 485, 488, 491, 499,
501, 504, 535, 537, 540, 611, 636,
647, 666, 667, 762, 763, 778, 790,
792, 794, 798, 849

addSpine, 17
addSpine(), 445, 625
adjustcolor(), 430
adp, 16, 17, 18, 20, 23–31, 36, 40–42, 45, 46,

48, 55, 56, 58, 84–90, 97, 98, 105,
115, 125, 127, 129, 141, 175, 179,
180, 205, 206, 217, 247, 252, 260,
261, 312, 322, 337, 395, 400,
483–488, 490, 491, 493, 499, 501,
503, 504, 534, 535, 537, 539, 540,
611, 613, 620, 623, 624, 635, 636,
646, 647, 666, 667, 747, 761–763,
767, 777, 778, 781, 787, 790–794,
796–798, 848, 849

adp-class, 19

INDEX 889

adp_rdi.000, 16, 17, 19, 24–27, 29, 30, 30,
42, 56, 84, 85, 87–90, 98, 133, 146,
147, 150, 151, 179, 180, 206, 247,
400, 485, 488, 491, 499, 501, 504,
535, 537, 540, 611, 636, 647, 666,
667, 762, 763, 778, 789, 790, 792,
794, 798, 849

adpAd2cpFileTrim, 16, 17, 19, 24, 24, 26, 27,
29–31, 34, 42, 56, 84, 85, 87–90, 98,
179, 180, 206, 247, 372, 400, 485,
488, 491, 499, 501, 504, 535, 537,
540, 611, 636, 647, 666, 667, 762,
763, 778, 790, 792, 794, 798, 849

adpConvertRawToNumeric, 16, 17, 19, 24, 25,
25, 27, 29–31, 42, 56, 84, 85, 87–90,
98, 179, 180, 206, 247, 400, 485,
488, 491, 499, 501, 504, 535, 537,
540, 611, 636, 647, 666, 667, 762,
763, 778, 790, 792, 794, 798, 849

adpEnsembleAverage, 16, 17, 19, 24–26, 26,
29–31, 42, 56, 84, 85, 87–90, 98,
179, 180, 206, 247, 400, 485, 488,
491, 499, 501, 504, 535, 537, 540,
611, 636, 647, 666, 667, 762, 763,
778, 790, 792, 794, 798, 849

adpFlagPastBoundary, 16, 17, 19, 24–27, 28,
30, 31, 42, 56, 84, 85, 87–90, 98,
179, 180, 206, 247, 400, 485, 488,
491, 499, 501, 504, 535, 537, 540,
611, 636, 647, 666, 667, 762, 763,
778, 790, 792, 794, 798, 849

adpFlagPastBoundary(), 28
adpRdiFileTrim, 16, 17, 19, 24–27, 29, 29,

31, 34, 42, 56, 84, 85, 87–90, 98,
179, 180, 206, 247, 372, 400, 485,
488, 491, 499, 501, 504, 535, 537,
540, 611, 636, 647, 666, 667, 762,
763, 778, 790, 792, 794, 798, 849

adv, 19, 31, 31, 32–34, 36, 40, 43–46, 48, 58,
84, 85, 88, 105, 115, 125, 127, 129,
141, 175, 179, 181, 182, 217, 252,
260, 261, 312, 337, 401, 402, 404,
506, 509, 512, 515, 517, 520, 523,
526, 528, 531, 611–613, 620, 623,
624, 648, 668, 747, 761–764, 767,
777, 778, 781, 787, 790, 794, 796,
799, 800, 849, 851

adv-class, 32

advSontekAdrFileTrim, 25, 30, 31, 33, 33,
44, 84, 85, 179, 182, 372, 404, 509,
515, 520, 526, 531, 612, 648, 668,
762, 764, 778, 790, 796, 800, 851

airRho, 34
amsr, 19, 31, 35, 37, 38, 48, 105, 115, 122,

123, 129, 141, 162, 175, 191, 217,
252, 256, 260, 261, 312, 337,
404–406, 532, 613, 619, 620, 623,
624, 648, 649, 669, 747, 767, 781,
787, 801, 803, 851, 852

amsr-class, 36
angle2hms, 38, 38, 178, 183, 248, 249, 316,

643, 686, 687
angleRemap, 39
applyMagneticDeclination, 40, 42, 43, 45,

46, 271
applyMagneticDeclination(), 40, 45, 548,

791, 794
applyMagneticDeclination,adp-method,

41
applyMagneticDeclination,adv-method,

42
applyMagneticDeclination,cm-method, 44
applyMagneticDeclination,oce-method,

45
approx, 799
approx(), 50, 134, 158, 243, 424, 597, 610,

631, 708
approx3d, 46
argo, 19, 31, 36, 47, 48–50, 54, 57, 62, 75,

105, 115, 129, 141, 175, 208, 209,
217, 252, 260, 261, 263, 312, 337,
407, 409, 468, 473–475, 540,
542–545, 613, 620, 623, 624, 650,
651, 669, 747, 767, 781, 787,
803–805, 852, 853

argo-class, 48
argoGrid, 48, 49, 50, 54, 57, 209, 409, 544,

545, 651, 669, 805, 853
argoGrid(), 48
argoJuldToTime, 51
argoNames2oceNames, 48–50, 52, 57, 102,

209, 315, 393, 409, 544, 545, 651,
669, 785, 805, 853

argoNames2oceNames(), 541
argShow, 54
array, 494

890 INDEX

arrows(), 169, 183, 276, 277, 284, 465
as.adp, 16, 17, 19, 24–27, 29–31, 42, 55, 84,

85, 87–90, 98, 179, 180, 206, 247,
400, 485, 488, 491, 499, 501, 504,
535, 537, 540, 611, 636, 647, 666,
667, 762, 763, 778, 790, 792, 794,
798, 849

as.argo, 48–50, 54, 56, 209, 409, 544, 545,
651, 669, 805, 853

as.argo(), 48
as.cm, 45, 57, 105, 107, 412, 548, 612, 652,

671, 809, 856
as.coastline, 59, 113–115, 163, 416, 551,

552, 653, 672, 811, 857
as.coastline(), 70, 71
as.ctd, 60, 111, 129, 132, 133, 135, 138, 140,

142, 145–147, 150, 151, 211, 225,
233, 377, 385, 422, 462, 464, 470,
554, 556, 558, 561, 564, 565, 570,
571, 573, 575, 639, 654, 672, 785,
787, 814, 858

as.ctd(), 71, 75, 103, 130, 131, 139, 145,
223, 542, 597, 598, 615

as.Date(), 160
as.echosounder, 64, 176, 177, 187, 425, 577,

655, 673, 817, 860
as.echosounder(), 65, 673
as.gps, 65, 201, 428, 579, 674, 821, 862
as.gps(), 200, 820
as.ladp, 66, 252, 428, 674, 822, 863
as.lisst, 67, 261, 432, 584, 676, 827, 866
as.lisst(), 260
as.lobo, 68, 261, 263, 434, 585, 656, 676,

829, 867
as.met, 69, 165, 312, 314, 435, 588, 657, 677,

830, 868
as.met(), 165, 586
as.oce, 70
as.POSIXct(), 61, 67, 141, 154, 155, 249,

330, 505, 510, 516, 521, 522, 527,
547, 568, 643, 685

as.POSIXlt(), 249, 643
as.raw(), 324
as.rsk, 71, 140, 439, 598, 613, 614, 616, 618,

660, 679, 835, 872
as.rsk(), 62, 613
as.sealevel, 72, 442, 599, 620, 622, 623,

661, 680, 837, 873

as.sealevel(), 599, 622, 751
as.section, 74, 215, 238, 448, 601, 624, 626,

627, 629, 632, 633, 663, 681, 840,
874

as.section(), 323, 625, 633, 681
as.tidem, 76, 450, 473, 682, 749, 750, 755,

757, 758, 760, 781, 842, 875
as.tidem(), 76–78, 472, 682
as.topo, 79, 168, 452, 602, 664, 683,

765–767, 844, 877
as.topo(), 219, 764, 766
as.unit, 80
as.vector(), 137, 187
as.windrose, 81, 454, 684, 784, 846, 878
as.windrose(), 783
as.xbt, 82, 455, 604, 607, 665, 685, 787, 789,

848, 879
atan2(), 39, 772
axis(), 173, 221, 279, 296, 336, 446
axis.POSIXct(), 324–326

bandwidth.kernel(), 273
bcdToInteger, 83
beamName, 16, 17, 19, 24–27, 29–31, 33, 34,

42, 44, 56, 84, 85, 87–90, 98, 179,
180, 182, 206, 247, 400, 404, 485,
488, 491, 499, 501, 504, 509, 515,
520, 526, 531, 535, 537, 540, 611,
612, 636, 647, 648, 666–668,
762–764, 778, 790, 792, 794, 796,
798, 800, 849, 851

beamToXyz, 16, 17, 19, 24–27, 29–31, 33, 34,
42, 44, 56, 84, 85, 87–90, 98, 179,
180, 182, 206, 247, 400, 404, 485,
488, 491, 499, 501, 504, 509, 515,
520, 526, 531, 535, 537, 540, 611,
612, 636, 647, 648, 666–668,
762–764, 778, 790, 792, 794, 796,
798, 800, 849, 851

beamToXyzAdp, 16, 17, 19, 24–27, 29–31, 42,
56, 84, 85, 86, 88–90, 98, 179, 180,
206, 247, 400, 485, 488, 491, 499,
501, 504, 535, 537, 540, 611, 636,
647, 666, 667, 762, 763, 778, 790,
792, 794, 798, 849

beamToXyzAdp(), 23, 85, 398, 763
beamToXyzAdpAD2CP, 16, 17, 19, 24–27,

29–31, 42, 56, 84, 85, 87, 87, 89, 90,
98, 179, 180, 206, 247, 400, 485,

INDEX 891

488, 491, 499, 501, 504, 535, 537,
540, 611, 636, 647, 666, 667, 762,
763, 778, 790, 792, 794, 798, 849

beamToXyzAdv, 16, 17, 19, 24–27, 29–31, 42,
56, 84, 85, 87, 88, 88, 90, 98, 179,
180, 206, 247, 400, 485, 488, 491,
499, 501, 504, 535, 537, 540, 611,
636, 647, 666, 667, 762, 763, 778,
790, 792, 794, 798, 849

beamToXyzAdv(), 32, 85, 764
beamUnspreadAdp, 16, 17, 19, 24–27, 29–31,

42, 56, 84, 85, 87–89, 89, 98, 179,
180, 206, 247, 400, 485, 488, 491,
499, 501, 504, 535, 537, 540, 611,
636, 647, 666, 667, 762, 763, 778,
790, 792, 794, 798, 849

bilinearInterp, 91
binApply1D, 91, 93, 94, 96, 97, 99, 101
binApply2D, 92, 92, 94, 96, 97, 99, 101
binAverage, 92, 93, 93, 96, 97, 99, 101
binAverage(), 93
binCount1D, 92–94, 95, 97, 99, 101
binCount2D, 92–94, 96, 96, 99, 101
binmapAdp, 16, 17, 19, 24–27, 29–31, 42, 56,

84, 85, 87–90, 97, 179, 180, 206,
247, 400, 485, 488, 491, 499, 501,
504, 535, 537, 540, 611, 636, 647,
666, 667, 762, 763, 778, 790, 792,
794, 798, 849

binMean1D, 92–94, 96, 97, 98, 101
binMean1D(), 93, 134
binMean2D, 92–94, 96, 97, 99, 99
binMean2D(), 101, 245, 289, 290, 631, 769
bodcNames2oceNames, 54, 101, 315, 393, 785
bound125, 103
bquote(), 250
bremen, 103, 104, 386, 409, 410, 546, 670,

806, 854
bremen-class, 103
byteToBinary, 104

cat(), 368, 776
ceiling(), 496
cm, 19, 31, 36, 40, 44, 45, 48, 58, 105, 106,

107, 115, 129, 141, 175, 252, 260,
261, 312, 337, 411, 412, 546, 548,
611–613, 620, 623, 624, 651, 652,
671, 767, 781, 787, 808, 809, 855,
856

cm-class, 106
cnvName2oceName, 63, 107, 129, 132, 133,

135, 138, 140, 142, 145–147, 150,
151, 211, 225, 233, 377, 385, 393,
422, 462, 464, 470, 554, 556, 558,
561, 564, 565, 570, 571, 573, 575,
639, 654, 672, 771, 785–787, 814,
858

cnvName2oceName(), 567, 592
coastline, 59, 71, 112, 114, 217, 413, 416,

444, 549–551, 652, 671, 747, 809,
810, 856

coastline-class, 112
coastlineBest, 59, 113, 113, 114, 115, 163,

416, 551, 552, 653, 672, 811, 857
coastlineCut, 59, 113, 114, 115, 163, 416,

551, 552, 653, 672, 811, 857
coastlineCut(), 264
coastlineWorld, 19, 31, 36, 48, 59, 105, 113,

114, 115, 129, 141, 163, 175, 252,
260, 261, 295, 312, 337, 416, 551,
552, 613, 620, 623, 624, 653, 672,
767, 781, 787, 811, 857

colormap, 115, 121, 337, 338, 340, 341, 343,
344, 346–350, 352, 353, 355, 357,
358, 360, 362, 364, 365

colormap(), 121, 173, 220, 289, 405
colormapGMT, 119, 120, 120, 121, 337, 338,

340, 341, 343, 344, 346–350, 352,
353, 355, 357, 358, 360, 362, 364,
365

colormapGMT(), 117
colorRampPalette(), 117
composite, 121, 122, 123
composite,amsr-method, 122
composite,list-method, 123
computableWaterProperties, 123, 264,

689–691, 693, 694, 696, 697, 700,
701, 703, 704, 706, 708, 710, 711,
713–715, 717–719, 721, 723, 725,
726, 728–733, 735, 736, 738, 740,
741, 743–747

computableWaterProperties(), 124
concatenate, 124, 126, 127
concatenate,adp-method, 125
concatenate,list-method, 126
concatenate,oce-method, 127
confint(), 188

892 INDEX

contour(), 280, 281, 327, 420, 446
contourLines(), 171, 469
convolve(), 273, 366
coplot(), 461, 469
coriolis, 128
ctd, 19, 31, 36, 48, 60, 62, 63, 71, 75, 105,

111, 115, 125, 127, 129, 131–133,
135, 136, 138–147, 150, 151, 175,
210, 211, 217, 223–225, 231, 233,
252, 260, 261, 263–265, 312, 322,
337, 377, 385, 418, 421, 422, 436,
459, 462–464, 468, 470, 554–556,
558, 560, 561, 563–565, 568, 570,
571, 573, 575, 588, 591, 597, 613,
620, 623, 624, 637–639, 653, 654,
672, 677, 747, 767, 781, 785–787,
811, 814, 838, 857, 858

ctd-class, 130
ctd.cnv.gz, 31, 63, 111, 129, 132, 132, 135,

138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 470, 554, 556, 558, 561, 564,
565, 570, 571, 573, 575, 639, 654,
672, 785, 787, 789, 814, 858

ctd_aml_type1.csv.gz, 31, 63, 111, 130,
132, 133, 135, 138, 140, 142, 145,
145, 146, 147, 150, 151, 211, 225,
233, 377, 385, 422, 462, 464, 471,
554, 556, 558, 561, 564, 565, 570,
571, 573, 575, 639, 654, 672, 785,
787, 789, 814, 858

ctd_aml_type3.csv.gz, 31, 63, 111, 130,
132, 133, 135, 138, 140, 142, 145,
146, 146, 147, 150, 151, 211, 225,
233, 377, 385, 422, 462, 464, 471,
554, 556, 558, 561, 564, 565, 570,
571, 573, 575, 639, 654, 672, 785,
787, 789, 814, 858

CTD_BCD2014666_008_1_DN.ODF.gz, 31, 63,
111, 129, 132, 133, 135, 138, 140,
142, 145, 146, 147, 150, 151, 211,
225, 233, 377, 385, 387, 388, 393,
422, 437, 462, 464, 470, 554, 556,
558, 561, 564, 565, 570, 571, 573,
575, 594, 639, 654, 659, 672, 678,
785, 787, 789, 814, 834, 858, 870

ctdDecimate, 63, 111, 129, 132, 133, 133,
138, 140, 142, 145–147, 150, 151,

211, 225, 233, 377, 385, 422, 462,
464, 470, 554, 556, 558, 561, 564,
565, 570, 571, 573, 575, 639, 654,
672, 785, 787, 814, 858

ctdDecimate(), 131, 134, 143, 152, 628
ctdFindProfiles, 63, 111, 129, 132, 133,

135, 136, 140, 142, 145–147, 150,
151, 211, 225, 233, 377, 385, 422,
462, 464, 470, 554, 556, 558, 561,
564, 565, 570, 571, 573, 575, 639,
654, 672, 785, 787, 814, 858

ctdFindProfiles(), 131
ctdFindProfilesRBR, 63, 72, 111, 130, 132,

133, 135, 138, 139, 140, 142,
145–147, 150, 151, 211, 225, 233,
377, 385, 422, 439, 462, 464, 471,
554, 556, 558, 561, 564, 565, 570,
571, 573, 575, 598, 613, 614, 616,
618, 639, 654, 660, 672, 679, 785,
787, 814, 835, 858, 872

ctdRaw, 19, 31, 36, 48, 63, 105, 111, 115, 129,
130, 132, 133, 135, 138, 140, 140,
142, 145–147, 150, 151, 175, 211,
225, 233, 252, 260, 261, 312, 337,
377, 385, 422, 462, 464, 471, 554,
556, 558, 561, 564, 565, 570, 571,
573, 575, 613, 620, 623, 624, 639,
654, 672, 767, 781, 785, 787, 814,
858

ctdRaw(), 129
ctdRepair, 63, 111, 130, 132, 133, 135, 138,

140, 141, 145–147, 150, 151, 211,
225, 233, 377, 385, 422, 462, 464,
471, 554, 556, 558, 561, 564, 565,
570, 571, 573, 575, 639, 654, 672,
785, 787, 814, 858

ctdTrim, 63, 111, 130, 132, 133, 135, 138,
140, 142, 142, 146, 147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 471, 554, 556, 558, 561, 564,
565, 570, 571, 573, 575, 639, 654,
672, 785, 787, 814, 858

ctdTrim(), 129, 131, 137, 140, 418, 459
ctimeToSeconds, 147, 248, 249, 319, 321,

623, 768
ctimeToSeconds(), 623
cumsum(), 243
curl, 148, 201

INDEX 893

cut(), 91–96, 98, 99

d200321-001.ctd.gz, 150
d201211_0011.cnv.gz, 31, 63, 111, 130, 132,

133, 135, 138, 140, 142, 145–147,
150, 151, 211, 225, 233, 377, 385,
422, 462, 464, 471, 554, 556, 558,
561, 564, 565, 570, 571, 573, 575,
639, 654, 672, 785, 787, 789, 814,
858

data.frame, 287
data.frame(), 387
dataLabel, 151
decimate, 152
decimate(), 175, 256, 583
decodeHeaderNortek, 153
decodeTime, 154
defaultFlags, 156, 204, 206, 208, 210, 213,

215, 226–228, 230, 233, 236, 238,
241, 242, 635, 636, 639, 641

defaultFlags(), 204, 205, 208, 210,
213–215

despike, 157
despike(), 331, 397, 484, 490, 493, 500, 534,

536, 539, 666
detrend, 159
detrend(), 480
diff(), 137, 702
dir(), 633
download.amsr, 36, 38, 122, 160, 163, 165,

168, 400, 404, 406, 409, 410, 412,
416, 422, 428, 431, 432, 434, 435,
437, 439, 440, 442, 448, 450, 452,
454, 455, 462, 464, 470, 532, 649,
669, 757, 803, 852

download.amsr(), 160, 532
download.coastline, 59, 113–115, 162, 162,

165, 168, 416, 551, 552, 653, 672,
811, 857

download.file(), 160, 164
download.met, 70, 162, 163, 164, 168, 312,

314, 435, 588, 657, 677, 830, 868
download.met(), 164, 312
download.topo, 80, 162, 163, 165, 166, 452,

602, 664, 683, 765–767, 844, 877
download.topo(), 601, 766
drawDirectionField, 168
drawIsopycnals, 170
drawIsopycnals(), 171, 470

drawPalette, 172
drawPalette(), 115, 172, 174, 218, 220–222,

331

echosounder, 19, 31, 36, 48, 65, 105, 115,
129, 141, 175, 177, 186, 187, 217,
252, 260, 261, 312, 337, 424, 425,
576, 577, 613, 620, 623, 624, 655,
673, 747, 767, 781, 787, 815, 817,
859, 860

echosounder-class, 176
eclipticalToEquatorial, 38, 177, 183, 248,

249, 316, 643, 686, 687
eclipticalToEquatorial(), 182, 315
enuToOther, 16, 17, 19, 24–27, 29–31, 33, 34,

42, 44, 56, 84, 85, 87–90, 98, 178,
180, 182, 206, 247, 400, 404, 485,
488, 491, 499, 501, 504, 509, 515,
520, 526, 531, 535, 537, 540, 611,
612, 636, 647, 648, 666–668,
762–764, 778, 790, 792, 794, 796,
798, 800, 849, 851

enuToOtherAdp, 16, 17, 19, 24–27, 29–31, 42,
56, 84, 85, 87–90, 98, 179, 179, 206,
247, 400, 485, 488, 491, 499, 501,
504, 535, 537, 540, 611, 636, 647,
666, 667, 762, 763, 778, 790, 792,
794, 798, 849

enuToOtherAdp(), 23, 179, 398
enuToOtherAdv, 31, 33, 34, 44, 84, 85, 179,

181, 404, 509, 515, 520, 526, 531,
612, 648, 668, 762, 764, 778, 790,
796, 800, 851

enuToOtherAdv(), 32, 179
equatorialToLocalHorizontal, 38, 178,

182, 248, 249, 316, 643, 686, 687
equatorialToLocalHorizontal(), 315
errorbars, 183
expression(), 80, 250, 381, 770, 797, 799,

802, 805, 807, 808, 810, 814, 816,
818, 820, 822, 824, 826, 828, 830,
831, 833, 835, 837, 839, 841, 843,
845, 847, 850

factor(), 75
filled.contour(), 222
fillGap, 184
fillGapMatrix, 185, 185
fillGapMatrix(), 100

894 INDEX

filter(), 152, 273, 373
findBottom, 65, 176, 177, 186, 425, 577, 655,

673, 817, 860
findBottom(), 176, 424
findInterval(), 323
firstFinite, 187
fivenum(), 81, 453, 748
format(), 14, 425, 776
formatCI, 187
formatCI(), 188
formatPosition, 189, 266, 268, 276, 277,

279, 282, 283, 285, 287, 291–293,
303–305, 307–309, 367, 379, 641,
774, 775

formatPosition(), 476
fullFilename, 190

g1sst, 191, 192, 578, 619, 817, 818, 860
g1sst-class, 191
gappyIndex, 192
geodDist, 193, 195, 197, 199, 630
geodDist(), 197, 631, 632, 839
geodGc, 194, 195, 197, 199
geodGc(), 303
geodXy, 194, 195, 196, 199
geodXy(), 194, 198
geodXyInverse, 194, 195, 197, 198
getOption, 204, 206, 208, 210, 213, 215, 325,

444–446, 586, 609, 781, 804
GMTOffsetFromTz, 199
gps, 66, 200, 426, 579, 673, 819, 861
gps-class, 200
grad, 149, 201
gravity, 202
grep(), 107, 560, 593
grid(), 287, 328, 332, 397, 441
gsub(), 52, 376, 784
gsw::gsw_C_from_SP(), 695
gsw::gsw_CT_freezing(), 469
gsw::gsw_CT_from_t, 694, 804
gsw::gsw_CT_from_t(), 812
gsw::gsw_geo_strf_dyn_height(), 699
gsw::gsw_Nsquared(), 703
gsw::gsw_p_from_z(), 704
gsw::gsw_pt_from_t(), 739
gsw::gsw_SA_from_rho(), 470, 734
gsw::gsw_SA_from_SP(), 688, 735, 804, 813
gsw::gsw_sigma0(), 712, 804
gsw::gsw_sound_speed(), 724

gsw::gsw_SP_from_C(), 709
gsw::gsw_spiciness0(), 460, 726–728, 813
gsw::gsw_spiciness1(), 460, 729, 730
gsw::gsw_spiciness2(), 460, 730, 731
gsw::gsw_SR_from_SP(), 731, 813
gsw::gsw_Sstar_from_SA(), 732
gsw::gsw_t_freezing(), 735
gsw::gsw_Turner_Rsubrho(), 708
gsw::gsw_z_from_p(), 697

handleFlags, 157, 203, 206, 208, 210, 213,
215, 226–228, 230, 233, 236, 238,
241, 242, 635, 636, 639, 641

handleFlags(), 28, 50, 135, 156, 228, 231,
233, 236, 239

handleFlags,adp-method, 205, 216
handleFlags,argo-method, 207
handleFlags,ctd-method, 209, 216
handleFlags,oce-method, 212
handleFlags,section-method, 213
handleFlags,vector-method, 215
handleFlags.argo

(handleFlags,argo-method), 207
handleFlags.section

(handleFlags,section-method),
213

handleFlagsInternal, 216
head(), 217
head.oce, 217
head.oce(), 748
hist(), 436
hsv(), 117

iconv(), 394
ifelse(), 264
image(), 115–118, 219, 221, 222, 289, 400,

444
imagep, 218
imagep(), 115, 118, 174, 328, 332, 396, 397,

402, 406, 424, 425, 430, 440, 441,
445

initialize,ctd-method, 223
initialize.ctd (initialize,ctd-method),

223
initializeFlags, 157, 204, 206, 209, 210,

213, 215, 225, 227, 228, 230, 233,
236, 238, 241, 242, 635, 636, 639,
641

INDEX 895

initializeFlags(), 225–228, 231, 233, 236,
239, 241, 242

initializeFlags,adp-method, 226
initializeFlags,oce-method, 227
initializeFlagScheme, 157, 204, 206, 208,

210, 213, 215, 226–228, 228, 233,
236, 238, 241, 242, 635, 636, 639,
641

initializeFlagScheme(), 156
initializeFlagScheme,ctd-method, 231
initializeFlagScheme,oce-method, 233
initializeFlagScheme,section-method,

236
initializeFlagSchemeInternal, 157, 204,

206, 209, 210, 213, 215, 226–228,
230, 233, 236, 238, 239, 242, 635,
636, 639, 641

initializeFlagsInternal, 157, 204, 206,
209, 210, 213, 215, 226–228, 230,
233, 236, 238, 241, 241, 635, 636,
639, 641

integerToAscii, 242
integrate(), 698
integrateTrapezoid, 243
interp::interp(), 289, 290
interpBarnes, 244
interpBarnes(), 630, 631, 769, 781
is.ad2cp, 16, 17, 19, 24–27, 29–31, 42, 56,

84, 85, 87–90, 98, 179, 180, 206,
246, 400, 485, 488, 491, 499, 502,
504, 535, 537, 540, 611, 636, 647,
666, 667, 762, 763, 778, 790, 793,
794, 798, 849

julian(), 248
julianCenturyAnomaly, 38, 148, 178, 183,

247, 249, 316, 319, 321, 623, 643,
686, 687, 768

julianDay, 38, 148, 178, 183, 248, 248, 316,
319, 321, 623, 643, 686, 687, 768

julianDay(), 247, 320

kernapply(), 273
kernel, 273

labelWithUnit, 250, 609
labelWithUnit(), 445
ladp, 67, 251, 409, 428, 674, 821, 862
ladp-class, 251

landsat, 19, 31, 36, 48, 105, 115, 129, 141,
175, 217, 252, 253, 256–258, 260,
261, 312, 337, 429, 431, 581–583,
613, 620, 623, 624, 675, 747, 767,
781, 787, 823, 825, 864

landsat(), 583
landsat-class, 253
landsatAdd, 252, 256, 256, 258, 431, 583,

675, 825, 864
landsatAdd(), 254, 583, 823
landsatTrim, 252, 256, 257, 257, 431, 583,

675, 825, 864
landsatTrim(), 254, 256, 582, 583, 824
latFormat, 258
latFormat(), 259, 265
latlonFormat, 259
latlonFormat(), 258, 265
layout(), 174, 218, 222, 397
legend(), 250, 306, 445
lines(), 291
lisst, 19, 31, 36, 48, 68, 105, 115, 129, 141,

175, 252, 259, 260, 261, 312, 337,
431, 432, 584, 613, 620, 623, 624,
675, 767, 781, 787, 825, 826, 865

lisst-class, 260
list, 20, 32, 37, 48, 49, 61, 103, 106, 112,

121, 123, 126, 130, 131, 176, 191,
200, 203–210, 212–214, 216, 251,
253, 260, 262, 313, 386, 553, 557,
559, 562, 566, 572, 574, 592, 613,
621, 625, 756, 764, 777, 783, 788

list(), 144, 381, 477, 478, 770, 838
list.files(), 553, 557, 559, 562, 566, 572,

574
lm(), 188, 618, 752
load(), 115
lobo, 19, 31, 36, 48, 69, 105, 115, 129, 141,

175, 252, 260, 261, 262, 263, 312,
337, 433, 434, 585, 613, 620, 623,
624, 656, 676, 767, 781, 787, 827,
829, 866, 867

lobo-class, 262
locationForGsw, 124, 263, 689–691, 693,

694, 696, 697, 700, 701, 703, 704,
706, 708, 710, 711, 713–715,
717–719, 721, 723, 725, 726,
728–733, 735, 736, 738, 740, 741,
743–747

896 INDEX

locator(), 292, 421, 779, 780
log10(), 424
logical(), 144
lon360, 264
lon360(), 264
lonFormat, 264
lonFormat(), 258, 259
longitudeTighten, 265, 265
lonlat2map, 190, 266, 268, 276, 277, 279,

282, 283, 285, 287, 291–293,
303–305, 307–309, 367, 379, 641,
774, 775

lonlat2map(), 268, 275, 276, 290, 293, 775
lonlat2utm, 190, 266, 267, 276, 277, 279,

282, 283, 285, 287, 291–293,
303–305, 307–309, 367, 379, 641,
774, 775

lonlat2utm(), 197, 775
lookWithin, 268
lowpass, 269
lubridate::parse_date_time(), 323

magneticField, 41–43, 45, 46, 270
magneticField(), 41–43, 45, 46
make.names(), 548
makeFilter, 273
makeFilter(), 152
map2lonlat, 190, 266, 268, 275, 277, 279,

282, 283, 285, 287, 291–293,
303–305, 307–309, 367, 379, 641,
774, 775

map2lonlat(), 266, 268, 292, 775
mapArrows, 190, 266, 268, 276, 276, 279, 282,

283, 285, 287, 291–293, 303–305,
307–309, 367, 379, 641, 774, 775

mapArrows(), 283
mapAxis, 190, 266, 268, 276, 277, 278, 282,

283, 285, 287, 291–293, 303–305,
307–309, 367, 379, 641, 774, 775

mapAxis(), 286, 287, 296, 773
mapContour, 190, 266, 268, 276, 277, 279,

280, 283, 285, 287, 291–293,
303–305, 307–309, 367, 379, 641,
774, 775

mapContour(), 281, 420
mapCoordinateSystem, 190, 266, 268, 276,

277, 279, 282, 282, 285, 287,
291–293, 303–305, 307–309, 367,
379, 641, 774, 775

mapDirectionField, 190, 266, 268, 276, 277,
279, 282, 283, 283, 287, 291–293,
303–305, 307–309, 367, 379, 641,
774, 775

mapDirectionField(), 276
mapGrid, 190, 266, 268, 276, 277, 279, 282,

283, 285, 286, 291–293, 303–305,
307–309, 367, 379, 641, 774, 775

mapGrid(), 278, 295, 309, 323, 641, 773
mapImage, 190, 266, 268, 276, 277, 279, 282,

283, 285, 287, 288, 292, 293,
303–305, 307–309, 367, 379, 641,
774, 775

mapImage(), 302
mapLines, 190, 266, 268, 276, 277, 279, 282,

283, 285, 287, 291, 291, 293,
303–305, 307–309, 367, 379, 641,
774, 775

mapLines(), 280, 292, 302
mapLocator, 190, 266, 268, 276, 277, 279,

282, 283, 285, 287, 291, 292, 292,
293, 303–305, 307–309, 367, 379,
641, 774, 775

mapLocator(), 291, 293, 303, 305
mapLongitudeLatitudeXY, 190, 266, 268,

276, 277, 279, 282, 283, 285, 287,
291–293, 293, 303–305, 307–309,
367, 379, 641, 774, 775

mapPlot, 190, 266, 268, 276, 277, 279, 282,
283, 285, 287, 291–293, 294, 304,
305, 307–309, 367, 379, 641, 774,
775

mapPlot(), 114, 266, 275–279, 281, 282,
285–288, 291–293, 297, 304–309,
323, 367, 378, 408, 414, 415, 420,
427, 445

mapPoints, 190, 266, 268, 276, 277, 279, 282,
283, 285, 287, 291–293, 303, 303,
305, 307–309, 367, 379, 641, 774,
775

mapPoints(), 292, 302, 427
mapPolygon, 190, 266, 268, 276, 277, 279,

282, 283, 285, 287, 291–293, 303,
304, 304, 307–309, 367, 379, 641,
774, 775

mapPolygon(), 302
mapScalebar, 190, 266, 268, 276, 277, 279,

282, 283, 285, 287, 291–293,

INDEX 897

303–305, 306, 308, 309, 367, 379,
641, 774, 775

mapScalebar(), 302
mapText, 190, 266, 268, 276, 277, 279, 282,

283, 285, 287, 291–293, 303–305,
307, 307, 309, 367, 379, 641, 774,
775

mapText(), 302
mapTissot, 190, 266, 268, 276, 277, 279, 282,

283, 285, 287, 291–293, 303–305,
307, 308, 308, 367, 379, 641, 774,
775

mapTissot(), 297
matchBytes, 309
matrix, 494
matrixShiftLongitude, 310
matrixShiftLongitude(), 641, 646, 766
matrixSmooth, 311
mean(), 94, 98, 100, 777
met, 19, 31, 36, 48, 70, 81, 105, 115, 125, 127,

129, 141, 165, 175, 252, 260, 261,
312, 312, 313, 314, 337, 434, 435,
586–588, 613, 620, 623, 624, 657,
677, 767, 781, 787, 829, 830, 867,
868

met-class, 313
metNames2oceNames, 54, 102, 314, 393, 785
moonAngle, 38, 178, 183, 248, 249, 315, 643,

686, 687
moonAngle(), 38, 178, 686
mtext(), 250, 776

names(), 123
ncdf4::nc_open(), 317
netcdfTOC, 317
nls(), 143, 188
normalizePath(), 190
numberAsHMS, 148, 248, 249, 318, 321, 623,

768
numberAsPOSIXct, 148, 248, 249, 319, 319,

623, 768
numberAsPOSIXct(), 249, 643, 757

oce, 61, 71, 74, 121, 123, 125–127, 152, 157,
184, 203, 205, 207, 209, 212, 213,
216, 217, 226–228, 233, 239, 242,
247, 263, 264, 333, 369–371, 374,
375, 379–383, 436, 476, 478, 565,
588, 589, 591, 593, 610, 634, 640,

642, 658, 707, 719, 747, 768, 782,
783, 831, 848, 851–853, 855–857,
859–863, 865–869, 871–874,
876–878

oce-class, 322
oce-defunct, 104, 376
oce-defunct (oce-deprecated), 322
oce-deprecated, 223, 295, 322
oce.approx (oceApprox), 334
oce.approx(), 134
oce.as.raw, 324
oce.axis.POSIXct, 324
oce.axis.POSIXct(), 327, 331, 332
oce.colors9A (oceColorsJet), 347
oce.colors9B (oceColors9B), 338
oce.colorsCDOM (oceColorsCDOM), 339
oce.colorsChlorophyll

(oceColorsChlorophyll), 340
oce.colorsDensity (oceColorsDensity),

343
oce.colorsFreesurface

(oceColorsFreesurface), 344
oce.colorsGebco (oceColorsGebco), 346
oce.colorsGebco(), 452
oce.colorsJet (oceColorsJet), 347
oce.colorsOxygen (oceColorsOxygen), 348
oce.colorsPalette (oceColorsPalette),

350
oce.colorsPAR (oceColorsPAR), 351
oce.colorsPhase (oceColorsPhase), 352
oce.colorsSalinity (oceColorsSalinity),

354
oce.colorsTemperature

(oceColorsTemperature), 355
oce.colorsTurbidity

(oceColorsTurbidity), 357
oce.colorsTurbo (oceColorsTurbo), 359
oce.colorsTwo (oceColorsTwo), 360
oce.colorsVelocity (oceColorsVelocity),

361
oce.colorsViridis (oceColorsViridis),

362
oce.colorsViridis(), 289
oce.colorsVorticity

(oceColorsVorticity), 364
oce.contour, 327
oce.convolve (oceConvolve), 366
oce.debug (oceDebug), 368

898 INDEX

oce.edit (oceEdit), 370
oce.filter (oceFilter), 373
oce.grid, 328
oce.grid(), 222, 332, 400, 425, 470
oce.plot.ts, 329
oce.plot.ts(), 221, 326, 328, 396, 402, 408,

411, 431, 434, 436, 438, 779
oce.pmatch (ocePmatch), 377
oce.pmatch(), 407
oce.smooth (oceSmooth), 383
oce.spectrum (oceSpectrum), 384
oce.write.table, 333
oceApprox, 334
oceAxis, 335
oceAxis(), 330
ocecolors, 19, 31, 36, 48, 105, 115, 119, 121,

129, 141, 175, 252, 260, 261, 312,
336, 338, 340, 341, 343, 344,
346–350, 352, 353, 355, 357, 358,
360, 362, 364, 365, 613, 620, 623,
624, 767, 781, 787

oceColors9A (oceColorsJet), 347
oceColors9B, 119, 121, 337, 338, 340, 341,

343, 344, 346–350, 352, 353, 355,
357, 358, 360, 362, 364, 365

oceColorsCDOM, 119, 121, 337, 338, 339, 341,
343, 344, 346–350, 352, 353, 355,
357, 358, 360, 362, 364, 365

oceColorsChlorophyll, 119, 121, 337, 338,
340, 340, 343, 344, 346–350, 352,
353, 355, 357, 358, 360, 362, 364,
365

oceColorsClosure, 119, 121, 337, 338, 340,
341, 342, 344, 346–350, 352, 353,
355, 357, 358, 360, 362, 364, 365

oceColorsClosure(), 336
oceColorsDensity, 119, 121, 337, 338, 340,

341, 343, 343, 346–350, 352, 353,
355, 357, 358, 360, 362, 364, 365

oceColorsFreesurface, 119, 121, 337, 338,
340, 341, 343, 344, 344, 347–350,
352, 353, 355, 357, 358, 360, 362,
364, 365

oceColorsGebco, 119, 121, 337, 338, 340,
341, 343, 344, 346, 346, 348–350,
352, 353, 355, 357, 358, 360, 362,
364, 365

oceColorsJet, 119, 121, 337, 338, 340, 341,

343, 344, 346, 347, 347, 349, 350,
352, 353, 355, 357, 358, 360, 362,
364, 365

oceColorsJet(), 338, 424
oceColorsOxygen, 119, 121, 337, 338, 340,

341, 343, 344, 346–348, 348, 350,
352, 353, 355, 357, 358, 360, 362,
364, 365

oceColorsPalette, 119, 121, 337, 338, 340,
341, 343, 344, 346–349, 350, 352,
353, 355, 357, 358, 360, 362, 364,
365

oceColorsPAR, 119, 121, 337, 338, 340, 341,
343, 344, 346–350, 351, 353, 355,
357, 358, 360, 362, 364, 365

oceColorsPhase, 119, 121, 337, 338, 340,
341, 343, 344, 346–350, 352, 352,
355, 357, 358, 360, 362, 364, 365

oceColorsSalinity, 119, 121, 337, 338, 340,
341, 343, 344, 346–350, 352, 353,
354, 357, 358, 360, 362, 364, 365

oceColorsTemperature, 119, 121, 337, 338,
340, 341, 343, 344, 346–350, 352,
353, 355, 355, 358, 360, 362, 364,
365, 405

oceColorsTemperature(), 342, 405
oceColorsTurbidity, 119, 121, 337, 338,

340, 341, 343, 344, 346–350, 352,
353, 355, 357, 357, 360, 362, 364,
365

oceColorsTurbo, 119, 121, 337, 338, 340,
341, 343, 344, 346–350, 352, 353,
355, 357, 358, 359, 360, 362, 364,
365

oceColorsTwo, 119, 121, 337, 338, 340, 341,
343, 344, 346–350, 352, 353, 355,
357, 358, 360, 360, 362, 364, 365

oceColorsTwo(), 338
oceColorsVelocity, 119, 121, 337, 338, 340,

341, 343, 344, 346–350, 352, 353,
355, 357, 358, 360, 361, 364, 365

oceColorsViridis, 119, 121, 337, 338, 340,
341, 343, 344, 346–350, 352, 353,
355, 357, 358, 360, 362, 362, 363,
365

oceColorsViridis(), 173, 220, 336, 424,
444

oceColorsVorticity, 119, 121, 337, 338,

INDEX 899

340, 341, 343, 344, 346–350, 352,
353, 355, 357, 358, 360, 362, 364,
364

oceContour (oce.contour), 327
oceConvolve, 366
oceCRS, 190, 266, 268, 276, 277, 279, 282,

283, 285, 287, 291–293, 303–305,
307–309, 367, 379, 641, 774, 775

oceDebug, 368
oceDebug(), 776
oceDeleteData, 369, 374, 379, 382
oceDeleteMetadata, 369, 375, 380, 383
oceEdit, 370
oceEdit(), 129, 140, 370
oceFileTrim, 25, 30, 34, 372
oceFilter, 373
oceGetData, 369, 374, 379, 382
oceGetData(), 20, 33, 37, 49, 104, 106, 112,

131, 177, 192, 200, 252, 253, 261,
262, 313, 386, 614, 621, 626, 756,
765, 784, 789, 812

oceGetMetadata, 370, 375, 380, 383
oceGetMetadata(), 20, 33, 37, 49, 104, 106,

112, 131, 177, 192, 200, 252, 253,
261, 262, 313, 386, 614, 621, 626,
756, 765, 784, 789

oceMagic, 375
oceMagic(), 372, 484, 490, 506, 511, 517,

522, 528, 591, 592
oceNames2whpNames, 63, 111, 130, 132, 133,

135, 138, 140, 142, 145–147, 150,
151, 211, 225, 233, 376, 385, 393,
422, 462, 464, 471, 554, 556, 558,
561, 564, 565, 570, 571, 573, 575,
639, 654, 672, 771, 785–787, 814,
858

ocePmatch, 377
oceProject, 190, 266, 268, 276, 277, 279,

282, 283, 285, 287, 291–293,
303–305, 307–309, 367, 378, 641,
774, 775

oceProject(), 408
oceRenameData, 369, 374, 379, 382
oceRenameData(), 108, 323
oceRenameMetadata, 370, 375, 380, 383
oceSetData, 369, 374, 379, 381
oceSetData(), 20, 33, 37, 49, 62, 65, 103,

106, 112, 131, 177, 191, 200, 224,

251, 253, 260, 262, 313, 323, 386,
614, 621, 625, 756, 764, 783, 788

oceSetMetadata, 370, 375, 380, 382
oceSetMetadata(), 20, 33, 37, 49, 62, 65,

103, 106, 112, 131, 177, 191, 200,
224, 251, 253, 260, 262, 313, 323,
386, 565, 569, 614, 621, 625, 756,
764, 783, 788

oceSmooth, 383
oceSpectrum, 384
oceUnits2whpUnits, 63, 111, 130, 132, 133,

135, 138, 140, 142, 145–147, 150,
151, 211, 225, 233, 377, 385, 393,
422, 462, 464, 471, 554, 556, 558,
561, 564, 565, 570, 571, 573, 575,
639, 654, 672, 771, 785–787, 814,
858

odf, 103, 386, 393, 436, 437, 561, 594, 659,
678, 832, 833, 870

odf-class, 386
ODF2oce, 147, 387, 387, 388, 393, 437, 561,

594, 659, 678, 834, 870
ODF2oce(), 70, 71, 594
ODFListFromHeader, 147, 387, 388, 388, 393,

437, 561, 594, 659, 678, 834, 870
ODFNames2oceNames, 54, 102, 111, 147, 315,

377, 385, 387, 388, 389, 437, 561,
594, 659, 678, 771, 785, 786, 834,
870

ODFNames2oceNames(), 314, 387, 592, 593
optim(), 199
options, 609
options(), 418, 419

pairs(), 436
par, 218, 221, 281, 331, 396, 402, 411, 414,

415, 421, 425, 427, 433, 434, 439,
441, 446, 452, 453, 455, 461, 463,
465, 468, 469

par(), 169, 173, 221, 279, 296, 325, 328, 331,
397, 402, 420, 421, 461

parse, 381
parseLatLon, 393
plot(), 169, 323, 332, 402, 411, 420, 421,

436, 438, 455, 461
plot,adp-method, 394
plot,adv-method, 401
plot,amsr-method, 404
plot,argo-method, 407

900 INDEX

plot,bremen-method, 409
plot,cm-method, 410
plot,coastline-method, 412
plot,ctd-method, 416
plot,echosounder-method, 423
plot,gps-method, 426
plot,ladp-method, 428
plot,landsat-method, 429
plot,lisst-method, 431
plot,lobo-method, 433
plot,met-method, 434
plot,oce-method, 436
plot,odf-method, 436
plot,rsk-method, 437
plot,satellite-method, 440
plot,sealevel-method, 440
plot,section-method, 442
plot,tidem-method, 449
plot,topo-method, 450
plot,windrose-method, 453
plot,xbt-method, 454
plot.adp (plot,adp-method), 394
plot.adv (plot,adv-method), 401
plot.amsr (plot,amsr-method), 404
plot.argo (plot,argo-method), 407
plot.bremen (plot,bremen-method), 409
plot.cm (plot,cm-method), 410
plot.coastline (plot,coastline-method),

412
plot.ctd (plot,ctd-method), 416
plot.default(), 221, 330, 463
plot.echosounder

(plot,echosounder-method), 423
plot.gps (plot,gps-method), 426
plot.ladp (plot,ladp-method), 428
plot.landsat (plot,landsat-method), 429
plot.lisst (plot,lisst-method), 431
plot.lobo (plot,lobo-method), 433
plot.met (plot,met-method), 434
plot.oce (plot,oce-method), 436
plot.odf (plot,odf-method), 436
plot.rsk (plot,rsk-method), 437
plot.satellite (plot,satellite-method),

440
plot.sealevel (plot,sealevel-method),

440
plot.section (plot,section-method), 442
plot.tidem (plot,tidem-method), 449

plot.topo (plot,topo-method), 450
plot.ts(), 332
plot.windrose (plot,windrose-method),

453
plot.xbt (plot,xbt-method), 454
plotInset, 456
plotInset(), 415, 421, 427, 461, 469
plotPolar, 457
plotProfile, 63, 111, 130, 132, 133, 135,

138, 140, 142, 145–147, 150, 151,
162, 211, 225, 233, 377, 385, 400,
404, 406, 409, 410, 412, 416, 422,
428, 431, 432, 434, 435, 437, 439,
440, 442, 448, 450, 452, 454, 455,
458, 464, 470, 471, 554, 556, 558,
561, 564, 565, 570, 571, 573, 575,
639, 654, 672, 757, 785, 787, 814,
858

plotProfile(), 131, 421, 428
plotScan, 63, 111, 130, 132, 133, 135, 138,

140, 142, 145–147, 150, 151, 162,
211, 225, 233, 377, 385, 400, 404,
406, 409, 410, 412, 416, 422, 428,
431, 432, 434, 435, 437, 439, 440,
442, 448, 450, 452, 454, 455, 462,
462, 470, 471, 554, 556, 558, 561,
564, 565, 570, 571, 573, 575, 639,
654, 672, 757, 785, 787, 814, 858

plotScan(), 129, 131, 137, 142, 144
plotSticks, 464
plotTaylor, 466
plotTS, 63, 111, 130, 132, 133, 135, 138, 140,

142, 145–147, 150, 151, 162, 211,
225, 233, 377, 385, 400, 404, 406,
409, 410, 412, 416, 422, 428, 431,
432, 434, 435, 437, 439, 440, 442,
448, 450, 452, 454, 455, 462, 464,
467, 554, 556, 558, 561, 564, 565,
570, 571, 573, 575, 639, 654, 672,
757, 785, 787, 815, 858

plotTS(), 131, 170–172, 328, 421, 462
pmatch(), 367, 377, 378, 609, 848, 852–855,

857–859, 861–865, 867–871,
873–876, 878, 879

points(), 303, 304, 331, 427
polygon(), 289, 305, 323
POSIXct, 542
POSIXct(), 320, 475, 610, 617, 759

INDEX 901

POSIXt, 61, 330
predict.lm(), 472
predict.tidem, 78, 450, 472, 682, 749, 750,

755, 757, 758, 760, 781, 842, 875
predict.tidem(), 76, 472, 620
preferAdjusted, 473
preferAdjusted(), 804
presentTime, 475
presentTime(), 478, 779
pretty, 100, 116, 420
pretty(), 91, 93, 95, 96, 98, 220, 289
prettyPosition, 476
processingLog<-, 382, 476
processingLogAppend, 477, 477, 478
processingLogAppend(), 478
processingLogItem, 477, 478, 478
processingLogShow, 477, 478, 478
processingLogShow(), 20, 32, 37, 49, 103,

106, 112, 131, 176, 191, 200, 251,
253, 260, 262, 313, 386, 613, 621,
625, 756, 764, 783, 788

pwelch, 479
pwelch(), 480

quantile(), 245

rangeExtended, 481
rangeExtended(), 116
rangeLimit, 482
raw, 15, 192
raw(), 36, 55, 797, 799
rawToBits, 105
read.adp, 16, 17, 19, 24–27, 29–31, 42, 56,

84, 85, 87–90, 98, 179, 180, 206,
247, 400, 483, 488, 491, 499, 502,
504, 535, 537, 538, 540, 611, 636,
647, 666, 667, 762, 763, 778, 790,
793, 794, 798, 849

read.adp(), 23, 87, 153, 154, 180, 398, 666,
763

read.adp.ad2cp, 16, 17, 19, 24–27, 29–31,
42, 56, 84, 85, 87–90, 98, 179, 180,
206, 247, 400, 485, 485, 491, 499,
502, 504, 535, 537, 538, 540, 611,
636, 647, 666, 667, 762, 763, 778,
790, 793, 794, 798, 849

read.adp.ad2cp(), 15, 23, 485, 487, 793
read.adp.nortek, 16, 17, 19, 24–27, 29–31,

42, 56, 84, 85, 87–90, 98, 179, 180,

206, 247, 400, 485, 488, 489, 499,
502, 504, 535, 537, 538, 540, 611,
636, 647, 666, 667, 762, 763, 778,
790, 793, 794, 798, 849

read.adp.nortek(), 23, 484, 504, 510, 515,
521, 526, 667

read.adp.rdi, 16, 17, 19, 24–27, 29–31, 42,
56, 84, 85, 87–90, 98, 179, 180, 206,
247, 400, 485, 488, 491, 492, 502,
504, 535, 537, 538, 540, 611, 636,
647, 666, 667, 762, 763, 778, 790,
793, 794, 798, 849

read.adp.rdi(), 23, 30, 484, 493, 667
read.adp.sontek, 16, 17, 19, 24–27, 29–31,

42, 56, 84, 85, 87–90, 98, 179, 180,
206, 247, 400, 485, 488, 491, 499,
499, 504, 535, 538, 540, 611, 636,
647, 666, 667, 762, 763, 778, 790,
793, 794, 798, 849

read.adp.sontek(), 23, 484, 504, 510, 515,
521, 526

read.adp.sontek.serial, 16, 17, 19, 24–27,
29–31, 42, 56, 84, 85, 87–90, 98,
179, 180, 206, 247, 400, 485, 488,
491, 499, 502, 502, 535, 538, 540,
611, 636, 647, 666, 667, 762, 763,
778, 790, 793, 794, 798, 849

read.adp.sontek.serial(), 23
read.adv, 31, 33, 34, 44, 84, 85, 179, 182,

404, 504, 515, 520, 526, 531, 612,
648, 668, 762, 764, 778, 790, 796,
800, 851

read.adv(), 32, 89, 153, 154, 484, 668, 764,
795, 796

read.adv.nortek, 31, 33, 34, 44, 84, 85, 179,
182, 404, 509, 510, 520, 526, 531,
612, 648, 668, 762, 764, 778, 790,
796, 800, 851

read.adv.nortek(), 32
read.adv.sontek.adr, 31, 33, 34, 44, 84, 85,

179, 182, 404, 509, 515, 515, 526,
531, 612, 648, 668, 762, 764, 778,
790, 796, 800, 851

read.adv.sontek.adr(), 32
read.adv.sontek.serial, 31, 33, 34, 44, 84,

85, 179, 182, 404, 509, 515, 520,
521, 531, 612, 648, 668, 762, 764,
778, 790, 796, 800, 851

902 INDEX

read.adv.sontek.text, 31, 33, 34, 44, 84,
85, 179, 182, 404, 509, 515, 520,
526, 526, 612, 648, 668, 762, 764,
778, 790, 796, 800, 851

read.adv.sontek.text(), 32
read.amsr, 36, 38, 122, 162, 406, 532, 649,

669, 803, 852
read.amsr(), 160, 161, 801
read.aquadopp, 16, 17, 19, 24–27, 29–31, 42,

56, 84, 85, 87–90, 98, 179, 180, 206,
247, 400, 485, 488, 491, 499, 502,
504, 532, 538, 540, 611, 636, 647,
666, 667, 762, 763, 778, 790, 793,
794, 798, 849

read.aquadoppHR, 16, 17, 19, 24–27, 29–31,
42, 56, 84, 85, 87–90, 98, 179, 180,
206, 247, 400, 485, 488, 491, 499,
502, 504, 535, 535, 540, 611, 636,
647, 666, 667, 762, 763, 778, 790,
793, 794, 798, 849

read.aquadoppProfiler, 16, 17, 19, 24–27,
29–31, 42, 56, 84, 85, 87–90, 98,
179, 180, 206, 247, 400, 485, 488,
491, 499, 502, 504, 535, 538, 538,
611, 636, 647, 666, 667, 762, 763,
778, 790, 793, 794, 798, 849

read.argo, 48–50, 54, 57, 209, 409, 540, 545,
651, 669, 805, 853

read.argo(), 48, 52, 56, 62, 542, 644, 669
read.argo.copernicus, 48–50, 54, 57, 209,

409, 544, 544, 651, 669, 805, 853
read.bremen, 104, 410, 545, 670, 807, 854
read.bremen(), 103
read.cm, 45, 58, 105, 107, 412, 546, 612, 652,

671, 809, 856
read.cm(), 105, 548
read.coastline, 549
read.coastline(), 59, 592
read.coastline.openstreetmap, 59,

113–115, 163, 416, 550, 552, 653,
672, 811, 857

read.coastline.shapefile, 59, 113–115,
163, 416, 551, 551, 653, 672, 811,
857

read.csv(), 586, 786
read.ctd, 63, 111, 130, 132, 133, 135, 138,

140, 142, 145–147, 150, 151, 211,
225, 233, 377, 385, 422, 462, 464,

471, 552, 556, 558, 561, 564–566,
570, 571, 573–576, 639, 654, 672,
785, 787, 815, 858

read.ctd(), 131, 223, 394, 462, 470, 592
read.ctd.aml, 63, 111, 130, 132, 133, 135,

138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 471, 554, 554, 558, 561,
564–566, 570, 571, 573–576, 639,
654, 672, 785, 787, 815, 858

read.ctd.aml(), 145, 146, 554, 555
read.ctd.itp, 63, 111, 130, 132, 133, 135,

138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 471, 554, 556, 556, 561,
564–566, 570, 571, 573–576, 639,
654, 672, 785, 787, 815, 858

read.ctd.itp(), 553, 558
read.ctd.odf, 63, 111, 130, 132, 133, 135,

138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 387, 388,
393, 422, 437, 462, 464, 471, 554,
556, 558, 559, 564–566, 570, 571,
573–576, 594, 639, 654, 659, 672,
678, 785, 787, 815, 834, 858, 870

read.ctd.odf(), 389, 553, 557, 559, 560,
562, 566, 572, 574, 594

read.ctd.odv, 63, 111, 130, 132, 133, 135,
138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 471, 554, 556, 558, 561, 562,
565, 570, 571, 574, 575, 639, 654,
672, 785–787, 815, 858

read.ctd.odv(), 553, 563
read.ctd.saiv, 63, 111, 130, 132, 133, 135,

138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 471, 554, 556, 558, 561, 564,
564, 570, 571, 574–576, 639, 654,
672, 785–787, 815, 858

read.ctd.saiv(), 564, 565
read.ctd.sbe, 63, 111, 130, 132, 133, 135,

138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 471, 554, 556, 558, 561,
564–566, 566, 571, 574–576, 639,
654, 672, 785–787, 815, 858

read.ctd.sbe(), 107, 130, 553, 557, 559,

INDEX 903

562, 566, 572, 574, 589, 769, 812,
813

read.ctd.ssda, 63, 111, 130, 132, 133, 135,
138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 471, 554, 556, 558, 561,
564–566, 570, 570, 574–576, 639,
654, 672, 785–787, 815, 858

read.ctd.ssda(), 570, 571
read.ctd.woce, 63, 111, 130, 132, 133, 135,

138, 140, 142, 145–147, 150, 151,
211, 225, 233, 377, 385, 422, 462,
464, 471, 554, 556, 558, 561,
564–566, 570, 571, 572, 575, 576,
639, 654, 672, 785–787, 815, 858

read.ctd.woce(), 553, 557, 559, 562, 566,
572, 574

read.ctd.woce.other, 63, 111, 130, 132,
133, 135, 138, 140–142, 145–147,
150, 151, 211, 225, 233, 377, 385,
422, 462, 464, 471, 554, 556, 558,
561, 564–566, 570, 571, 574, 574,
639, 654, 672, 785–787, 815, 858

read.echosounder, 65, 176, 177, 187, 425,
576, 655, 673, 817, 860

read.echosounder(), 64, 176, 673
read.g1sst, 192, 577, 819, 861
read.g1sst(), 191, 440
read.gps, 66, 201, 428, 579, 674, 821, 862
read.gps(), 65, 200, 820
read.index, 580
read.landsat, 252, 256–258, 431, 581, 675,

825, 864
read.landsat(), 254–256, 824
read.lisst, 68, 261, 432, 583, 676, 827, 866
read.lisst(), 67
read.lobo, 69, 261, 263, 434, 584, 656, 676,

829, 867
read.lobo(), 261, 592
read.met, 70, 165, 312, 314, 435, 586, 657,

677, 830, 868
read.met(), 69, 312, 313, 586
read.netcdf, 588
read.netcdf(), 101
read.oce, 591
read.oce(), 23, 32, 84, 256, 376, 487, 506,

511, 517, 522, 528, 583, 585, 603,
667, 673, 681

read.odf, 147, 387, 388, 393, 437, 561, 592,
659, 678, 834, 870

read.odf(), 560, 561, 592, 594, 769, 770
read.rsk, 72, 140, 439, 595, 613, 614, 616,

618, 660, 679, 835, 872
read.rsk(), 62, 139, 145, 592, 612, 613, 771
read.sealevel, 74, 442, 598, 620, 622, 623,

661, 680, 837, 873
read.sealevel(), 74, 592, 751
read.section, 76, 215, 238, 448, 599, 624,

626, 627, 629, 632, 633, 663, 681,
840, 874

read.section(), 601, 625, 681
read.topo, 80, 168, 452, 601, 664, 683,

765–767, 844, 877
read.topo(), 79, 166, 219, 764, 766, 767
read.woa, 602
read.xbt, 83, 455, 603, 607, 665, 685, 787,

789, 848, 879
read.xbt(), 787
read.xbt.edf, 605
read.xbt.edf(), 603
read.xbt.noaa1, 83, 455, 604, 606, 665, 685,

787, 789, 848, 879
read.xbt.noaa1(), 603
readBin(), 192, 484, 485, 488, 491, 498, 501,

503, 504, 508, 509, 514, 519, 520,
525, 530, 531, 534, 537, 539, 540

rep(), 181, 216, 281, 465, 685
rescale, 607
resizableLabel, 250, 608
retime, 610
rgb(), 117, 431
rotateAboutZ, 16, 17, 19, 24–27, 29–31, 33,

34, 42, 44, 45, 56, 58, 84, 85, 87–90,
98, 105, 107, 179, 180, 182, 206,
247, 400, 404, 412, 485, 488, 491,
499, 502, 504, 509, 515, 520, 526,
531, 535, 538, 540, 548, 611, 636,
647, 648, 652, 666–668, 671,
762–764, 778, 790, 793, 794, 796,
798, 800, 809, 849, 851, 856

round(), 171
Rprofile(), 115
rsk, 19, 31, 36, 48, 62, 72, 105, 115, 129,

139–141, 145, 175, 252, 260, 261,
312, 337, 438, 439, 597, 598, 612,
613–616, 618, 620, 623, 624, 660,

904 INDEX

679, 767, 781, 787, 834, 835, 871,
872

rsk-class, 613
rsk2ctd, 614
rsk2ctd(), 62
rskPatm, 72, 140, 439, 598, 613, 614, 616,

618, 660, 679, 835, 872
rskPatm(), 613
rskToc, 72, 140, 439, 598, 613, 614, 616, 617,

660, 679, 835, 872
runlm, 618
runmed(), 158

satellite, 440, 680
satellite-class, 619
sealevel, 19, 31, 36, 48, 74, 105, 115, 129,

141, 175, 252, 260, 261, 312, 337,
441, 442, 599, 613, 620, 621–624,
661, 680, 751, 752, 767, 781, 787,
836, 837, 872, 873

sealevel-class, 621
sealevelTuktoyaktuk, 19, 31, 36, 48, 74,

105, 115, 129, 141, 175, 252, 260,
261, 312, 337, 442, 599, 613, 620,
622, 622, 624, 661, 680, 767, 781,
787, 837, 873

secondsToCtime, 148, 248, 249, 319, 321,
623, 768

secondsToCtime(), 148
section, 18, 19, 31, 36, 48, 75, 76, 105, 115,

129, 141, 175, 214, 215, 217, 236,
238, 252, 260, 261, 264, 265, 312,
337, 444, 448, 468, 600, 601, 613,
620, 623, 624, 625–627, 629, 632,
633, 662, 663, 681, 698, 747, 767,
781, 787, 838, 840, 873, 874

section(), 625, 812
section-class, 625
sectionAddCtd (sectionAddStation), 626
sectionAddStation, 76, 215, 238, 448, 601,

624, 626, 626, 629, 632, 633, 663,
681, 840, 874

sectionAddStation(), 625
sectionGrid, 76, 215, 238, 448, 601, 624,

626, 627, 628, 632, 633, 663, 681,
840, 874

sectionGrid(), 50, 133, 625, 631, 645
sectionSmooth, 76, 215, 238, 448, 601, 624,

626, 627, 629, 629, 633, 663, 681,

840, 874
sectionSmooth(), 625
sectionSort, 76, 215, 238, 448, 601, 624,

626, 627, 629, 632, 633, 663, 681,
840, 874

sectionSort(), 625
segments(), 183
seq(), 50, 117, 245, 628, 630
seq_along, 61, 243
seq_along(), 159, 463
setFlags, 157, 204, 206, 209, 210, 213, 215,

226–228, 230, 233, 236, 238, 241,
242, 634, 636, 639, 641

setFlags(), 225–228, 231, 233, 236, 239, 241
setFlags,adp-method, 635
setFlags,ctd-method, 637
setFlags,oce-method, 640
sf::sf_project(), 114, 275
sf::st_crs(), 296
shiftLongitude, 190, 266, 268, 276, 277,

279, 282, 283, 285, 287, 291–293,
303–305, 307–309, 367, 379, 641,
774, 775

shiftLongitude(), 311, 646
show(), 131
showMetadataItem, 642
siderealTime, 38, 178, 183, 248, 249, 316,

643, 686, 687
slot(), 20, 33, 37, 49, 104, 106, 112, 131,

177, 192, 200, 251, 253, 260, 262,
313, 386, 614, 621, 625, 756, 764,
783, 788

smooth(), 158, 383, 424, 702
smooth.spline(), 28, 137, 631, 702, 707
smoothScatter(), 396, 399, 402, 403, 411,

420, 438, 461, 469
snakeToCamel, 644
snakeToCamel(), 541
spec.pgram(), 480
spectrum(), 384, 480
standardDepths, 628, 645
standardDepths(), 50, 628
standardizeLongitude, 646
standardizeLongitude(), 311, 641
stats::approxfun(), 698
stats::filter(), 269
stats::integrate(), 698
stdout(), 786

INDEX 905

str, 594
str(), 776
strptime(), 221, 396, 402, 408, 411, 425,

431, 434, 438, 779
subset(), 610, 781, 783
subset,adp-method, 646
subset,adv-method, 647
subset,amsr-method, 648
subset,argo-method, 649
subset,cm-method, 651
subset,coastline-method, 652
subset,ctd-method, 653
subset,echosounder-method, 655
subset,lobo-method, 656
subset,met-method, 657
subset,oce-method, 658
subset,odf-method, 659
subset,rsk-method, 660
subset,sealevel-method, 661
subset,section-method, 662
subset,topo-method, 664
subset,xbt-method, 665
subset.argo (subset,argo-method), 649
subset.coastline

(subset,coastline-method), 652
subset.data.frame(), 646, 647, 651,

655–657, 659–661, 664, 665
subset.section (subset,section-method),

662
subtractBottomVelocity, 16, 17, 19, 24–27,

29–31, 42, 56, 84, 85, 87–90, 98,
179, 180, 206, 247, 400, 485, 488,
491, 499, 502, 504, 535, 538, 540,
611, 636, 647, 666, 667, 762, 763,
778, 790, 793, 794, 798, 849

summary(), 748
summary,adp,missing-method

(summary,adp-method), 667
summary,adp-method, 667
summary,adv-method, 668
summary,amsr-method, 668
summary,argo-method, 669
summary,bremen-method, 670
summary,cm-method, 670
summary,coastline-method, 671
summary,ctd-method, 672, 677
summary,echosounder-method, 673
summary,gps-method, 673

summary,ladp-method, 674
summary,landsat-method, 675
summary,lisst-method, 675
summary,lobo-method, 676
summary,met-method, 677
summary,oce-method, 677
summary,odf-method, 678
summary,rsk-method, 679
summary,satellite-method, 679
summary,sealevel-method, 680
summary,section-method, 681
summary,tidem-method, 682
summary,topo-method, 683
summary,windrose-method, 684
summary,xbt-method, 684
summary.adp (summary,adp-method), 667
summary.argo (summary,argo-method), 669
summary.coastline

(summary,coastline-method), 671
summary.ctd (summary,ctd-method), 672
summary.section

(summary,section-method), 681
sunAngle, 38, 178, 183, 248, 249, 316, 643,

685, 687
sunAngle(), 38, 316
sunDeclinationRightAscension, 38, 178,

183, 248, 249, 316, 643, 686, 687
sunDeclinationRightAscension(), 685,

686
swAbsoluteSalinity, 124, 264, 688, 690,

691, 693, 694, 696, 697, 700, 701,
703, 704, 706, 708, 710, 711,
713–715, 717–719, 721, 723, 725,
726, 728–733, 735, 736, 738, 740,
741, 743–747

swAbsoluteSalinity(), 263, 694
swAlpha, 124, 264, 689, 689, 691, 693, 694,

696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747

swAlphaOverBeta, 124, 264, 689, 690, 690,
693, 694, 696, 697, 700, 701, 703,
704, 706, 708, 710, 711, 713–715,
717–719, 721, 723, 725, 726,
728–733, 735, 736, 738, 740, 741,
743–747

swBeta, 124, 264, 689–691, 692, 694, 696,

906 INDEX

697, 700, 701, 703, 704, 706, 708,
710, 711, 713–715, 717–719, 721,
723, 725, 726, 728–733, 735, 736,
738, 740, 741, 743–747

swConservativeTemperature, 124, 264,
689–691, 693, 693, 696, 697, 700,
701, 703, 704, 706, 708, 710, 711,
713–715, 717–719, 721, 723, 725,
726, 728–733, 735, 736, 738, 740,
741, 743–747

swConservativeTemperature(), 689
swCSTp, 124, 264, 689–691, 693, 694, 694,

697, 700, 701, 703, 704, 706, 708,
710, 711, 713–715, 717–719, 721,
723, 725, 726, 728–733, 735, 736,
738, 740, 741, 743–747

swCSTp(), 710
swDepth, 124, 264, 689–691, 693, 694, 696,

696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747, 812

swDepth(), 445, 703, 704, 743
swDynamicHeight, 124, 264, 689–691, 693,

694, 696, 697, 698, 701, 703, 704,
706, 708, 710, 711, 713–715,
717–719, 721, 723, 725, 726,
728–733, 735, 736, 738, 740, 741,
743–747, 839

swDynamicHeight(), 698
swLapseRate, 124, 264, 689–691, 693, 694,

696, 697, 700, 700, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747

swN2, 124, 264, 689–691, 693, 694, 696, 697,
700, 701, 701, 704, 706, 708, 710,
711, 713–715, 717–719, 721, 723,
725, 726, 728–733, 735, 736, 738,
740, 741, 743–747, 812

swN2(), 418, 421, 459, 461, 804
swPressure, 124, 264, 689–691, 693, 694,

696, 697, 700, 701, 703, 703, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747

swPressure(), 547, 565
swRho, 124, 264, 689–691, 693, 694, 696, 697,

700, 701, 703, 704, 705, 708, 710,
711, 713–715, 717–719, 721, 723,
725, 726, 728–733, 735, 736, 738,
740, 741, 743–747, 812

swRho(), 60, 108, 419, 689–693, 695, 700,
709, 711, 713–715, 717–719, 721,
727, 734, 737, 739, 742

swRrho, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 707,
710, 711, 713–715, 717–719, 721,
723, 725, 726, 728–733, 735, 736,
738, 740, 741, 743–747, 813

swSCTp, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
708, 711, 713–715, 717–719, 721,
723, 725, 726, 728–733, 735, 736,
738, 740, 741, 743–747

swSCTp(), 60, 61, 130, 695
swSigma, 124, 264, 689–691, 693, 694, 696,

697, 700, 701, 703, 704, 706, 708,
710, 710, 713–715, 717–719, 721,
723, 725, 726, 728–733, 735, 736,
738, 740, 741, 743–747

swSigma0, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 712, 714, 715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747, 813

swSigma0(), 418, 706, 713, 714, 716, 717,
797, 800, 802, 805, 807, 809, 810,
814, 816, 818, 820, 822, 824, 826,
828, 830, 832, 833, 835, 837, 839,
842, 843, 845, 847, 850

swSigma1, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 713, 713, 715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747, 813

swSigma2, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 713, 714, 714, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747, 813

swSigma3, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 713–715, 716, 718, 719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747, 813

INDEX 907

swSigma4, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 713–715, 717, 717, 719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747, 813

swSigmaT, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 713–715, 717, 718, 718,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–747

swSigmaT(), 706
swSigmaTheta, 124, 264, 689–691, 693, 694,

696, 697, 700–704, 706, 708, 710,
711, 713–715, 717–719, 720, 723,
725, 726, 728–733, 735, 736, 738,
740, 741, 743–747, 813

swSigmaTheta(), 706, 712, 797, 800, 802,
804, 805, 807, 809, 810, 814, 816,
818, 820, 822, 824, 826, 828, 830,
832, 833, 835, 837, 839, 842, 843,
845, 847, 850

swSoundAbsorption, 124, 264, 689–691, 693,
694, 696, 697, 700, 701, 703, 704,
706, 708, 710, 711, 713–715,
717–719, 721, 722, 725, 726,
728–733, 735, 736, 738, 740, 741,
743–747

swSoundSpeed, 124, 264, 576, 689–691, 693,
694, 696, 697, 700, 701, 703, 704,
706, 708, 710, 711, 713–715,
717–719, 721, 723, 723, 726,
728–733, 735, 736, 738, 740, 741,
743–747

swSpecificHeat, 124, 264, 689–691, 693,
694, 696, 697, 700, 701, 703, 704,
706, 708, 710, 711, 713–715,
717–719, 721, 723, 725, 725,
728–733, 735, 736, 738, 740, 741,
743–747

swSpice, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 713–715, 717–719, 721,
723, 725, 726, 726, 729–733, 735,
736, 738, 740, 741, 743–747

swSpice(), 460, 797, 800, 802, 805, 807, 809,
810, 813, 814, 816, 818, 820, 822,
824, 826, 828, 830, 832, 833, 835,
837, 839, 842, 843, 845, 847, 850

swSpiciness0, 124, 264, 689–691, 693, 694,
696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728, 728,
730–733, 735, 736, 738, 740, 741,
743–747

swSpiciness1, 124, 264, 689–691, 693, 694,
696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728, 729, 729,
731–733, 735, 736, 738, 740, 741,
743–747

swSpiciness2, 124, 264, 689–691, 693, 694,
696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728–730, 730,
732, 733, 735, 736, 738, 740, 741,
743–747

swSR, 124, 264, 689–691, 693, 694, 696, 697,
700, 701, 703, 704, 706, 708, 710,
711, 713–715, 717–719, 721, 723,
725, 726, 728–731, 731, 733, 735,
736, 738, 740, 741, 743–747

swSstar, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 713, 714, 716–719, 721,
723, 725, 726, 728–732, 732, 735,
736, 738, 740, 741, 743–747

swSTrho, 124, 264, 689–691, 693, 694, 696,
697, 700, 701, 703, 704, 706, 708,
710, 711, 713–715, 717–719, 721,
723, 725, 726, 728–733, 733, 736,
738, 740, 741, 743–747

swSTrho(), 741
swTFreeze, 124, 264, 689–691, 693, 694, 696,

697, 700, 701, 703, 704, 706, 708,
710, 711, 713, 714, 716–719, 721,
723, 725, 726, 728–733, 735, 735,
738, 740, 741, 743–747

swTFreeze(), 469
swThermalConductivity, 124, 264, 689–691,

693, 694, 696, 697, 700, 701, 703,
704, 706, 708, 710, 711, 713, 714,
716–719, 721, 723, 725, 726,
728–733, 735, 736, 737, 740, 741,
743–747

swThermalConductivity(), 695, 710
swTheta, 124, 264, 689–691, 693, 694, 696,

908 INDEX

697, 700, 701, 703, 704, 706, 708,
710, 711, 713, 714, 716–719, 721,
723, 725, 726, 728–733, 735, 736,
738, 738, 741, 743–747, 812

swTheta(), 804
swTSrho, 124, 264, 689–691, 693, 694, 696,

697, 700, 701, 703, 704, 706, 708,
710, 711, 713, 714, 716–719, 721,
723, 725, 726, 728–733, 735, 736,
738, 740, 740, 743–747

swTSrho(), 735
swViscosity, 124, 264, 689–691, 693, 694,

696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713, 714, 716–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 742, 744–747

swZ, 124, 264, 689–691, 693, 694, 696, 697,
700, 701, 703, 704, 706, 708, 710,
711, 713, 714, 716–719, 721, 723,
725, 726, 728–733, 735, 736, 738,
740, 741, 743, 743, 745–747, 813

T68fromT90, 124, 264, 689–691, 693, 694,
696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743, 744, 744,
746, 747

T68fromT90(), 705, 711, 712, 714–717, 719,
720, 722, 724

T90fromT48, 124, 264, 689–691, 693, 694,
696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–745, 745,
747

T90fromT68, 124, 264, 689–691, 693, 694,
696, 697, 700, 701, 703, 704, 706,
708, 710, 711, 713–715, 717–719,
721, 723, 725, 726, 728–733, 735,
736, 738, 740, 741, 743–746, 746

T90fromT68(), 130, 569, 812
tail(), 747
tail.oce, 747
tail.oce(), 217
text(), 250, 307
threenum, 748
tidalCurrent, 78, 450, 473, 682, 749, 750,

755, 757, 758, 760, 781, 842, 875

tidedata, 78, 450, 473, 682, 749, 750, 755,
757, 758, 760, 781, 842, 875

tidem, 78, 449, 450, 472, 473, 682, 749, 750,
751, 753, 756–758, 760, 781, 841,
842, 875

tidem(), 76–78, 466, 472, 682, 750, 752, 754,
757–759

tidem-class, 756
tidemAstron, 78, 450, 473, 682, 749, 750,

755, 757, 757, 760, 781, 842, 875
tidemConstituentNameFix, 758
tidemConstituentNameFix(), 754
tidemVuf, 78, 450, 473, 682, 749, 750, 755,

757, 758, 759, 781, 842, 875
tidemVuf(), 77
tiff::readTIFF(), 581
timeToArgoJuld, 760
titleCase, 761
toEnu, 16, 17, 19, 24–27, 29–31, 33, 34, 42,

44, 56, 84, 85, 87–90, 98, 179, 180,
182, 206, 247, 400, 404, 485, 488,
491, 499, 502, 504, 509, 515, 520,
526, 531, 535, 538, 540, 611, 612,
636, 647, 648, 666–668, 761, 763,
764, 778, 790, 793, 794, 796, 798,
800, 849, 851

toEnuAdp, 16, 17, 19, 24–27, 29–31, 42, 56,
84, 85, 87–90, 98, 179, 180, 206,
247, 400, 485, 488, 491, 499, 502,
504, 535, 538, 540, 611, 636, 647,
666, 667, 762, 762, 778, 790, 793,
794, 798, 849

toEnuAdp(), 23, 761
toEnuAdv, 31, 33, 34, 44, 84, 85, 179, 182,

404, 509, 515, 520, 526, 531, 612,
648, 668, 762, 763, 778, 790, 796,
800, 851

toEnuAdv(), 32, 761
topo, 79, 217, 221, 281, 445, 451, 588, 602,

664, 683, 747, 764, 765, 842, 876
topo-class, 764
topoInterpolate, 80, 91, 168, 452, 602, 664,

683, 765, 765, 767, 844, 877
topoWorld, 19, 31, 36, 48, 80, 105, 115, 129,

141, 168, 175, 252, 260, 261, 312,
337, 452, 602, 613, 620, 623, 624,
664, 683, 765, 766, 766, 781, 787,
844, 877

INDEX 909

trimws(), 323
ts(), 73
txtProgressBar(), 484, 490, 493, 500, 503,

506, 511, 516, 522, 527, 534, 536,
539

unabbreviateYear, 148, 248, 249, 319, 321,
623, 767

undriftTime, 768
unduplicateNames, 769
unduplicateNames(), 102, 388, 593
ungrid, 769
uniroot(), 703, 704
unitFromString, 111, 377, 385, 393, 770,

771, 785, 786
unitFromString(), 561, 594
unitFromStringRsk, 111, 377, 385, 393, 771,

771, 785, 786
unwrapAngle, 772
useHeading, 773
usrLonLat, 190, 266, 268, 276, 277, 279, 282,

283, 285, 287, 291–293, 303–305,
307–309, 367, 379, 641, 773, 775

utils::download.file(), 163, 165
utils::write.table(), 333
utm2lonlat, 190, 266, 268, 276, 277, 279,

282, 283, 285, 287, 291–293,
303–305, 307–309, 367, 379, 641,
774, 774

utm2lonlat(), 268

vector, 484, 488, 491, 498, 501, 503, 508,
509, 514, 519, 525, 530, 534, 537,
539, 540

vectorShow, 776
velocityStatistics, 16, 17, 19, 24–27,

29–31, 33, 34, 42, 44, 56, 84, 85,
87–90, 98, 179, 180, 182, 206, 247,
400, 404, 485, 488, 491, 499, 502,
504, 509, 515, 520, 526, 531, 535,
538, 540, 611, 612, 636, 647, 648,
666–668, 762–764, 777, 790, 793,
794, 796, 798, 800, 849, 851

View, 594

webtide, 78, 450, 473, 682, 749, 750, 755,
757, 758, 760, 778, 842, 875

which(), 310

wind, 19, 31, 36, 48, 105, 115, 129, 141, 175,
252, 260, 261, 312, 337, 613, 620,
623, 624, 767, 781, 787

wind(), 246
window.oce, 781
windrose, 81, 453, 684, 783, 844, 877
windrose-class, 783
woceNames2oceNames, 54, 63, 102, 111, 130,

132, 133, 135, 139–142, 145–147,
150, 151, 211, 225, 233, 315, 377,
385, 393, 422, 462, 464, 471, 554,
556, 558, 561, 564, 565, 570, 571,
574, 576, 639, 654, 672, 771, 784,
786, 787, 815, 858

woceNames2oceNames(), 601
woceUnit2oceUnit, 63, 111, 130, 132, 133,

135, 139–142, 145–147, 150, 151,
211, 225, 233, 377, 385, 393, 422,
462, 464, 471, 554, 556, 558, 561,
564, 565, 570, 571, 574, 576, 639,
654, 672, 771, 785, 785, 787, 815,
858

write.ctd, 63, 111, 130, 132, 133, 135,
139–142, 145–147, 150, 151, 211,
225, 233, 377, 385, 422, 462, 464,
471, 554, 556, 558, 561, 564, 565,
570, 571, 574, 576, 639, 654, 672,
785, 786, 786, 815, 858

xbt, 19, 31, 36, 48, 83, 105, 115, 129, 141,
175, 252, 260, 261, 312, 337, 454,
455, 604, 605, 607, 613, 620, 623,
624, 665, 684, 685, 767, 781, 787,
787, 788, 789, 846, 848, 878, 879

xbt-class, 788
xbt.edf, 31, 83, 133, 146, 147, 150, 151, 455,

604, 607, 665, 685, 787, 789, 789,
848, 879

xyzToEnu, 16, 17, 19, 24–27, 29–31, 33, 34,
42, 44, 56, 84, 85, 87–90, 98, 179,
180, 182, 206, 247, 400, 404, 485,
488, 491, 499, 502, 504, 509, 515,
520, 526, 531, 535, 538, 540, 611,
612, 636, 647, 648, 666–668,
762–764, 778, 790, 793, 794, 796,
798, 800, 849, 851

xyzToEnuAdp, 16, 17, 19, 24–27, 29–31, 42,
56, 84, 85, 87–90, 98, 179, 180, 206,
247, 400, 485, 488, 491, 499, 502,

910 INDEX

504, 535, 538, 540, 611, 636, 647,
666, 667, 762, 763, 778, 790, 791,
794, 798, 849

xyzToEnuAdp(), 23, 180, 398, 763, 790
xyzToEnuAdpAD2CP, 16, 17, 19, 24–27, 29–31,

42, 56, 84, 85, 87–90, 98, 179, 180,
206, 247, 400, 485, 488, 491, 499,
502, 504, 535, 538, 540, 611, 636,
647, 666, 667, 762, 763, 778, 790,
793, 793, 798, 849

xyzToEnuAdv, 31, 33, 34, 44, 84, 85, 179, 182,
404, 509, 515, 520, 526, 531, 612,
648, 668, 762, 764, 778, 790, 794,
800, 851

xyzToEnuAdv(), 32, 181, 764, 790

	abbreviateTimeLabels
	ad2cpCodeToName
	ad2cpHeaderValue
	addSpine
	adp
	adp-class
	adpAd2cpFileTrim
	adpConvertRawToNumeric
	adpEnsembleAverage
	adpFlagPastBoundary
	adpRdiFileTrim
	adp_rdi.000
	adv
	adv-class
	advSontekAdrFileTrim
	airRho
	amsr
	amsr-class
	angle2hms
	angleRemap
	applyMagneticDeclination
	applyMagneticDeclination,adp-method
	applyMagneticDeclination,adv-method
	applyMagneticDeclination,cm-method
	applyMagneticDeclination,oce-method
	approx3d
	argo
	argo-class
	argoGrid
	argoJuldToTime
	argoNames2oceNames
	argShow
	as.adp
	as.argo
	as.cm
	as.coastline
	as.ctd
	as.echosounder
	as.gps
	as.ladp
	as.lisst
	as.lobo
	as.met
	as.oce
	as.rsk
	as.sealevel
	as.section
	as.tidem
	as.topo
	as.unit
	as.windrose
	as.xbt
	bcdToInteger
	beamName
	beamToXyz
	beamToXyzAdp
	beamToXyzAdpAD2CP
	beamToXyzAdv
	beamUnspreadAdp
	bilinearInterp
	binApply1D
	binApply2D
	binAverage
	binCount1D
	binCount2D
	binmapAdp
	binMean1D
	binMean2D
	bodcNames2oceNames
	bound125
	bremen-class
	byteToBinary
	cm
	cm-class
	cnvName2oceName
	coastline-class
	coastlineBest
	coastlineCut
	coastlineWorld
	colormap
	colormapGMT
	composite
	composite,amsr-method
	composite,list-method
	computableWaterProperties
	concatenate
	concatenate,adp-method
	concatenate,list-method
	concatenate,oce-method
	coriolis
	ctd
	ctd-class
	ctd.cnv.gz
	ctdDecimate
	ctdFindProfiles
	ctdFindProfilesRBR
	ctdRaw
	ctdRepair
	ctdTrim
	ctd_aml_type1.csv.gz
	ctd_aml_type3.csv.gz
	CTD_BCD2014666_008_1_DN.ODF.gz
	ctimeToSeconds
	curl
	d200321-001.ctd.gz
	d201211_0011.cnv.gz
	dataLabel
	decimate
	decodeHeaderNortek
	decodeTime
	defaultFlags
	despike
	detrend
	download.amsr
	download.coastline
	download.met
	download.topo
	drawDirectionField
	drawIsopycnals
	drawPalette
	echosounder
	echosounder-class
	eclipticalToEquatorial
	enuToOther
	enuToOtherAdp
	enuToOtherAdv
	equatorialToLocalHorizontal
	errorbars
	fillGap
	fillGapMatrix
	findBottom
	firstFinite
	formatCI
	formatPosition
	fullFilename
	g1sst-class
	gappyIndex
	geodDist
	geodGc
	geodXy
	geodXyInverse
	GMTOffsetFromTz
	gps-class
	grad
	gravity
	handleFlags
	handleFlags,adp-method
	handleFlags,argo-method
	handleFlags,ctd-method
	handleFlags,oce-method
	handleFlags,section-method
	handleFlags,vector-method
	handleFlagsInternal
	head.oce
	imagep
	initialize,ctd-method
	initializeFlags
	initializeFlags,adp-method
	initializeFlags,oce-method
	initializeFlagScheme
	initializeFlagScheme,ctd-method
	initializeFlagScheme,oce-method
	initializeFlagScheme,section-method
	initializeFlagSchemeInternal
	initializeFlagsInternal
	integerToAscii
	integrateTrapezoid
	interpBarnes
	is.ad2cp
	julianCenturyAnomaly
	julianDay
	labelWithUnit
	ladp-class
	landsat
	landsat-class
	landsatAdd
	landsatTrim
	latFormat
	latlonFormat
	lisst
	lisst-class
	lobo
	lobo-class
	locationForGsw
	lon360
	lonFormat
	longitudeTighten
	lonlat2map
	lonlat2utm
	lookWithin
	lowpass
	magneticField
	makeFilter
	map2lonlat
	mapArrows
	mapAxis
	mapContour
	mapCoordinateSystem
	mapDirectionField
	mapGrid
	mapImage
	mapLines
	mapLocator
	mapLongitudeLatitudeXY
	mapPlot
	mapPoints
	mapPolygon
	mapScalebar
	mapText
	mapTissot
	matchBytes
	matrixShiftLongitude
	matrixSmooth
	met
	met-class
	metNames2oceNames
	moonAngle
	netcdfTOC
	numberAsHMS
	numberAsPOSIXct
	oce-class
	oce-deprecated
	oce.as.raw
	oce.axis.POSIXct
	oce.contour
	oce.grid
	oce.plot.ts
	oce.write.table
	oceApprox
	oceAxis
	ocecolors
	oceColors9B
	oceColorsCDOM
	oceColorsChlorophyll
	oceColorsClosure
	oceColorsDensity
	oceColorsFreesurface
	oceColorsGebco
	oceColorsJet
	oceColorsOxygen
	oceColorsPalette
	oceColorsPAR
	oceColorsPhase
	oceColorsSalinity
	oceColorsTemperature
	oceColorsTurbidity
	oceColorsTurbo
	oceColorsTwo
	oceColorsVelocity
	oceColorsViridis
	oceColorsVorticity
	oceConvolve
	oceCRS
	oceDebug
	oceDeleteData
	oceDeleteMetadata
	oceEdit
	oceFileTrim
	oceFilter
	oceGetData
	oceGetMetadata
	oceMagic
	oceNames2whpNames
	ocePmatch
	oceProject
	oceRenameData
	oceRenameMetadata
	oceSetData
	oceSetMetadata
	oceSmooth
	oceSpectrum
	oceUnits2whpUnits
	odf-class
	ODF2oce
	ODFListFromHeader
	ODFNames2oceNames
	parseLatLon
	plot,adp-method
	plot,adv-method
	plot,amsr-method
	plot,argo-method
	plot,bremen-method
	plot,cm-method
	plot,coastline-method
	plot,ctd-method
	plot,echosounder-method
	plot,gps-method
	plot,ladp-method
	plot,landsat-method
	plot,lisst-method
	plot,lobo-method
	plot,met-method
	plot,oce-method
	plot,odf-method
	plot,rsk-method
	plot,satellite-method
	plot,sealevel-method
	plot,section-method
	plot,tidem-method
	plot,topo-method
	plot,windrose-method
	plot,xbt-method
	plotInset
	plotPolar
	plotProfile
	plotScan
	plotSticks
	plotTaylor
	plotTS
	predict.tidem
	preferAdjusted
	presentTime
	prettyPosition
	processingLog<-
	processingLogAppend
	processingLogItem
	processingLogShow
	pwelch
	rangeExtended
	rangeLimit
	read.adp
	read.adp.ad2cp
	read.adp.nortek
	read.adp.rdi
	read.adp.sontek
	read.adp.sontek.serial
	read.adv
	read.adv.nortek
	read.adv.sontek.adr
	read.adv.sontek.serial
	read.adv.sontek.text
	read.amsr
	read.aquadopp
	read.aquadoppHR
	read.aquadoppProfiler
	read.argo
	read.argo.copernicus
	read.bremen
	read.cm
	read.coastline
	read.coastline.openstreetmap
	read.coastline.shapefile
	read.ctd
	read.ctd.aml
	read.ctd.itp
	read.ctd.odf
	read.ctd.odv
	read.ctd.saiv
	read.ctd.sbe
	read.ctd.ssda
	read.ctd.woce
	read.ctd.woce.other
	read.echosounder
	read.g1sst
	read.gps
	read.index
	read.landsat
	read.lisst
	read.lobo
	read.met
	read.netcdf
	read.oce
	read.odf
	read.rsk
	read.sealevel
	read.section
	read.topo
	read.woa
	read.xbt
	read.xbt.edf
	read.xbt.noaa1
	rescale
	resizableLabel
	retime
	rotateAboutZ
	rsk
	rsk-class
	rsk2ctd
	rskPatm
	rskToc
	runlm
	satellite-class
	sealevel
	sealevel-class
	sealevelTuktoyaktuk
	secondsToCtime
	section
	section-class
	sectionAddStation
	sectionGrid
	sectionSmooth
	sectionSort
	setFlags
	setFlags,adp-method
	setFlags,ctd-method
	setFlags,oce-method
	shiftLongitude
	showMetadataItem
	siderealTime
	snakeToCamel
	standardDepths
	standardizeLongitude
	subset,adp-method
	subset,adv-method
	subset,amsr-method
	subset,argo-method
	subset,cm-method
	subset,coastline-method
	subset,ctd-method
	subset,echosounder-method
	subset,lobo-method
	subset,met-method
	subset,oce-method
	subset,odf-method
	subset,rsk-method
	subset,sealevel-method
	subset,section-method
	subset,topo-method
	subset,xbt-method
	subtractBottomVelocity
	summary,adp-method
	summary,adv-method
	summary,amsr-method
	summary,argo-method
	summary,bremen-method
	summary,cm-method
	summary,coastline-method
	summary,ctd-method
	summary,echosounder-method
	summary,gps-method
	summary,ladp-method
	summary,landsat-method
	summary,lisst-method
	summary,lobo-method
	summary,met-method
	summary,oce-method
	summary,odf-method
	summary,rsk-method
	summary,satellite-method
	summary,sealevel-method
	summary,section-method
	summary,tidem-method
	summary,topo-method
	summary,windrose-method
	summary,xbt-method
	sunAngle
	sunDeclinationRightAscension
	swAbsoluteSalinity
	swAlpha
	swAlphaOverBeta
	swBeta
	swConservativeTemperature
	swCSTp
	swDepth
	swDynamicHeight
	swLapseRate
	swN2
	swPressure
	swRho
	swRrho
	swSCTp
	swSigma
	swSigma0
	swSigma1
	swSigma2
	swSigma3
	swSigma4
	swSigmaT
	swSigmaTheta
	swSoundAbsorption
	swSoundSpeed
	swSpecificHeat
	swSpice
	swSpiciness0
	swSpiciness1
	swSpiciness2
	swSR
	swSstar
	swSTrho
	swTFreeze
	swThermalConductivity
	swTheta
	swTSrho
	swViscosity
	swZ
	T68fromT90
	T90fromT48
	T90fromT68
	tail.oce
	threenum
	tidalCurrent
	tidedata
	tidem
	tidem-class
	tidemAstron
	tidemConstituentNameFix
	tidemVuf
	timeToArgoJuld
	titleCase
	toEnu
	toEnuAdp
	toEnuAdv
	topo-class
	topoInterpolate
	topoWorld
	unabbreviateYear
	undriftTime
	unduplicateNames
	ungrid
	unitFromString
	unitFromStringRsk
	unwrapAngle
	useHeading
	usrLonLat
	utm2lonlat
	vectorShow
	velocityStatistics
	webtide
	wind
	window.oce
	windrose-class
	woceNames2oceNames
	woceUnit2oceUnit
	write.ctd
	xbt
	xbt-class
	xbt.edf
	xyzToEnu
	xyzToEnuAdp
	xyzToEnuAdpAD2CP
	xyzToEnuAdv
	[[,adp-method
	[[,adv-method
	[[,amsr-method
	[[,argo-method
	[[,bremen-method
	[[,cm-method
	[[,coastline-method
	[[,ctd-method
	[[,echosounder-method
	[[,g1sst-method
	[[,gps-method
	[[,ladp-method
	[[,landsat-method
	[[,lisst-method
	[[,lobo-method
	[[,met-method
	[[,oce-method
	[[,odf-method
	[[,rsk-method
	[[,sealevel-method
	[[,section-method
	[[,tidem-method
	[[,topo-method
	[[,windrose-method
	[[,xbt-method
	[[<-,adp-method
	[[<-,adv-method
	[[<-,amsr-method
	[[<-,argo-method
	[[<-,bremen-method
	[[<-,cm-method
	[[<-,coastline-method
	[[<-,ctd-method
	[[<-,echosounder-method
	[[<-,g1sst-method
	[[<-,gps-method
	[[<-,ladp-method
	[[<-,landsat-method
	[[<-,lisst-method
	[[<-,lobo-method
	[[<-,met-method
	[[<-,oce-method
	[[<-,odf-method
	[[<-,rsk-method
	[[<-,sealevel-method
	[[<-,section-method
	[[<-,tidem-method
	[[<-,topo-method
	[[<-,windrose-method
	[[<-,xbt-method
	Index

